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Abstract: Myelin sheaths are essential in maintaining the integrity of axons. Development of the
platform for in vitro myelination would be especially useful for demyelinating disease modeling and
drug screening. In this study, a fiber scaffold with a core–shell structure was prepared in one step by
the coaxial electrospinning method. A high-molecular-weight polymer poly-L-lactic acid (PLLA) was
used as the core, while the shell was a natural polymer material such as hyaluronic acid (HA), sodium
alginate (SA), or chitosan (CS). The morphology, differential scanning calorimetry (DSC), Fourier
transform infrared spectra (FTIR), contact angle, viability assay, and in vitro myelination by oligoden-
drocytes were characterized. The results showed that such fibers are bead-free and continuous, with
an average size from 294 ± 53 to 390 ± 54 nm. The DSC and FTIR curves indicated no changes in the
phase state of coaxial brackets. Hyaluronic acid/PLLA coaxial fibers had the minimum contact angle
(53.1◦ ± 0.24◦). Myelin sheaths were wrapped around a coaxial electrospun scaffold modified with
water-soluble materials after a 14-day incubation. All results suggest that such a scaffold prepared by
coaxial electrospinning potentially provides a novel platform for oligodendrocyte myelination.

Keywords: coaxial electrospinning; extracellular matrix; myelination; oligodendrocyte; water-
soluble materials

1. Introduction

The myelin sheath wraps around the axons of neurons to provide protection, nutrition,
and electrical insulation for axons [1]. Demyelinating diseases comprise a variety of disor-
ders resulting from damage to oligodendrocytes, the myelin-forming cells, and consequent
loss of myelin [2]. Demyelination could lead to devastating neurological impairments such
as multiple sclerosis and cerebral palsy [3,4]. There are currently few effective therapies
to regenerate the myelin [5,6]. The development of a platform for in vitro myelination
would be highly useful for demyelinating disease modeling and drug screening [7,8]. Most
studies have used a primary neuron and oligodendrocyte coculture system for an in vitro
myelinating assay, which was time consuming and irreproducible [9]. Biocompatible poly-
mers such as poly-L-lactic acid (PLLA), poly (lactic-co-glycolic) acid (PLGA), and poly
(ε-caprolactone) (PCL) have been widely used as culture scaffolds to support cell prolifera-
tion and differentiation [10–12]. As the initiation of oligodendrocyte myelination does not
depend on axonal signals [13], it is practicable to develop an artificial nanofiber scaffold
for oligodendrocyte myelination. Previous efforts have used electrospun polystyrene or
PLLA nanofibers as an artificial scaffold for oligodendrocyte myelination [14,15]. However,
these scaffolds need to be coated with poly(l-lysine) to support cell attachment. Natural
extracellular matrix (ECM) composition can provide biochemical and structural support
for cell adhesion and regulate cell behaviors [16]. Scar formation is the biggest obstacle
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in the process of nerve regeneration. Studies have shown that hyaluronic acid (HA) can
inhibit the generation of inflammation and promote the regeneration of nerve cells [17,18].
The non-antigenic nature of sodium alginate (SA) is more conducive to the repair of nerve
cells [19]. SA gel was formed on the surface of the scaffold by the cross-linking method,
which enhanced the biocompatibility of the scaffold and facilitated the proliferation and
spread of cells on the scaffold surface [20]. Hossein et al. mixed chitosan (CS) particles with
a scaffold to form a fibrous gel for sciatic nerve repair, and the results showed no significant
difference in the sciatic nerve index compared with autograft [21]. However, most natural
materials have high cell affinity and poor mechanical properties as cell scaffolds alone [22].
We reasoned that a coaxial stent structure with a water-soluble natural extracellular matrix
outer layer and manmade polymer core could support better oligodendrocyte myelina-
tion. Therefore, in the present study, we aimed to develop a PLLA-based fiber scaffold
with sodium hyaluronate, sodium alginate, or chitosan in the outer layer and to test their
capacity to support myelination.

Common stent preparation methods include self-assembly [23,24], electrostatic spin-
ning [25,26], and 3D printing [27,28], among others. The self-assembly method is an earlier
method of preparation, and the process is simple and easy to operate. However, the self-
assembled scaffold has weak mechanical properties, and it is difficult to create a stable
three-dimensional structure, which results in the scaffold being unable to provide a stable
place for cell growth and differentiation for a long time [29,30]. Three-dimensional (3D)
printing is sought after by various industries due to its versatility and precision. However,
the biological field requires far more resolution than most industries, resulting in slow
printing processes and expensive equipment [31,32]. Electrospinning was used in the textile
industry in its early days, but it has gradually expanded to many fields. This method has
a relatively stable operation process and can produce uniform and continuous micron or
nanofibers [33,34]. Currently, compared to electrospinning, many other stent preparation
methods are relatively complicated to produce a suitable structure [35,36].

We designed a coaxial electrospinning setup to prepare a coaxial stent intended to
promote the myelination of oligodendrocyte. The stent contained sodium hyaluronate,
sodium alginate, or chitosan in the outer layer and a PLLA core (as illustrated in Figure 1).
These stent structures greatly enhanced oligodendrocyte myelination. As far as we know,
this is the first report on a coaxial scaffold modified with natural water-soluble materials by
electrospinning as preparation for the culture and myelination of human oligodendrocytes.
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2. Materials and Methods
2.1. Materials

Sodium hyaluronate (HA, Mw = 1800 kDa) was purchased from the Bloomage Freda
Biopharma Co., Ltd. (Jinan, China). Poly(L-lactic acid) (PLLA, Mw = 30 Kda) was ob-
tained from Jinan Daigang Biomaterial Co., Ltd. (Jinan, China). Sodium alginate (SA,
Mw = 270 kDa) and chitosan (CS, Mw = 500,000, viscosity between 200 and 400 cP) were
provided by Sinopharm Group Shanghai Chemical Reagent Company (Shanghai, China).
Ethanol, dichloromethane (DCM), dimethyl sulfoxide (DMSO), and acetic acid were offered
from Shanghai Vita Co., Ltd. (Shanghai, China).

MTT (4,5-dimethylthiazole-2))-2,5-diphenyltetrazolium bromide and 2-(4-amidinophenyl)-
6-indole carbamidine dihydrochloride (DAPI) were purchased from Beyotime Biological
Technology Co., Ltd. (Guangzhou, China). Rat adrenal pheochromocytoma cells (PC-12)
were derived from the Cell Bank of the Type Culture Collection of the Chinese Academy of
Sciences (Shanghai, China). Human embryonic stem cells (hESCs, H1 line) were obtained
from WiCell (Madison, WI, USA).

2.2. Coaxial Electrospinning

The coaxial electrospinning platform used in this experiment was self-built, as shown
in Figure 1. The inner and outer layers of spinning solution were controlled by two
peristaltic pumps (KDS100, Scientific, Holliston, MA, USA), which were connected by
homemade coaxial needles. The voltage controlled by the high-voltage generator (ZGF 60,
Huatian Power Automation Co., Ltd., Wuhan, China) was applied to the needle through
an alligator clip. An aluminum foil collector was used as a receiving device.

Firstly, the optimum parameters of the electrospinning (solution concentration/flow
rate/voltage/needle–collector distance) were investigated, and subsequently, the coaxial
fibers were prepared using the optimized conditions. Briefly, we added 3 g of PLLA to
50 mL (DCM: DMSO, 9:1/v:v) solution as the core solution. We configured three different
shell spinning solutions: 0.1 g of HA was dissolved in 10 mL of a 30% ethanol aqueous
solution, 0.1 g SA was dissolved in 10 mL of water, and 0.1 g of CS was added to 10 mL of
75% acetic acid aqueous solution. Pure PLLA spinning was obtained at a spinning solution
flow rate of 0.8 mL/h, a voltage of 14 KV, and a distance needle to collector of 10 cm. The
core layer and shell layer spinning solution flow velocity of coaxial electrospinning were
0.8 mL/h, the applied voltage was adjusted within the range of 14–16 KV, and the distance
needle to collector was within 10–12 cm. All electrospinning processes were carried out
under ambient conditions (22 ± 3 ◦C with a relative humidity of 50 ± 5%).

2.3. Characterization

The fibers were characterized by size and appearance using an electron scanning
microscope (SEM, Phenom ProX, Phenom, Eindhoven, The Netherlands). Before observing
the fibers, the fibers were sprayed with gold. The diameter data of 100 random fibers in the
photo were measured by ImageJ2x (Rawak Software Inc., Stuttgart, Germany), and the fiber
diameter distribution was calculated to obtain the average fiber diameter. To visualize the
core–sheath structure, transmission electron microscopy (Tecnai G2 F20 S-TWIN, Hillsboro,
OR, USA) at an accelerating voltage of 200 kV was employed. The chemical structure of
the fiber was analyzed by the Fourier transform infrared spectrometer (FT-IR, Nicolet iS
5, Thermo Fisher, Waltham, MA, USA) to assess whether the chemical structure of the
fiber was changed before preparation. All FTIR spectra were obtained in the spectral
region of 500–2500cm−1, with a resolution of 4 cm−1, after 20 scans of each sample. A
differential scanning calorimeter (DSC, DSC 204, NETZSCH, Selb, Germany) was used for
thermal analysis of the fibers. Approximately 5 mg of the sample was placed in a clean
crucible and heated from 25 to 300 ◦C (heating rate of 10 ◦C/min and a nitrogen purge of
10 mL/min). The hydrophilicity and hydrophobicity of the fiber were judged by the contact
angle detection (DSA30, Kruss, Hamburg, Germany). During the measurement, 0.03 mL
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of deionized water were dropped on the spun fiber, and each sample was measured five
times and averaged.

2.4. Cell Culture

Human oligodendrocytes were derived from hESCs as reported with modification [37].
Briefly, hESCs were maintained with E8 medium on a Matrigel coated surface. To induce
neural differentiation, hESCs were treated with 2 µM TGFβ inhibitor SB43142 (Selleck,
Houston, TX, USA), 1 µM BMP inhibitor DMH1 (Selleck, Houston, TX, USA), and 100 nM
retinoic acid (Sigma-Aldrich, St. Louis, MO, USA) for 7 days in DMEM/F12 media sup-
plemented with N2 and B27; then, it was treated with 100 nM SMO agonist SAG (Selleck,
Houston, TX, USA) and 100 nM retinoic acid for an additional 7 days. The differentiated
cells were dissociated with Accutase into single cells and plated into ultra-low attach-
ment plates (Corning) for suspension culture supplemented with 10 ng/mL PDGF-AA,
5 ng/mL HGF, 10 ng/mL IGF1, and 10 ng/mL NT3 for 40 days. The cell aggregates were
dissociated with Accumax into single cells (cells could be frozen for future experiments
at this time point) and seeded on cover glasses with different fiber scaffolds at a density
of 1.0 × 104 cells/cm2. The cells were cultured with DMEM/F12 media with N2, B27,
60 ng/mL T3 (Sigma-Aldrich, St. Louis, MO, USA), 100 ng/mL biotin (Sigma-Aldrich, St.
Louis, MO, USA), 1 µM cAMP (Sigma-Aldrich, St. Louis, MO, USA), and 60 µg/mL ascor-
bic acid-2-phosphate (Sigma-Aldrich, St. Louis, MO, USA) for an additional 14–21 days.

Rat adrenal pheochromocytoma cells (PC-12) were cultured in an incubator at 37 ◦C
and 5% CO2 concentration. The medium was a PC-12-defining medium (90% RPMI
1640 medium supplemented with 10% fetal bovine serum, 100 U/mL penicillin, and
100 µg/mL streptomycin). The medium was changed every two days. Prior to cell seeding,
the four scaffolds prepared were placed in 24-well culture plates and UV-sterilized for 3 h.
Cells were seeded on different scaffolds at a density of 1.0 × 104 cells cm2.

All tissue culture products were obtained from Thermo Fisher Scientific except where
otherwise specified.

2.5. Viability Assay

An MTT assay was used to evaluate the cytotoxicity of fiber scaffold to rat adrenal
pheochromocytoma cells (PC-12). PC-12 were seeded onto different scaffolds at a density
of 1.0 × 104 per well of 96-well plates. After 12 h, 24 h, 48 h, and 72 h, the old medium
was discarded and washed three times with prewarmed PBS. A total of 360 µL of the
prewarmed culture medium and 40 µL of 5 mg/mL MTT solution were added to each
well, and the culture was incubated for 4 h. Then, the medium was discarded, and 400 µL
of DMSO was added to each well. After shaking in the dark at 37 ◦C for 30 min, the
DMSO solution was transferred to a 96-well plate. The absorbance was measured with a
microplate reader (MODEL 680, Bio-Rad, Hercules, CA, USA) at a wavelength of 492 nm.

2.6. In Vitro Oligodendrocyte Myelination

In this experiment, the myelination of oligodendrocytes on the scaffolds in each group
was observed by microscope and immunofluorescence staining. The scaffolds cocultured
with oligodendrocytes for 14 days were fixed with 4% paraformaldehyde for 5 min and then
permeabilized with PBS buffer containing 0.5% Triton X-100 (Sigma-Aldrich, St. Louis, MO,
USA) and 5% donkey serum (Jackson ImmunoResearch, West Grove, PA, USA) for 30 min
at room temperature. The cells were incubated with rat antimyelin basic protein (MBP,
Abcam, Cambridge, UK) and mouse anti-rat O4 antibody (R&D system, Minneapolis,
MN, USA) at 4 ◦C overnight. Next, the cells were washed with PBST and incubated
with Alexa Fluor 488 conjugated donkey anti-mouse IgM and Alexa Fluor 555 conjugated
donkey anti-rat IgG secondary antibodies (Invitrogen, 1000×) in PBST for one hour at
room temperature. Nuclei were visualized by DAPI staining. Images were captured using
a fluorescence microscope (Nikon ECLIPSE Ti2, Tokyo, Japan).
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2.7. Statistical Analysis

All data are expressed as the mean value ± SD. Statistical analysis was performed
with one-way analysis of variance (ANOVA) in Graph Pad Prism 7 software. A p-value of
less than 0.05 was considered statistically significant.

3. Results and Discussion
3.1. Morphology and Microstructure of the Scaffolds

In order to compare the effects of different natural materials on the performance of
fiber scaffolds, we prepared three different scaffolds. The shell materials were SA, HA,
and CS. As shown in Figure 2a, all four fibers were bead-free and continuous. Lower
magnitude SEM images are provided in Figure S1 (see Supplementary Materials). Among
them, the pure PLLA spun was marked as A0, the spinning with SA as the shell was
marked as A1, the outermost layer was HA spun as A2, and the outer layer of CS was
labeled A3. It can be seen from Figure 2b that the diameter distribution of A0 fibers
was relatively uniform, with an average diameter of 204 ± 44 nm. The diameter of the
three types of coaxial electrospun fibers was basically larger than that of the A0. The
smallest one was A1 with an average diameter of 294 ± 53 nm, and the largest was A3
with an average diameter of 390 ± 54 nm. This was due to the fact that the voltage
and acceptance distance of A1 during the preparation process were larger than other
groups. According to Maurya’s research results, the increase in voltage or the distance
needle to collector within a certain range can refine the fiber diameter [38]. The spinning
condition of group A2 was similar to that of group A3, and the average fiber diameter was
334 ± 69 nm. The average fiber diameter of coaxial nanofibers is much bigger than that
of neat PLLA nanofibers. The high viscosity and vapor pressure of the shell solution may
be the reasons for the increasing of coaxial fiber diameter compared to single-component
nanofiber. A similar trend was reported by Afshar et al. [39] on the fabrication of coaxial
electrospun CS/PLA fibers, which had bigger average diameters than neat PLA fibers.
In another work [40], it was also shown that the diameters of coaxial (PVP/PLA) and
mono (PLA) electrospun scaffolds were 599.9 ± 112.0 nm and 136.8 ± 10 nm, respectively.
TEM studies (Figure S2, Supplementary Materials) revealed a successful formation of the
core–sheath structure.

3.2. DSC and FT-IR

Interaction between scaffold materials can be detected by FT-IR (Figure 2c). On the
pure PLLA fiber spectra, two peaks caused by C=O and C-O-C stretching vibration ap-
peared at 1760 cm−1 and 1170 cm−1, which were consistent with the reports in the literature,
and the absorption peaks at 1365 cm−1 and 1450 cm−1 were caused by CH3 [41,42]. HA
was formed by the polymerization of glucuronic acid and acetaminohexose, 1612 cm−1

and 1412 cm−1, and the right corner of the valley was caused by the amide II [43,44]. The
main functional groups in the SA molecule were carboxylate and glycosidic bonds, which
corresponded to the characteristic peaks appearing at 1612 cm−1 and 1000–1150 cm−1

in the FT-IR spectrum [45]. Although CS is the product of deacetylation of chitin, the
degree of deacetylation of CS used in the experiment was between 80% and 95%, so it
still contained acyl groups. The absorption peaks at 1650 cm−1 and 1580 cm−1 in the
spectrum were caused by acyl groups, while the glycosidic bonds were absorption peaks
at 1100 cm−1 [44,46]. As expected, no new characteristic peaks appeared during the exper-
iment, and the characteristic peaks of each component appeared in the spectrum of the
coaxial bracket.

The DSC curves of different spun scaffolds are shown in Figure 2d. Compared with
the other three materials, the pure PLLA showed an obvious endothermic peak at 178 ◦C.
At the same time, this characteristic peak appeared in all coaxial bracket samples. The
thermograms of SA and HA displayed an exothermic peak at about 236 ◦C and 240 ◦C,
respectively, which were also observed in the coaxial fibers.
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Figure 2. Physical and chemical properties investigation ((a,b) SEM of electrospinning fibers and
diameter distribution; (c) Fourier transform infrared (FT-IR) of fiber scaffold; (d) DSC of fiber scaffold;
(e) Experimental results of contact angles of spinning stent) (A0 6% PLLA; A1 1% sodium alginate
(shell)—6% PLLA (core); A2 1% sodium hyaluronate (shell)—6% PLLA (core); A3 1% chitosan
(shell)—6% PLLA (core)).

3.3. Hydrophilicity of the Different Coaxial Scaffolds

The contact angle of the liquid on the surface of the solid material is an important
parameter to measure the wettability of the liquid on the surface of the material. As shown
in Figure 2e, the contact angle of the pure PLLA fiber was 133◦ ± 0.45◦, and the contact
angles of the obviously coaxial electrospun scaffolds were 59.8◦ ± 0.36◦, 53.1◦ ± 0.24◦, and
77.3◦ ± 0.42◦, among which the fibers of A2 had the smallest contact angle. This shows that
the fiber surface is a natural material, which indirectly proves that the prepared spinning
has a core–shell double-layer structure. Chang [47] et al. reported that the membranes
prepared by hydrophilic materials reduced the contact angle and the membrane-containing
HA had the smallest contact angle. In our study, A2 (HA) had the smallest contact angle.
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3.4. In Vitro Cytotoxicity of the Different Coaxial Scaffolds

To evaluate the quality of cell scaffolds, the first consideration is the cytotoxicity of
the scaffolds. Due to the postmitotic nature of oligodendrocytes, PC-12 was selected as the
target cell for cytotoxic assay. Through the MTT cell viability experiments, as shown in
Figure 3, all the scaffolds could sustain PC-12 cell proliferation. Specifically, the coaxial
stents with an HA (A2) soluble extracellular matrix outer layer demonstrated even better
cell proliferation after 24 and 48-h incubation (p < 0.05). It was attributed to the best
hydrophilic effect of A2, which had the smallest contact angle. However, as the time went
on, PC-12 proliferation on the coaxial stents showed no significant difference. These data
suggested that the prepared scaffold was not cytotoxic.
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Figure 3. Cell viability of the different coaxial scaffolds. (Control) with no scaffold, (A0) 6% PLLA,
(A1) 1% sodium alginate (shell)–6% PLLA (core), (A2) 1% sodium hyaluronate (shell)–6% PLLA
(core), (A3) 1% chitosan (shell)–6% PLLA (core). * indicates p < 0.05, ** indicates p < 0.01.

3.5. Oligodendrocytes Myelinate the Fiber Scaffolds

After coculturing with different scaffolds for 14 days, the myelination of scaffolds
by oligodendrocytes was analyzed by immunostaining. Oligodendrocytes formed MBP
and O4 positive myelin sheaths along the fibers in all four tested scaffolds, which was
consistent with the notion that oligodendrocytes can form myelin sheaths without the need
of axonal signals. However, the MBP and O4 positive myelin sheaths were much longer
in all three PLLA fibers modified with water-soluble materials than unmodified PLLA
fibers, suggesting that the water-soluble matrixes used in this study, including sodium
hyaluronate, sodium alginate, and chitosan, can enhance oligodendrocyte myelination
(Figure 4). Makhijaa et al. reported that the stiffness, strain, topography, and spatial
constraints of scaffolds play a key role in promoting the myelination of OPCs cells [48].
Hlavac et al. claimed that hydrogel scaffolds are suitable for nerve cell proliferation,
differentiation, and repair [49]. In this study, PLLA scaffolds coated with hydrophilic
material have played a very excellent role in promoting myelination.
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Figure 4. In vitro myelination of oligodendrocyte on different scaffolds after 14 days of cell seeding.
Wrapped myelin positive for O4 and MBP was visualized by immunofluorescence staining. (A0)
6% PLLA, (A1) 1% sodium alginate (shell)–6% PLLA (core), (A2) 1% sodium hyaluronate (shell)–6%
PLLA (core), (A3) 1% chitosan (shell)–6% PLLA (core).

4. Conclusions

In this experiment, the core–shell structured spinning scaffolds were prepared in one
step by coaxial electrospinning technology for in vitro oligodendrocyte myelination. An
MTT experiment showed that the scaffolds of each group were not cytotoxic. With 14 days
of scaffold and oligodendrocyte coculturing, myelin sheaths were formed along the fibers.
In particular, the fibers modified with water-soluble materials demonstrated longer myelin
sheaths than unmodified PLLA fibers. These data suggested that these coaxial stents
with a soluble natural extracellular matrix outer layer and synthetic polymer core could
be better artificial scaffolds for oligodendrocyte myelination. This in vitro myelination
culture system could be especially promising in screening candidates that can promote
myelination for therapeutic purposes. However, although the initiation of myelination is an
intrinsic property of oligodendrocytes, appropriate myelin compaction required an axon’s
instructive signaling that is still not fully understood. Previous studies demonstrated that
myelin sheaths wrapped around artificial fibers were aberrantly organized, which could
represent a disadvantage of using artificial fibers as surrogates for neuron axons. Therefore,
it is important to further characterize the myelin structures wrapped around these coaxial
stents in the future. Our study provided a strategy to modify nanofibers for better in vitro
oligodendrocyte myelination.
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