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Abstract: Novel hybrid materials of the PB-b-P(o-Bn-L-Tyr) and PI-b-P(o-Bn-L-Tyr) type (where
PB: 1,4/1,2-poly(butadiene), PI: 3,4/1,2/1,4-poly(isoprene) and P(o-Bn-L-Tyr): poly(ortho-benzyl-L-
tyrosine)) were synthesized through anionic and ring-opening polymerization under high-vacuum
techniques. All final materials were molecularly characterized through infrared spectroscopy (IR)
and proton and carbon nuclear magnetic resonance (1H-NMR, 13C-NMR) in order to confirm the
successful synthesis and the polydiene microstructure content. The stereochemical behavior of
secondary structures (α-helices and β-sheets) of the polypeptide segments combined with the
different polydiene microstructures was also studied. The influence of the α-helices and β-sheets, as
well as the polydiene chain conformations on the thermal properties (glass transition temperatures,
thermal stability, α- and β-relaxation) of the present biobased hybrid copolymers, was investigated
through differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and dielectric
spectroscopy (DS). The obtained morphologies in thin films for all the synthesized materials via
atomic force microscopy (AFM) indicated the formation of polypeptide fibrils in the polydiene matrix.

Keywords: biobased hybrid copolymers; polyisoprene; polybutadiene; polypeptide; anionic poly-
merization; molecular characterization; thermal properties; fibril morphology

1. Introduction

Copolymers constitute a broad class of materials that has been extensively studied in
various scientific fields ranging from nanotechnology [1] up to drug delivery systems [2,3].
On the other hand, polypeptides have recently attracted scientific interest due to their
unique thermal, mechanical and self-assembly properties [4,5]. By combining the remark-
able structural variety and functionality of polypeptides with the exquisite properties of
synthetic polymers, novel biobased hybrid materials can be obtained [3].

The stiff α-helices of the polypeptide segments lead to rod–coil conformations of
the final hybrid materials [6,7]. The asymmetry of the stiff rod may possibly induce

Polymers 2021, 13, 3818. https://doi.org/10.3390/polym13213818 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0001-5533-2967
https://orcid.org/0000-0002-5873-6374
https://orcid.org/0000-0002-1225-1515
https://orcid.org/0000-0002-7164-5688
https://orcid.org/0000-0003-3890-7946
https://orcid.org/0000-0002-5905-2652
https://orcid.org/0000-0002-6203-9942
https://doi.org/10.3390/polym13213818
https://doi.org/10.3390/polym13213818
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13213818
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym13213818?type=check_update&version=2


Polymers 2021, 13, 3818 2 of 15

chemical immiscibility between the two segments consisting of synthetic polymer chains
and polypeptide segments, resulting in a higher Flory–Huggins interaction parameter
(χ) [8]. The aforementioned class of materials has been investigated in the literature,
and the combination of synthetic-biological segments has been referred to as “molecular
chimeras” [9,10].

Peptide-based hybrid copolymers consisting of purely synthetic hydrocarbon chains
and biopolymers adopt interesting self-assembled structures [11,12]. It should be noted
that well-defined supramolecular structures, i.e., nanofibers, as well as micellar morpholo-
gies and solid-state assemblies, have enabled the use of rod–coil copolymers in numerous
applications related to biocompatibility, resistance to enzymatic degradation and recog-
nition binding (active targeting), refs. [13–15] drug delivery, biomedicine, biosensors and
biomineralization [16–20]. In addition, membrane-, refs. [21–25] micelle-, ref. [26] hydrogel-,
ref. [13] electronic- [27] and coating-related [28] applications have been proposed.

In order to synthesize hybrid materials consisting of one polydienic (polybutadiene or
polyisoprene) or vinyl block with various peptides, different synthetic approaches have
been proposed in the literature [7–9]. Specifically, synthetic protocols such as ring-opening
polymerization of amino acid-N-carboxy-anhydrides (NCA), metal initiators [24], amine
hydrochloride salts [25], chain-transfer agents [29–32] and the preparation of a functional
macroinitiator baring amino groups able to initiate the polymerization of a peptide [10]
have been reported.

Employing the aforementioned procedures a variety of hybrid materials has been
synthesized combining synthetic segments (polystyrene, poly(butadiene), poly(isoprene),
poly(dimethylsiloxane), poly(ethylene glycol), poly(ethylene) and poly(methyl methacry-
late)) with biocompatible blocks such as poly(γ-benzyl-L-glutamate), poly(lysine), poly
(phenylalanine), poly(alanine), poly(glycine), etc. [10].

The substantial progress on complex architecture hybrid systems utilizing living an-
ionic and/or ring-opening polymerization techniques [6,26,33–35] has led to well-defined
topologies due to the conformational asymmetry deriving from the α-helices and β-sheets
of the rod-like segment. Finally, it should be noted that the use of different polymerization
techniques (atom transfer radical polymerization, reversible addition-fragmentation chain
transfer, ring-opening polymerization and nitroxide-mediated polymerization) has enabled
the synthesis of hybrid materials for biological applications [13,36,37].

Herein, we report the synthesis, molecular and thermal characterization and self-
assembly behavior of the polydienic/polypeptide diblock copolymers of the poly(isoprene)-
b-poly(o-benzyl-L-tyrosine) or PI-b-P(o-Bn-L-Tyr) and the poly(butadiene)-b-poly(o-benzyl-
L-tyrosine) or PB-b-P(o-Bn-L-Tyr) type. The protected L-tyrosine segment was preferred in
order to avoid possible side reactions during the polymerization procedure due to the hy-
droxyl (-OH) groups in the monomeric unit of the peptide. Size exclusion chromatography
(SEC) was used in order to calculate the total number average molecular weight of each
segment, as well as the dispersity indices of all the final hybrid materials. Regarding the
verification of the polydiene microstructures and the successful synthesis, proton nuclear
magnetic resonance 1H-NMR was utilized. 13C-NMR was also employed for the interpreta-
tion of the chemical structure of the polypeptide, since the existence of various hydrogen
atoms in the monomeric unit of P(o-Bn-L-Tyr) renders the justification of the secondary
structures rather challenging. Infrared spectroscopy (IR) was used to further analyze all
the characteristic chemical groups of both polydiene and polypeptide segments, as well
as to evaluate the secondary structures of the polypeptide block. Through differential
scanning calorimetry (DSC) and thermogravimetric analysis (TGA) the glass transition
temperature of both segments, as well as the mixing temperature of the corresponding
blocks, was calculated. Dielectric spectroscopy (DS) was employed in order to identify
the α- and β-relaxation temperatures of the P(o-Bn-L-Tyr) block, as well as the possible
differentiations to polydienic microstructures. Finally, the structural behavior of the hybrid
materials in the thin-film state was studied with atomic force microscopy (AFM), since the
polydiene segments enable the solubility and processability in common organic solvents.



Polymers 2021, 13, 3818 3 of 15

2. Materials and Methods
2.1. Materials

1,3-Butadiene (99+%), isoprene (≥99%), sec-BuLi (1.4 M in cyclohexane), 1,2-
dipiperidinoethane (dipip, 98%) hexane (≥97%) and tetrahydrofuran (THF, 99.9%) were pu-
rified according to the standards required for anionic polymerization and high-vacuum
techniques [38,39]. Dipip was used as a polar reagent in order to promote a high 1,2
microstructure for the PB segment and -3,4/1,2 for the PI for the polydienic chains. In this
study, the amino acid used was o-Bn-L-tyrosine (99%), and it was submitted to prepoly-
merization modification in order to receive the corresponding N-carboxy anhydride (NCA)
according to the literature [30]. The purification of the NCA was accomplished through the
recrystallization process using a solvent/nonsolvent system (THF/hexane) [31]. Triphos-
gene (99%) was used as received under vacuum in order to synthesize the NCA. The
initiator 1,6-hexamethylenediamine (99%) was purified through sublimation and subse-
quently diluted in purified N,N-dimethylformamide (DMF, 99.8%). The procedure has
already been thoroughly reported elsewhere [40–42]. Phosgene in toluene solution (20%)
was used to substitute the lithium end group to chloro-substituted PB and PI segments,
enabling the reaction with the hexamethylenediamine, in order to obtain the macroinitiator
for the polymerization of the NCA protected tyrosine. All reagents were purchased from
Sigma-Aldrich (St. Louis, MO, USA).

2.2. Methods

SEC: Molecular characterization was accomplished using a Perkin-Elmer (Waltham
MA, USA) chromatograph equipped with a binary pump and a refractive index (RI)
detector. The eluent used was THF, and separation was carried out with four columns
packed with particle gels with different nominal pore sizes. The elution rate was set at
1 mL/min at 35 ◦C. The molecular weights were calculated based on a calibration curve
from monodisperse polystyrene standards.

FTIR: Infrared spectroscopy (FTIR) was performed with a Nicolet Nexus 670 spec-
trometer (Wake Forest, NC, USA) equipped with a single horizontal golden gate attenuated
total reflectance (ATR) cell. Spectra were recorded by averaging 20 scans between 4000 and
400 cm−1 with a resolution of 2 cm−1.

1H-NMR and 13C-NMR: Samples were dissolved in deuterated chloroform (CDCl3).
The spectra were acquired at room temperature on an Avance Bruker 500 MHz (Rhein-
stetten, Germany) equipped with a BBO z-gradient probe Bruker DSX NMR spectrometer
using a rate of 5000 Hz, a frequency of 500 MHz and a delay of 1 s.

DSC: Experiments were conducted using a TA Instruments Q20 DSC instrument (TA
Instruments Ltd., Leatherhead, UK). A heat rate of 5 ◦C/min was used under nitrogen
atmosphere, where the first heating was carried out in order to eliminate the thermal history
of all samples, followed by a cooling cycle, and finally, a second heating was employed
and presented in the DSC section.

TGA: Thermogravimetric analysis was carried out by a Perkin-Elmer Pyris Diamond
TG/DTA (Waltham, MA, USA). Samples of approximately 5 mg were heated with a rate of
5 ◦C/min from 25 ◦C to 700 ◦C, under inert atmosphere.

AFM: The surface morphology was studied using an atomic force microscope, Di-
mension 3100/Nanoscope IVA, Veeco from Digital Instruments (Plainview, NY, USA). The
tapping mode was employed using an integrated silicon tip/cantilever (125 µm in length)
at a scan rate of 1.0 Hz and a resonant frequency of ~300 kHz. The measurements were
performed with 512 scan lines.

DS: Dielectric spectroscopy measurements were carried out by a Novocontrol Alpha
high-resolution analyzer over a temperature range between −100 ◦C and 100 ◦C at a
constant frequency of 1 kHz. The instrument is interfaced to a computer and equipped
with a Novocontrol cryogenic system for temperature control. Samples were placed
between the gold-plated electrodes in a sandwich configuration.
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2.3. Synthesis of the Hybrid Material

Polydiene segments were synthesized using anionic polymerization under high-
vacuum techniques. 1,3-Butadiene (0.07 mol) and/or isoprene (0.05 mol) were initiated
by sec-BuLi (0.2 mmoles) in a nonpolar solvent (hexane), and the reaction was left to
propagate for 24 h at room temperature. In order to receive high-1,2 microstructure for
the PB and 3,4/1,2-PI blocks, the use of a polar agent was imperative; therefore, dipip
was added to the solvent prior to the introduction of the initiator to alter the polarity. The
ratio between sec-BuLi and dipip (0.4 mmoles) was 1:2 for PB and 1:3 (0.6 mmoles) for PI,
respectively. In the presence of dipip, monomers were left to react for 24 h at 8 ◦C for better
control of the polymerization reaction due to enhanced kinetics of anionic sites in the polar
environment [39]. The number average molecular weights of all polydiene precursors were
determined through SEC (Figure S1a), as presented in the Supporting Information and are
given in Table 1.

Table 1. Total number average molecular weight and dispersity indices for polydiene and poly(o-Bn-L-tyr) segments
corresponding to all samples as directly calculated from SEC.

Sample Code
Name

¯
Mn

Polydiene (SEC) a

g/mol

¯
Mn

Polypeptide
(SEC) a

g/mol

¯
Mn

(SEC) a

g/mol

Ðtotal
f (%)

Polypeptide

PI1,4-b-P(o-Bn-L-Tyr) ITnp 14.300 41.500 55.800 1.10 74
PI3,4/1,2-b-P(o-Bn-L-Tyr) Itp 16.400 44.200 60.600 1.08 73

PB1,4-b-P(o-Bn-L-Tyr) BTp 15.400 59.500 74.900 1.09 79
PB1,2-b-P(o-Bn-L-Tyr) BTnp 22.100 83.600 105.700 1.09 79

a SEC was performed in THF at 35 ◦C.

After the complete polymerization of the polydiene blocks, the Li+ anionic centers
were substituted to -Cl end groups able to initiate the polymerization of the NCA of the
protected tyrosine using an excess of phosgene solution (5% in moles) for 24 h. Subse-
quently, the diamine solution was added in order to change the end group of the polydiene
macroinitiators resulting in –NH2 side groups, and the reaction was completed after 24 h.
The respective chromatographs of the functionalized polydiene precursors are presented
in the Supporting Information (Figure S1b). Finally, the polymerization of the protected
tyrosine was accomplished at room temperature after 24 h using THF as solvent. The
hybrid materials were precipitated in methanol and dried under vacuum. The polymeriza-
tion reaction in order to synthesize the coil–rod copolymer is presented in the Supporting
Information (Figure S1c). In Figure 1 the synthetic route for the preparation of the biobased
hybrid copolymers is presented.
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Figure 1. Schematic representation of the synthesis of the biobased hybrid materials.

3. Results and Discussion
3.1. Size Exclusion Chromatography

In order to verify the successful synthesis of all the hybrid materials, different charac-
terization methods were employed. In total four samples were synthesized, specifically
PI1,4-b-P(o-Bn-L-Tyr), PI3,4/1,2-b-P(o-Bn-L-Tyr), PB1,4-b-P(o-Bn-L-Tyr) and PB1,2-b-P(o-Bn-L-
Tyr). For polydiene precursors, a small aliquot of the solution was retrieved in order to be
molecularly characterized through SEC (Figure S1a). The synthetic route that followed for
the preparation of the functionalized polydiene precursors ensured the substitution of a
single chlorine atom. Vigorous stirring, temperature difference and specific glass appara-
tuses constituted the attributing factors for the successful synthesis of the functionalized
precursors. After the substitution of the Li+ active sights with the respective Cl- atoms of
the phosgene reagent, an appropriate amount of diamine was introduced to the solution,
resulting in –NH2 side groups. Small quantities of the functionalized precursors were also
retrieved for characterization reasons by SEC (Figure S1b). The fact that the functional-
ized precursors showcase a slight increase in the dispersity but similar number average
molecular weight (Mn) is attributed to the deviation of their hydrodynamic volume due
to the chemical modification of the homopolymer with the respective –NH2 side groups.
SEC chromatographs of the final hybrid materials are presented in the Supporting informa-
tion (Figure S1c) and the molecular characteristics as directly calculated are presented in
Table 1, where the relatively narrow dispersity indices (Ð < 1.1) indicate the molecular and
compositional homogeneity.

3.2. Infrared Spectroscopy

A powerful tool for the hybrid materials’ molecular analysis is IR spectroscopy, where
the chemical groups of both polydiene and polypeptide chains can be precisely identified.
Another benefit provided by the specific characterization method is the evaluation of sec-
ondary structures, since α-helices and β-sheets could be assigned to specific wavenumbers
and random coil conformations. The secondary structures of the polypeptide chains could
be determined through specific amide bands, where amide I is rendered more important
and corresponds to stretching vibrations of the C=O bond of the peptide linkages. In addi-
tion, amide II derives from the in-plane -NH bending and from -CN stretching vibrations.
Furthermore, amide III, corresponding to -CN stretching and -NH bending, amide IV to
-OCN bending, amide V to out-of-plane -NH- bending and amide VI to out-of-plane C=O
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bending, can provide sufficient insight into the polypeptide secondary structures [43]. As
far as the poly(butadiene) segments are concerned, different wavenumber values attributed
to different PB microstructures are evident, specifically a strong band at 950 cm−1 for PB1,4
and at 900 cm−1, as well as 1000 cm−1 for PB1,2, respectively. Concerning the poly(isoprene)
segments, the 1,4/3,4 microstructure are assigned to 839 cm−1 and 890 cm−1, respectively,
while for the 1,2 microstructure at 910 cm−1. In Table S1, the transmittance wavenumber
values of the respective polydiene chemical groups, as well as the amide groups of the
polypeptide chains corresponding to the secondary structures, are presented. Furthermore,
in Figure 2, the IR spectra for all samples are given, and the adjusted magnifications in the
region of interest are presented separately for clarification reasons. Magnified spectra of
amide III, IV, V and VI are presented in the Supporting Information (Figure S2a,b).
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Specifically, for the case of PI1,4-b-P(o-Bn-L-Tyr), the PI microstructure consisting of
90% PI1,4 and 10% PI3,4, two distinctive peaks are evident at 839 cm−1 and 890 cm−1 (red-
color spectrum), respectively, whereas in the case of PI3,4/1,2-b-P(o-Bn-L-Tyr), the absence of
the 1,4 microstructure indicated that the reaction took place in a polar environment leading
to 3,4/1,2 microstructures predominantly (blue-color spectrum) [44,45]. Coherent results
were also acquired for the PB segment both in the case of nonpolar PB1,4-b-P(o-Bn-L-Tyr)
and polar PB1,2-b-P(o-Bn-L-Tyr) depicted in green- and purple-color spectra in Figure 2,
respectively.

The percentage of α-helices and β-sheets was also determined through the amide
bands I and II, where the α-helices appear at approximately 1650 cm−1 (amide I) and
1540 cm−1 (amide II), while β-sheets emerge at 1625 cm−1 (amide I) and at 1520 cm−1

(amide II) [4,9,21,43,44]. Furthermore, the IR data revealed that for the cases of PI3,4/1,2-b-
P(o-Bn-L-Tyr) and PB1,2-b-P(o-Bn-L-Tyr), secondary structures attributed to β-sheets can
be clearly identified, but no α-helices are evident. Moreover, for PB1,4-b-P(o-Bn-L-Tyr), the
bands shown could be attributed neither to α-helices nor β-sheets, while for PI1,4-b-P(o-
Bn-L-Tyr), both α-helices or β-sheets are found with a ratio of 30 to 70%, respectively. In
the case of tyrosine, and especially for the protected one, the helical conformation was
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not favorable due to the steric limitations deriving from the -R group, which is evident in
the corresponding chemical structure (Figure 1) [46]. Finally, it is clear that steric effects
arising from the polydiene polar microstructures favor sheet while prohibiting helical
conformations.

3.3. Proton and Carbon Nuclear Magnetic Resonance
1H-NMR was mainly used for the determination of the microstructure of the polydiene

segments, since the various hydrogen atoms in the polypeptide chains render the analysis
rather insufficient. As a result, 13C-NMR was utilized in order to have a better clarification
of the secondary structures of the polypeptides.

In Table S2, the chemical shifts corresponding to the different chemical structures of
all synthesized hybrid materials are summarized, further verifying the successful synthesis.
In Figure 3, 1H-NMR spectra for the four synthesized samples are presented, indicating
the different chemical shifts due to the various polydiene conformations, which is in
accordance with the results obtained from the IR spectroscopy. The characteristic chemical
shifts in the monomeric unit of both PB and PI have already been thoroughly reported in
the literature and are in good agreement with the results presented in this study [44,45].
The -NH- groups in the main polypeptide chain are usually evident at 7.5 ppm [3,14], but
due to the overlapping of the shift attributed to the deuterated solvent (CDCl3), a precise
calculation of the contributing protons is not possible.
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For clarification and confirmation reasons, 13C-NMR experiments were also con-
ducted, and the results are presented in Figure 4. The chemical shifts corresponding to
the polydiene segments can be clearly identified in the theoretically expected regions, and
the conjunction between the chemical groups and the corresponding chemical shifts is
presented in Table S3.
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Regarding the ITnp and ITp samples (Figure 4a,b), Ca of the main polypeptide chain is
located at 55 ppm, confirming that the secondary structures are predominantly constituted
by β-sheets since, according to the literature [47,48], Ca helical-type structures appear at
60 ppm. Furthermore, the sheet conformation was verified through the chemical shifts
at 40 ppm that correspond to the first carbon of the R group (-CH2-ph-O-CH2-ph) [47,48].
The C=O linkage of the polypeptide chain at 174 ppm further supported the sheet confor-
mation [47]. The tertiary aromatic carbons were found in the region 115–130 ppm, while
the quaternary carbons appeared at 132 and 141 ppm, respectively. Finally, carbon atoms of
the polydiene/diaminohexane and polydiene/polypeptide linkages were mainly observed
beyond 165 ppm depending on the polydiene microstructures.

3.4. Thermogravimetric Analysis and Differential Scanning Calorimetry

The thermal stability of the hybrid materials was specified using thermogravimetric
analysis. The thermal decomposition of the aforementioned materials can be strongly af-
fected by the potential mixing of the components, as well as the secondary structures in the
polypeptide chains. A higher degree of mixing is possible to lead to higher decomposition
temperatures. Furthermore, secondary structures that bare hydrogen bonds among sheets
and helices result in more thermally stable hybrid materials.

In Figure 5, the thermographs corresponding to the four different hybrid materials
are presented with respect to the weight loss. For the diblock copolymer of the PB1,2-
b-P(o-Bn-L-Tyr) type, it can be realized that the sample decomposes homogeneously at
higher temperatures, while the secondary structures mainly consist of β-sheets. Overall, the
hybrid materials decompose homogeneously at temperatures higher than 300 ◦C, except for
the PB1,4-b-P(o-Bn-L-Tyr), in which the decomposition initiated at 250 ◦C but with a lower
decomposition rate when compared to the rest of the hybrid materials. The higher thermal
stability was evident for the cases of PI3,4/1,2-b-P(o-Bn-L-Tyr) and PB1,2-b-P(o-Bn-L-Tyr)
due to the high percentage of the β-sheets of the polypeptide segment, as indicated by the
IR spectra, as well as the existence of the more stable vinyl bonds along the main polydienic
chains. Finally, after the complete decomposition of the polydiene segments, poly(o-Bn-
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L-Tyr) is decomposed homogenously for all samples, exhibiting a similar decomposition
temperature, which is higher than 550 ◦C.
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The glass transition temperatures (Tgs) of the components, as well as the potential
mixing between the chemically dissimilar blocks, were identified from DSC experiments.
In the samples PI3,4/1,2-b-P(o-Bn-L-Tyr) and PB1,2-b-P(o-Bn-L-Tyr), the Tgs are expected
at temperatures equal to −30◦ for the PI3,4 (~55–60%) segment while for PB1,2 at approxi-
mately 0 ◦C, as already thoroughly reported in the literature [44,45,49,50]. The remaining
polydienes, namely PI1,4 (in PI1,4-b-P(o-Bn-L-Tyr)) and PB1,4 )in PB1,4-b-P(o-Bn-L-Tyr))
display lower Tgs, at approximately −70◦ and −90◦, respectively [51–53].

In Figure 6, the DSC thermographs corresponding to the second heating of all four
different samples are presented. Specifically, in Figure 6a, the thermographs of PI3,4/1,2-b-
P(o-Bn-L-Tyr) (black solid line), where only one mixing Tg at 33 ◦C was evident, indicate
the miscibility of the specific system (leading to the lack of any nanostructure when studied
morphologically). In addition, in the case of B1,2-b-P(o-Bn-L-Tyr) (gray dashed line), two
different Tgs were obvious, one at approximately 2 ◦C, corresponding to the PB1,2, and
one at ~51 ◦C, attributed to the P(o-Bn-L-Tyr). As already presented in the IR spectra,
the β-sheets evident in the PI3,4/1,2-b-P(o-Bn-L-Tyr) material may favor the mixing of the
components. Furthermore, the total number average molecular weight of the PB1,2-b-
P(o-Bn-L-Tyr) was higher than the PI3,4/1,2-b-P(o-Bn-L-Tyr). As a result, the mixing of
the latter could be attributed to the lower molecular weight of the polypeptide block.
In Figure 6b, thermographs corresponding to PB1,4-b-P(o-Bn-L-Tyr) and PI1,4-b-P(o-Bn-L-
Tyr), two Tg values close to the theoretically expected were evident (PB1,4: −80 ◦C and
PI1,4: −55 ◦C), but also, two additional emerging Tgs that deviated significantly from
the respective polydiene homopolymers could be observed. These Tgs resulted from the
mixing of both PB or PI with the respective polypeptide in the two different samples
(−27 ◦C for the PB1,4 and −10 ◦C PI1,4). For P(o-Bn-L-Tyr), the Tgs were approximately
evaluated at 60 ◦C and 53 ◦C, respectively. For the PB1,4-b-P(o-Bn-L-Tyr), the existence of
two additional Tgs (−27 ◦C and 3 ◦C) was attributed to the mixing of the components and
the presence of vinyl poly(butadiene) (PB1,2~10%), which is obtained after polymerization
in a nonpolar environment under anionic polymerization conditions and high-vacuum
techniques [44,45].
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3.5. Atomic Force Microscopy

The surface morphology of the final biobased hybrid materials was studied with AFM
in order to determine the self-assembly behavior of the chemically immiscible polypeptide
and polydiene segments in thin films. All samples were cast onto glass substrates using
the spin-casting method under specific conditions such as: spinning velocity ~3000 rpm for
30 s, polymer solution concentration equal to 3% wt in toluene, leading to film thickness
of approximately 80 nm. The films were ex situ thermally annealed at 80 ◦C for 1 h (prior
to the AFM investigation), a temperature higher than the Tgs of all segments, as verified
and discussed above, found from the DSC characterization. In Figure 7, the images of all
samples except from PI3,4/1,2-b-P(o-Bn-L-Tyr) are presented. For sample PI3,4/1,2-b-P(o-Bn-
L-Tyr), AFM imaging is not given, since no microphase separation was observed, as already
verified by the respective DSC thermograph (only one Tg due to mixing was evident).

In the case of PB1,4-b-P(o-Bn-L-Tyr) the as-cast film (Figure 7a) exhibited fibril mor-
phology (fibrils dimensions: 500 nm length and 30 nm width) with low aggregation degree
and the annealed (Figure 7b) showcased more aggregated fibrils (fibrils dimensions: 1 µm
length and 70 nm width), which is rather common for similar hybrid systems [53–55].
Fibril aggregations displaying different sizes ranging from micrometers down to a few
nanometers have been reported in the literature and showed a direct relationship with
a number of parameters such as polymer concentration, pH, secondary structures and
chemical nature of the synthetic segment [55,56].
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Figure 7. AFM images (3 µm × 3 µm) of PB1,4-b-P(o-Bn-L-Tyr) in room temperature and 80 ◦C
(a,b, respectively), PB1,2-b-P(o-Bn-L-Tyr) in room temperature and 80 ◦C (c,d, respectively) and
PI1,4-b-P(o-Bn-L-Tyr) in room temperature and 80 ◦C (e,f, respectively).

For the PB1,2-b-P(o-Bn-L-Tyr) sample, a network phase (Figure 7c) arising from the
high immiscibility between the two components was observed. It should be mentioned that
the secondary structures of the polypeptide chains hold a significant role in the formation
of fibril morphology due to the presence of β-sheets. The secondary structures often
assemble in parallel orientations and are capable of adopting tubular aggregations in similar
systems [55]. The annealed sample (Figure 7d) exhibited a similar but more aggregated
morphology due to the high percentage of β-sheets and the increased viscoelasticity of the
PB segment.

Different results were obtained for the PI1,4-b-P(o-Bn-L-Tyr) sample where no signifi-
cant microphase separation was observed during AFM studies, both at room temperature
and at 80 ◦C. Sparsely disoriented fibrils were evident, probably due to the presence of
secondary structures, α-helices and β-sheets (as given in IR spectra) that may prohibit
the formation of any type of structure. In the Supporting Information (Figure S3), the
3D representation of the aforementioned sequences where the overlapping of the fibrils
is clearly observed for the case of PB1,4-b-P(o-Bn-L-Tyr), the highly aggregated fibrils of
the PB1,2-b-P(o-Bn-L-Tyr) hybrid material, as well as the poor dispersion of fibrils for the
PI1,4-b-P(o-Bn-L-Tyr), are given.

3.6. Dielectric Spectroscopy

Dielectric spectroscopy was employed in order to recognize the different motional
processes in all synthesized hybrid materials. A direct association with the obtained results
from the DSC, regarding the various polydiene microstructures, is feasible, indicating
segmental changes in the polypeptide related to secondary structures mixing with the
polydienes and the α-relaxation. In general, polymeric systems at low temperatures behave
as glassy solids, and an increase in temperature results in enhanced chain mobility and
system flow. When rod–coil systems are employed, an additional parameter (the stiff
backbone) must be taken into consideration.

The double carbon bonds of the polydienic segments on the PI1,4-b-P(o-Bn-L-Tyr) and
PB1,4-b-P(o-Bn-L-Tyr) samples are oriented parallel to the main chain (molecular dipole vec-
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tors), while in the cases of the PB1,2-b-P(o-Bn-L-Tyr) and PI3,4/1,2-b-P(o-Bn-L-Tyr) samples,
the dipole moment is rigidly attached perpendicular to the hydrocarbon chain skeleton. In
principle, secondary structures and α-relaxations are located at lower frequencies or higher
temperatures than β-relaxation. The β-relaxation is strongly connected with the localized
rotational fluctuations of the dipole vector, whilst the α-relaxation or dynamic glass tran-
sition is related to the calorimetric glass transition. It has been reported in the literature
that the homopolypeptide of the protected tyrosine has a Tg value at 41 ◦C [46]. Dielectric
measurements for the PB1,4 and PB1,2 segments indicated that the α-relaxation is located at
−78 ◦C and 19 ◦C, while a secondary transition at −26 ◦C for the PB1,2 is attributed to the
rotation of the side groups [57]. In Figure 8, the dielectric spectra for PB1,2-b-P(o-Bn-L-Tyr),
PB1,4-b-P(o-Bn-L-Tyr) and PI1,4-b-P(o-Bn-L-Tyr), with respect to modulus and temperature
are presented, clearly indicate that the different microstructures of the polydienic blocks
have a strong effect upon the mixing between synthetic polymer/polypeptide segments.
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Figure 8. DS spectra of modulus vs. temperature for samples PI1,4-b-P(o-Bn-L-Tyr) (solid line),
PB1,4-b-P(o-Bn-L-Tyr) (dotted line) and PB1,2-b-P(o-Bn-L-Tyr) (dashed line), respectively.

For the PB1,4-b-P(o-Bn-L-Tyr) (dotted line), the intermediate process took place at
15 ◦C. The PI3,4/1,2-b-P(o-Bn-L-Tyr) (solid line) showcased the process at 28 ◦C and the
PB1,2-b-P(o-Bn-L-Tyr) (dashed line) at 21 ◦C, which may be attributed to the segmental
movement of the PB1,2 chains. Additionally, in the specific sample, the shape of the process
is completely different compared to the other two samples. PB-containing samples exhibit
pure processes, since the peak positions at −80 ◦C for the PB1,4 and 21 ◦C for the PB1,2
are in good agreement with the theoretically expected [57]. In the PI3,4/1,2-b-P(o-Bn-L-Tyr)
sample, a respective peak position was not evident for the PI1,4; instead, a peak at −100 ◦C
emerged, probably due to the rotation of the side groups [57]. As already described in the
IR spectroscopy results in the PB1,2-b-P(o-Bn-L-Tyr) and PI3,4/1,2-b-P(o-Bn-L-Tyr) samples,
the secondary structures evident in the polypeptide chains are predominately β-sheets,
resulting in distinctive peak positions at 61 ◦C and 79 ◦C, respectively.

Finally, it should be mentioned that the processes related to the protected polytyrosine
are found at higher values for the PB-containing samples, probably due to the chemical
structure of the polybutadiene, which signifies an important role in the conformational
changes.
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4. Conclusions

In this work, the synthesis of novel biobased hybrid materials consisting of polydiene
and polypeptide components using anionic and ring-opening polymerization under high-
vacuum techniques was reported. In total, four copolymers presenting different geometric
isomerisms for the polydienic segments, namely PI1,4-b-P(o-Bn-L-Tyr), PI3,4/1,2-b-P(o-Bn-
L-Tyr), PB1,4-b-P(o-Bn-L-Tyr) and PB1,2-b-P(o-Bn-L-Tyr), were molecularly characterized
through SEC, IR, 1H-NMR and 13C-NMR in order to verify the successful synthesis and
to determine both the polydiene microstructures, as well as the secondary structures
(α-helices and β-sheets) evident in the polypeptide chains. SEC chromatographs and
1H-NMR/13C-NMR spectra indicated the molecular and compositional homogeneity of all
hybrid materials. Through IR spectroscopy, all wavenumber peaks corresponding to the
characteristic chemical groups involved, as well as the existence of principally β-sheets in
the polypeptide blocks, were documented. The thermal stability and the glass transition
temperatures of all segments were specified through DSC and TGA experiments. It was
found that the higher percentage of the polypeptide segments β-sheets, as well as stable
vinyl bonds in the main polydienic chains, provided increased thermal stability. AFM
experiments were conducted in order to study the phase behavior of the synthesized
samples, where β-sheets, as secondary structures from the polypeptide block, combined
with synthetic polydiene polymers can lead to fibril morphologies dispersed into the
polymer matrix. Finally, through DS measurements, further analysis on the polydienic
microstructures, as well as the a-relaxation, b-relaxation and secondary structures, was
accomplished.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13213818/s1, Figure S1: SEC chromatographs corresponding to: (a) polydiene precur-
sors, (b) functionalized intermediate products and (c) all final biobased hybrid copolymers, Figure S2:
Magnified spectra corresponding to amide: (a) III and (b) IV, V and VI, Table S1: Characteristic FTIR
peak wavenumbers corresponding to all components of the synthesized hybrid materials, Table S2:
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