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Abstract: Silica fume (SF) is a frequently used mineral admixture in producing sustainable concrete
in the construction sector. Incorporating SF as a partial substitution of cement in concrete has ob-
vious advantages, including reduced CO2 emission, cost-effective concrete, enhanced durability,
and mechanical properties. Due to ever-increasing environmental concerns, the development of
predictive machine learning (ML) models requires time. Therefore, the present study focuses on
developing modeling techniques in predicting the compressive strength of silica fume concrete. The
employed techniques include decision tree (DT) and support vector machine (SVM). An extensive
and reliable database of 283 compressive strengths was established from the available literature
information. The six most influential factors, i.e., cement, fine aggregate, coarse aggregate, water,
superplasticizer, and silica fume, were considered as significant input parameters. The evaluation of
models was performed by different statistical parameters, such as mean absolute error (MAE), root
mean squared error (RMSE), root mean squared log error (RMSLE), and coefficient of determination
(R2). Individual and ensemble models of DT and SVM showed satisfactory results with high predic-
tion accuracy. Statistical analyses indicated that DT models bested SVM for predicting compressive
strength. Ensemble modeling showed an enhancement of 11 percent and 1.5 percent for DT and
SVM compressive strength models, respectively, as depicted by statistical parameters. Moreover,
sensitivity analyses showed that cement and water are the governing parameters in developing
compressive strength. A cross-validation technique was used to avoid overfitting issues and confirm
the generalized modeling output. ML algorithms are used to predict SFC compressive strength to
promote the use of green concrete.

Keywords: green concrete; industrial waste; predictive modeling; machine learning; cross-validation;
sensitivity analysis

1. Introduction

Greenhouse gas (GHG) emissions are considered the main cause of global warming,
with CO2 as the most plentiful gas and having the greatest effect of all GHGs [1,2]. The
cement industry accounts for around 5–7% of global CO2 emissions [3]. Concrete is a com-
monly used building material due to its mechanical and durability properties [4]. About
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8% of CO2 is emitted due to the manufacturing process of concrete, which leads to global
warming [5–7]. There is an estimated 20 billion tons of concrete produced annually, making
it the second most widely used substance in the world after fresh-water. Aside from its
benefits, concrete has a malignant effect on the Earth and human health and has adverse
long-term effects on the natural environment and atmosphere [8]. It pushes the human
footprint outwards by generating living space out of the air, spreading across rich topsoil,
and causing biodiversity. The biodiversity crisis is a highlighted issue in research studies
that it is one of the major threats to a sustainable environment and is primarily driven
by urbanization. For hundreds of years, humanity has been eager for the advantages of
concrete and not wanted to consider the environmental disadvantages. However, now
the equilibrium will slide in the other direction. At the moment of disorienting transi-
tion, solidity is an enticing attribute that causes more challenges than something positive
can fix [9].

During cement manufacturing, clinker production is the most energy-intensive process.
During the formation of clinkers, almost half of the CO2 is emitted, and the rest of the
CO2 is emitted during other cement manufacturing processes. This large emission of CO2
during clinker formation is due to the presence of calcareous and clay minerals in the kiln.
For the production of a ton of cement, almost 900 kg of CO2 is re-leased. It must be heated
to very high temperatures to form clinkers. Clinker is grounded to a fine powder and then
mixed with gypsum to create cement. (Ca3SiO5) also known as alite, formed during clinker
formation contributes too much of the initial strength. However, alite also must be kept at
a temperature of 1500 ◦C during this process [10–12]. Some research suggests that alite can
be replaced by other naturally available minerals with a roasting temperature less than alite.
The reduction in carbon emissions from concrete has been a matter of concern both for the
academic and industrial sectors [13]. Many approaches are suggested to address this issue.
One of the possible solutions is the total or partial replacement of cement with some other
mate-rial that may be readily available in nature [14–16]. Supplementary cementitious
materials, such as silica fume (SF), have been used to partly substitute cement in concrete
mixtures to minimize CO2 emissions from the cement industry [17–20].

SF is a major by-product of the silicon metal industry. Silicon metal is a semi-metallic
element having several characteristics of metals. After oxygen, silica is the second most
readily available element in the Earth’s crust in various forms of silicon dioxide or silicates
but is readily available in its pure state [21,22].

SF is a hazardous material and has malignant impacts on the atmosphere and its
surroundings. Nearly all the silica fume was released into the atmosphere till the mid-
1970 s. As the environmental concerns regarding SF developed, it was used in numerous
applications. SF has very fine particles and contains a high amorphous silicon dioxide
content, making it a highly pozzolanic material. It has a completely amorphous structure,
due to which it is highly reactive. They are spherical and have a large surface area. SF
particles are 100 times smaller than cement particles, so they are completely packed with
the cement grains, and they also react with calcium hydroxide to form more CSH, which
leads to the earlier strength [23–25]. It has dense packing due to its very small size, and
hence it reduces the permeability. These properties of silica fume, when added to concrete,
enhance the overall strength of concrete. Moreover, SF concrete has been widely used in
high-strength and high-performance concrete for highway bridges, marine structures, and
parking decks due to its utmost properties, as shown in Figure 1 [17,26].
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Figure 1. Silica fume benefits in concrete.

Different experimental work has been performed to evaluate concrete’s short and
long-term mechanical properties by replacing the different fine aggregate or cement levels
with SF [27–29]. The literature suggests that the mechanical properties of SF, including
compressive strength, initial strain due to creep, and modulus of elasticity, improved by
replacing 15% of SF content. However, higher concentration causes a de-crease in concrete
creep over the long term. The development of SF-based concrete strength depends on the
curing temperature, material size, and silica content. The major contribution to strength
under normal curing temperature takes place between 3 and 28 days. After 28 days, the ad-
ditional strength due to SF is not appreciable. The re-placement of cement with SF between
5% and 25% with water to binder ratio in the range of 0.26–0.42 increases the compressive
strength by about 6–30% [15,30]. The compressive strength of silica fume concrete (SFC)
is significantly increased by varying water–cement ratios between 10% and 20% [31,32].
By increasing the water–cement ratio of SFC, a decrease in the concrete’s overall strength
was observed. The compressive strength of concrete is decreased by 27% after 28 days by
increasing the water–cement ratio by 0.05% with 15% SF content [31]. The properties of
concrete are affected by many factors, including the mixed proportion of cement, sand,
aggregate, and water. The mixing ratio of these materials determines the strength and
durability of concrete. The anomalous behavior is observed for the mechanical properties
of concrete at different mix ratios. A relationship between the mechanical properties of
SF and the proportion of materials used in concrete is needed to promote sustainable
development to cater to this behavior and promote the use of SF in concrete on a large scale.
To achieve this, different modeling techniques from artificial intelligence are adopted, and
empirical models are established to encourage sustainable development. Basic mechanical
properties, including compressive strength and splitting tensile strength, must be taken
into consideration for SFC design. SFC mixtures must also be optimized in terms of cost
to achieve desirable properties by effectively proportioning SFC components. Tradition-
ally, test lots are prepared in the laboratory to fulfill these criteria and meet construction
specifications [32,33]. As only a limited number of tests can be produced in a laboratory,
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experimental methods can generate well, rather than best-performing proportions of SFC
mixtures. The computational modeling approaches may be an alternative way of tackling
the time-taking aspect of laboratory-based mixture optimization. These approaches firstly
create the objective functions among the inputs (concrete constituents) and the outputs
(properties) and use optimization algorithms to find the best concrete mixes. The objective
functions are traditionally designed for linear or nonlinear models [34]. However, due
to the strongly nonlinear relations between concrete properties and controlling variables,
coefficients of these models cannot be precisely calculated [6]. Therefore, machine learning
(ML) techniques are being used by researchers for modeling concrete properties.

In the past, various machine learning algorithms were used to predict concrete prop-
erties, such as modulus of elasticity, compressive strength, and splitting tensile strength.
Amongst ML algorithms, multi-layer perceptron neural network (MLPNN) [35–37], sup-
port vector machine (SVM) [38,39], genetic engineering programming (GEP) [40–43], and
deep learning (DL) [44–46], were mostly used. Ref. [47] employed SVM combined with
K-Fold cross-validation, ANN, and Decision tree (DT) for predicting concrete strength
degradation in the marine environment. It was concluded that SVM predicted the de-
sired results with more accuracy and showed superior performance than the other two
methods. Moreover, the SVM-based study was extended by [48] to a more complex screen
and measured the unrestricted compression capacities of the cement–sand cockle-coated
mixtures. Ref. [49] worked on an ANN approach to predict copper slag and nano-silica
concrete strength. Similarly, efforts were made to predict the compressive and flexure
strength of lightweight concrete with carbon fiber reinforcement [50]. The ANN technique
provided better accuracy with R2 = 0.99 and 0.96 for compressive and flexural strength.
Similarly, ref. [51] prophesized the compressive strength of recycled aggregate concrete and
construction waste concrete using ANN. Likewise, ref. [52] employed ANN, DT, SVM, and
linear regression methods to predict compressive strength. It was found that the DT method
predicted the compressive strength results with the least error and showed superior perfor-
mance compared to others. Ref. [53] developed models using GEP and ANN to predict the
strength characteristics of geopolymer self-compacting concrete using raw materials. The
author concluded that the GEP model outclassed the ANN model with the provision of
expression for predicting output parameters by giving an empirical relationship. Similarly,
ref. [54] studied the precedence of ANN in predicting the compressive strength of concrete.
Mathematical expressions for formulating the said output were developed utilizing input
parameters. In general, two methods of ML are used for modeling and predicting. Firstly,
there is the traditional solution built on a single in-dependent paradigm, while secondly,
there are collective learning algorithms, including boosting, bagging, and random forests
created on many components of the data-base [55]. Individual ML models have weak
learners who tend to produce overfitting of the data. Results show that these established
approaches to ensemble learning are more exact than traditional single ML models [56].
First of all, training data are used to train weak learners in ensemble modeling. Weak
learners are then incorporated into strong learners. Weak learners are trained based on
individual learning methods, such as DT, SVM, and MLPNN. Consequently, the ensemble
learning models provide accurate and robust predictions [57,58]. Ensemble ML techniques
can effectively model multifaceted phenomena, such as SFC-containing waste materials.
Most recent research has focused on improving the efficiency of ML modeling through the
generation and use of ensemble-learning methods through classifiers [59]. Of course, the
recent prediction modeling studies have shown that ensemble approaches are becoming
more and more common as they usually produce more accurate results than individual base
learners. Ref. [6] studied the efficacy of ensemble techniques in predicting the compressive
strength of high-performance concrete using DT, MLPNN, SVM, and random forest (RF)
techniques. Individual learners and ensemble learners for SVM, MLPNN, and DT with bag-
ging and boosting were employed. It was concluded that ensemble techniques enhance the
prediction accuracy of the models with superior performance. Similarly, ref. [60] compared
different data-mining methods for the intensity forecast of environmentally friendly and
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renewable concrete according to their specific nature. Their study suggested that ensemble
learning methods, when combined with individual regression and predictive modeling
techniques, increase the efficiency of the models. Ref. [61] anticipated the compressive
strength of concrete for 28, 51, and 90 days using DT, RF, and ANN. The correlation co-
efficient R2 and root mean square error (RMSE) was used as statistical indicators for the
methods employed. Based on these statistical parameters, it was found that RF forecasted
the best results followed by ANN. Ref. [62] also discussed the usefulness of ensemble
learning techniques in accurately estimating the strength of reinforced concrete materials.
Similarly, Table 1 summarizes the work performed by researchers using waste materials on
machine learning.

Table 1. Prediction of concrete properties by using waste material.

S.No Algorithm Name Notation Dataset Prediction Properties Year Waste Material Used References

1 Artificial neural
network ANN 300 Compressive strength 2009 FA [59]

2 Artificial neural
network ANN 80 Compressive strength 2011 FA [60]

3 Artificial neural
network ANN 169 Compressive strength 2016

FA
GGBFS

SF
RHA

[61]

4 Artificial neural
network ANN 69 Compressive strength 2017 FA [34]

5 Artificial neural
network ANN 114 Compressive strength 2017 FA [62]

6
Adaptive neuro
fuzzy inference

system
ANFIS 55 Compressive strength 2018 - [63]

7 Random Kitchen
Sink Algorithm RKSA 40

V-funnel test
J-ring test
Slump test

Compressive strength

2018 FA [64]

8
Multivariate

adaptive regression
spline

M5
MARS 114

Compressive strength
Slump test
L-box test

V-funnel test

2018 FA [65]

9 Artificial neural
network ANN 205 Compressive strength 2019

FA
GGBFS

SF
RHA

[66]

10 Random forest RF 131 Compressive strength 2019
FA

GGBFS
SF

[67]

11

Intelligent
rule-based
enhanced

multiclass support
vector machine and

fuzzy rules

IREMSVM-
FR with

RSM
114 Compressive strength 2019 FA [68]

12 Support vector
machine SVM - Compressive strength 2020 FA [69]

13 Multivariate MV 21 Compressive strength 2020 Crumb rubber with SF [70]

14
Biogeographical-

based
programming

BBP 413 Elastic modulus
SF
FA

SLAG
[71]

15 Support vector
machine SVM 115

Slump test
L-box test

V-funnel test
Compressive strength

2020 FA [72]
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Table 1. Cont.

S.No Algorithm Name Notation Dataset Prediction Properties Year Waste Material Used References

16
Adaptive neuro
fuzzy inference

system

ANFIS with
ANN 7 Compressive strength 2020 POFA [73]

17 Data Envelopment
Analysis DEA 114

Compressive strength
Slump test
L-box test

V-funnel test

2021 FA [74]

The implication and originality of this research are twofold. Firstly, DT and SVM were
applied to predict the compressive strength of SFC considering boosting with AdaBoost as
an ensemble model for the prediction aspect. Secondly, ML techniques were then compared
using statistical tools. According to the authors’ understanding, the literature lacks a similar
study utilizing ensemble ML modeling for SFC. Various statistical indicators were used to
check the performance of ML techniques for prediction accuracy. In this study, an attempt
has been made to promote the use of SF in concrete, and studies have been conducted
to reduce carbon footprints. The aim of this study is to make concrete greener by using
computational techniques in utilizing SF as an additive or as a replacement in concrete for
more sustainable development. This paper deals with modern ML techniques to study
the behavior of SFC. Moreover, efforts are made to come up with the most eco-friendly
concrete using these ML techniques.

2. Methods and Modeling
2.1. Overview of Artificial Intelligence (AI)

Structural engineering problems are influenced by several factors and are not repetitive.
Before the enhancement in the artificial intelligence (AI) field, different classical models,
including linear regression and nonlinear regression, were developed by engineers. These
methods are not certain, and one cannot rely on them. Moreover, their accuracy was not
much appreciable, and they were time-consuming. AI is the best alternative approach
to classical modeling techniques. Moreover, AI-based systems are good substitutes for
identifying engineering design criteria where experimentation is unavailable, leading to
substantial human time and effort savings in experiments. AI can also speed up decision-
making, reduce error rates, and improve computational efficiency [60].

2.2. Machine Learning Algorithms

Machine learning (ML) is one of the emerging technologies in the field of AI, which is
frequently used in the construction industry to predict the behavior of mate-rials [6]. The
current study employed to predict SFC’s compressive and split tensile strength by utilizing
ML approaches, including DT and SVM, as illustrated in Figure 2. The said approaches
are recommended by the researchers in predicting the mechanical properties of concrete.
Furthermore, the modeling strength of concrete is predicted by using ensemble learners.
The brief introduction to AI and ML approaches adopted in the present research are stated
in the subsequent section.

ML models are very significant in terms of computational efficiency and processing
time. They reduce the error rates to almost negligible compared to classical models. In this
paper, an empirical model between the mechanical properties of SFC and mix proportions
using the different ML techniques is established. Then the results are compared to predict
the best model among these. This paper is concerned with DT and SVM among the
major ML techniques. Modeling techniques used in this study are briefly discussed in the
subsequent section.
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2.2.1. Decision Tree

DT is the predictive modeling technique used in AI for regression and classification
problems. DT is based on a set of if-else statements and classifies according to the conditions.
C4.5 is an international ML standard that demonstrates some efficiency. This program
is a benchmark for the majority of DTs used in AI. C4.5 uses a heuristic entropy content
measure to build the trees. This is because they can build incomprehensibly large trees
with DT learners [48].

It consists of several nodes, also known as leaves, as illustrated in Figure 3. A test
is applied at each leaf, which sends a query to the branches of that node. This loop will
continue until the query arrives at the terminal leaf. The value returned as the contribution
of the tree is correlated with each leaf node. This leaf node should focus on building the
smallest tree by focusing on the major attributes first. An important at-tribute is organizing
samples into groups. After the first attribute splits the samples, the remaining samples
become DT problems themselves but with fewer samples and one less attribute. These
subtrees with less but important attributes can overcome the complexity. The more samples
at a node mean a higher complexity level. A homogenous node has a sample of one class,
which reduces the complexity. The node aim is to grow trees by recursively trying to obtain
leaf nodes that are as pure as possible by reducing the classes of the sample [49].

Figure 3. Flow chart of the Decision tree.
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2.2.2. Support Vector Machine (SVM)

SVM is a supervised learning method provided by the dataset for input–output
mapping. SVM models are used to solve classification and regression problems [54].
However, SVM is mainly employed in problems of classification. In this algorithm, x is
a dimensional space where n is the number of features/inputs based on the model. The
classification in SVM is performed by differentiating between two classes with the help
of a hyperplane. Each data point is plotted as an x-dimensional space point (where n
is the number of features) where the value of each feature is the value of a particular
co-ordinate. After acquiring and detecting the number of input variables, an initial value is
generated, and the output values are predicted. Using statistical parameters, these values
are compared. Subsequently, classification by evaluating the hyper-plane is performed that
distinguishes the two classes (input and output) very well [38]. The flow chart of SVM is
presented in Figure 4.

Figure 4. Flow chart of Support Vector Machine.

2.3. Modeling Dataset and Model Development

The silica fume concrete (SFC) database was built up from 22 internationally published
studies available in the literature [6,63–76]. The frequency distribution and statistical
description of the database contain 283 compressive tests (f’c), as shown in Figure 5. The
mean, standard deviation, median skewness of metric, and maximum and minimum ranges
of input parameters are listed in Table 2. It is suggested that the minimum ratio between
the input variables and the database should be three, and for accurate models, it should be
higher than five [77]. In this study, with the database of 283 for compressive strength with
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6 input variables, the ratios are significantly higher, i.e., 47.17. Before developing a model,
the input selection is the main process that affects the properties of the SFC. The most
dominant constituent on the properties of concrete is sorted out to develop a generalized
function. The properties of concrete are examined to be the function of Equation (1).

f c, (MPa) = f (C, FA, CA, W, SF, SP) (1)

where
C = Cement,
FA = Fine aggregate,
CA = Coarse aggregate,
W = Water,
SF = Silica fume,
SP = Superplasticizer.
These factors are the main constituents of SFC. Moreover, these factors influence the

strength prediction of the model. The relation between these input variables is determined
with the desired output (f’c). The minimum and maximum ranges of input variables that
are the functions of outputs with their ranges are mentioned in Table 3. Other factors
influence the properties of concrete, but their contribution to the desired output on SFC is
negligible. The machine learning empirical models were trained in the training data (80%
of the total data) and subsequently applied to the validation data (20% of the total data)
that measures the precision and accuracy of the model [78]. The database collected from
the literature contains information about the SF replacement percentage, water-to-binder
ratios, specific gravity of fine aggregate and SF, fineness modulus of SF, and fractions of
superplasticizer to maintain the workability. A training set is used in a database to construct
a model, while the built-in model is validated by test data (or validation set) [6].

Table 2. Statistical description of data in the model for compressive strength (Kg/m3).

Parameters Cement Fine Aggregate Coarse Aggregate Water Silica Fume Superplasticizer

Statistical Description

Mean 393.48 702.90 1062.41 185.15 38.25 2.56
Std error 3.92 13.44 10.88 1.84 2.27 0.35
Median 383.15 653.00 1040.00 175.00 26.25 0.00
variance 4359.48 51,138.84 33,530.89 963.29 1469.97 34.80
Std. dev 66.02 226.13 183.11 31.03 38.34 5.89
Kurtosis −0.15 −0.51 0.20 3.66 0.57 30.00

Skewness 0.15 0.11 0.61 1.50 1.11 4.97
Range 376.00 985.36 728.00 178.87 150.00 43.00
Min 224.00 184.63 702.00 135.00 0.00 0.00
Max 600.00 1170.00 1430.00 313.87 150.00 43.00
Sum 111,354.90 198,941.50 300,663.20 52,397.59 10,827.33 726.11

Count 283 283 283 283 283 283

Training Dataset

Mean 393.14 697.76 1067.67 185.80 36.78 2.65
Std error 4.41 14.67 11.94 2.15 2.56 0.42
Median 382.82 653.00 1040.00 176.00 26.25 0.00
variance 4404.11 48,659.21 32,197.86 1045.27 1483.09 40.60
Std. dev 66.36 220.59 179.44 32.33 38.51 6.37
Kurtosis −0.14 −0.38 0.28 3.70 0.52 27.05

Skewness 0.13 0.11 0.65 1.57 1.11 4.83
Range 376.00 985.37 728.00 178.88 150.00 43.00
Min 224.00 184.63 702.00 135.00 0.00 0.00
Max 600.00 1170.00 1430.00 313.88 150.00 43.00
Sum 88,848.53 157,693.90 241,294.40 41,990.32 8313.19 599.42

Count 226 226 226 226 226 226
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Table 2. Cont.

Parameters Cement Fine Aggregate Coarse Aggregate Water Silica Fume Superplasticizer

Testing Dataset

Mean 394.85 723.64 1041.56 182.58 44.11 2.22
Std error 8.64 32.84 26.13 3.36 4.96 0.46
Median 390.00 653.00 990.00 175.00 29.62 0.00
variance 4255.64 61,470.40 38,931.08 642.77 1399.90 11.97
Std. dev 65.24 247.93 197.31 25.35 37.42 3.46
Kurtosis −0.17 −0.93 0.05 0.46 1.07 9.21

Skewness 0.28 0.09 0.57 0.73 1.24 2.55
Range 302.00 932.82 728.00 125.70 150.00 19.00
Min 238.00 237.19 702.00 135.20 0.00 0.00
Max 540.00 1170.00 1430.00 260.90 150.00 19.00
Sum 22,506.35 41,247.52 59,368.84 10,407.28 2514.14 126.69

Count 57 57 57 57 57 57

Table 3. The maximum and minimum range of silica fume concrete data for compressive strength.

Parameters Abbreviation Minimum Maximum

Input Variables

Binder C 224 600
Fine aggregate FA 184.6 1170

Coarse aggregate CA 702 1430
Water W 135 313.9

Silica Fume SF 0 150
Superplasticizer SP 0 43

Output Variable

Compressive strength fc’ 5.66 95.9

Figure 5. Relative frequency distribution of parameters to compressive strength; cement, sand, gravel,
water, silica fume, and super plasticizer.
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2.4. Models Evaluation Criteria

The developed model performance on training or testing sets can be measured by
computing statistical errors, such as mean absolute error (MAE), root mean square error
(RMSE), root mean squared logarithmic error (RMSLE), and root square value (R2). How-
ever, the R2 value is also called the coefficient of determination and is considered the best
among these for evaluating the model. With the advancement in the AI field, different
modeling techniques have been adopted to develop prediction models for the mechan-
ical properties of the resulting concrete. This study evaluates the models by statistical
analysis by computing error metrics. These metrics can give different in-sights into the
model’s errors.

Furthermore, the coefficient of variance and standard deviations are also used to
evaluate the model’s performance. In this study, the model accuracy and validation are
justified by its coefficient of determination. The R2 value for the model between 0.65 and
0.75 shows good results, while less than 0.50 depicts unsatisfactory results. The value of R2

can be calculated using Equation (2).

R2 =
∑n

i=1
(

Mi −Mi
)
(Pi − Pi)√

∑n
i=1 (Mi −Mi)

2
∑n

i=1 (Pi − Pi)
2

(2)

MAE is the average of absolute error when each input entity has the same weight. It
corresponds to the difference between prediction and actual observation. The absolute
value is taken to remove the negative sign. It determines the absolute size of the errors, and
the units are identical to the output units. A model with an MAE value within a range can
have punctually very high errors. It is calculated by using Equation (3).

MAE =
1
n ∑n

i=1|Pi −Mi| (3)

RMSLE considers the relative error between the predicted and the actual value. It is
defined as the difference between the log of the anticipated value and the log of the actual
value. Equation (4) is used to calculate RMSLE, where x is the predicted value and y is the
actual value. This equation is helpful once it comes to right-skewed out-puts since the log
transform renders the target spread more naturally.

RMSLE =

√√√√ 1
N

N

∑
i=1

(log(x + 1)− log(y + 1))2 (4)

RMSE is the square root of the average of squared variations between estimation and
actual measurement. It measures the mean square magnitude of errors. It is the standard
deviation of the predicted error. Large exceptions, such as outliers, are given more weight in
this calculation, so large differences squared become greater, and small differences squared
become smaller. The root means square error measures the aver-age prediction error made
by the model in predicting the output for an input, where P is the predicted value and
M is the measured value. The lower the RMSE, the better the model. An RMSE value
≥ 0.5 reflects the poor ability of the model to accurately predict the data. RMSE can be
calculated by using Equation (5). Table 4 provides an overview of the range of different
statistical parameters.

RMSE =

√
∑n

i=1 (Pi −Mi)
2

N
(5)
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Table 4. Range of errors for statistical parameters.

Assessment Criteria Range Accurate Model

MAE (0, ∞) the smaller the better
RMSE (0, ∞) the smaller the better
MSLE (0, ∞) the smaller the better

R2 value (0,1) the bigger the better

3. Results and Discussion
3.1. Formulation of Compressive Strength and Split Tensile Strength of SFC

Ensemble approaches are used to improve the degree to which data extraction and
machine learning techniques (ML) are recognized or predicted. These methods also tend to
decrease excessive training issues by integrating and combining various weaker analytical
models (sub-models). By intelligently adjusting training data, the development of several
sub-models/classification components (1, 2, . . . , m) will help a better learner. More
precisely, a combination of qualified sub-models with averaging/voting methods can
produce the optimum parametric/predictive model. Bagging is one of the more traditional
bootstrap samplings and collating benefits modeling methods. The initial training range
replaces component templates during the bagging phase. Certain data points could appear
several times in product models while others do not. Then, combining the output of the
variable models calculates the final output. Similar to the bagging strategy, the boosting
method creates a cumulative model that results in several more accurate components than
a model. In other words, the boosting uses weighted averages of dependent sub-models to
place sub-models in the last model. This study covers base learners, such as DT and SVM,
together with boosting, for forecasting the compressive of SFC. Parameter models used
in the tuning techniques of the ensemble can (i) be linked to the optimal sample learner
number and (ii) be associated with learning rates and other parameters that directly affect
the ensemble method.

In this research, 20 boosting ensemble models of 10, 20, 30, . . . , 200 component
sub-models were developed for each base learner for the choice of the optimal array of
sub-models, and the best structures were chosen for training the data set for the respective
ML system based on the high determination coefficient (R2) values. Figure 6 shows the
relation among the R2 of ensemble models with varying numbers of component sub-models
for compressive strength.

Figure 6. Coefficient of determination for ensemble models with the various number of component
sub-models for compressive strength.
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3.1.1. Modeling Outcome of Decision Tree

The prediction of compressive strength of SFC via DT gives superior performance
against the actual results, as illustrated in Figure 7. The individual model gives accurate
and good performance with R2 = 0.849, as depicted in Figure 7a. However, the ensemble
model with boosting gives robust performance compared to the individual one, as depicted
in Figure 7c. A comparison of the individual and ensemble methods for all the models is
shown in Table 5. The robust performance of the ensemble model can also be correlated
with its error distribution, as shown in Figure 7b,d. Figure 7b shows an average error of
5.46 MPa with the maximum and minimum errors of 23.33 and 0.0714 MPa, respectively,
for the individual DT model. The average, maximum, and minimum error values are
decreased using an ensemble algorithm to 3.57, 12.13, and 0.027 MPa, respectively, as
shown in Figure 7d. These statistics depict that average, maximum, and minimum errors
are improved by 34.62, 48.01, and 61.97 percent, respectively. Furthermore, 63.16 percent
of the data of individual DT models indicate an inaccuracy of less than 5 MPa, whereas
17.54 and 12.28 percent of the data indicate errors between 5 and 10 MPa and 10–15 MPa,
respectively. Moreover, 5.26 of the data shows the error between 15 and 20 MPa and
1.75 between 20 and 25 MPa. In contrast to the individual DT model, the data from the
ensemble DT algorithm shows no inaccuracy over 15 MPa. Data from the ensemble DT
model show that the error is 71.93 percent less than 5 MPa, whereas 26.32 and 1.75 percent
of the data show that the error is between 5 and 10 and 10–15 MPa, respectively.

Figure 7. DT model results for compressive strength; (a) individual regression model, (b) error
distribution between actual and target values of individual model, (c) ensemble regression model,
(d) and error distribution between actual and target values of an ensemble model.
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Table 5. R2 values of individual and ensemble models.

Approaches Employed Output Parameter Machine Learning Methods Ensemble Models Optimum Estimator R Value

Individual algorithms Compressive Strength
Decision tree - - 0.85

Support vector machine - - 0.88

Ensemble boosting Compressive strength
Decision tree—Adaboost (10, 20, 30, . . . , 200) 70 0.94

Support vector
machine—Adaboost (10, 20, 30, . . . , 200) 20 0.89

The ensemble DT model, when compared to the individual DT model, improves R2

by 11% for compressive strength. Relatively, ref. [6] showed an increase of 11 percent in
boosting ensemble technique when compared with the individual DT model. Similarly,
an enhancement of 12.2 percent was observed in predicting the compressive strength of
fly-based concrete using the ensemble technique when compared with the individual DT
model [58]. Accordingly, the values of DT metrics are satisfactory, and this algorithm can
be utilized to accurately predict the model’s compressive strength. The accuracy of a model
is highly dependent on the number of databases. This model consists of 283 data.

3.1.2. Model Outcomes of Support Vector Machine (SVM)

Figure 8a shows the relation of predicted values with the target values with R2 = 0.87
for the SVM compressive strength individual model, while Figure 8c depicts R2 = 0.89 for
the best ensemble SVM model. The red line in Figure 6 reflects the R2 in the SVM model
developed to predict compressive strength with the model number estimator. Figure 8b
depicts the maximum and minimum errors of 20.48 and 0.029 MPa, respectively, with an
average error of 4.96 MPa for the individual SVM model. Moreover, the data indicate an
error of 63.16 percent below 5 MPa, 24.56 percent between 5 and 10 MPa, 8.77 percent
between 10 and 15 MPa, and 3.51 percent between 15 and 20 MPa. The error distribution
of the SVM best compressive strength ensemble model, as seen in Figure 8d, depicts the
maximum and minimum errors of 19.17 and 0.02 MPa, respectively, with an average
error of 4.73 MPa. Average, maximum, and minimum errors were enhanced by 4.64, 6.4,
and 31 percent, respectively. Moreover, the data show an error of 66.67 percent below
5 MPa, 21.05 percent between 5 and 10 MPa, 10.5 percent between 10 and 15 MPa, and
only 1.75 percent between 15 and 20 MPa. The SVM boosting ensemble model enriches
the R2 by 1.5 percent for compressive strength compared to the individual SVM model.
Relatively, an enhancement of 8.43 percent was observed in predicting the compressive
strength of high-performance concrete using the ensemble SVM model when compared to
the individual SVM model [78]. However, an increase of only 0.21 percent was observed
using the SVM ensemble model in predicting the deflection of reinforced beams when
compared to the individual SVM model [79].

3.2. Comparison between Ensemble Models and GEP Model

To the author’s knowledge, no model has been developed to predict the mechanical
properties of SFC. Consequently, this study has been employed to develop nonlinear
regression models to predict the mechanical properties of SFC. Table 6 shows the statistical
errors between the predicted and actual values. It can be observed from the statistical
parameters that the actual and predicted values are closer for the DT model, which confirms
the prediction accuracy of the DT model in forecasting the compressive strength of SFC.
From Figure 9, it is deducted that the DT models show satisfactory results over SVM
ensemble models with the same input variables for compressive strength of SFC.
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Figure 8. SVM model results for compressive strength; (a) individual regression model, (b) error
distribution between actual and target values of individual model, (c) ensemble regression model,
and (d) error distribution between actual and target values of an ensemble model.

Table 6. Statistical errors for the models.

Models MAE RMSE RMSLE R2 Value

Decision Tree Values

Compressive strength 3.58 4.43 0.046 0.94

SVM

Compressive strength 4.73 6.31 0.062 0.89

Figure 9. Comparison of errors for compressive strength.
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3.3. Sensitivity Analysis

Six parameters, including cement, FA, CA, water, SF, and SP, were used as input
parameters. Figure 10 shows the contribution of each input parameter in the development
of the models. Water and cement have been shown to contribute more to compressive
strength than FA, CA, and other additives. SF and SP played a modest role in developing
both (DT and SVM) models.

Figure 10. Contribution of input parameters to compressive and splitting tensile strength.

3.4. Cross-Validation

Cross-validation is a statistical practice used to estimate the actual performance of
the ML models. It is necessary to know the performance of the selected models. For
this purpose, a validation technique is essential for determining the accuracy level of the
model’s data. Shuffling the dataset randomly and splitting a dataset into k-groups is
required for the k-fold validation test. In the described study, the data of experimental
samples are equally divided into 10 subsets. It uses nine out of ten subsets, while the only
subset is utilized to validate the model. The same approach of this process is then repeated
10 times for obtaining the average accuracy of these 10 repetitions. It is clarified widely that
the 10-fold cross-validation method represents the conclusion and accuracy of the model
performance well [58].

Bias and a variance decrease for the test set can be checked by employing k-fold cross-
validation. The results of the cross-validation are evaluated by a correlation co-efficient
(R2), a mean absolute error (MAE), a mean square logarithmic error (RMSLE), and a root
mean square error (RMSE), as illustrated in Figure 11. Both the models show fewer errors
and better R2. The average R2 for DT model is 0.79 for compressive strength of ten folds
with maximum and minimum values of 0.98 and 0.46, as shown in Figure 11. Similarly,
the average R2 = 0.78 for SVM with a maximum and minimum value of 0.99 and 0.17,
respectively, as shown in Figure 11. Each model shows fewer errors for validation. The
validation indicator result shows that mean values of MAE, RMSE, and RMSLE come to be
6.20, 7.59, and 0.032, respectively, for the compressive strength DT model and 8.92, 10.61,
and 0.051 for the compressive strength SVM model.
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Figure 11. k-fold cross-validation for compressive strength.

4. Conclusions

From the last two decades, soft computing techniques have been widely used for both
linear and nonlinear systems of modeling to predict different properties of concrete. This
study aimed to predict the compressive strength of SFC by using DT and SVM modeling.
Compressive strength is the principal property of concrete, and there is no model that has
been developed to predict the fc’ of SFC. After a detailed literature review, an extensive and
reliable database was collected from the different research. The evaluation of models was
performed by statistical parameters, including R2, MAE, RMSE, and RMSLE. The values of
the statistical parameters indicated that both models could predict the compressive strength
of concrete with reasonable accuracy. The ensemble model results are compared. For more
verification, external validation and sensitivity analysis were also conducted. The R2 values
of the best ensemble model for DT and SVM were obtained as 0.94 and 0.89, respectively.

The specific outcomes obtained from this study are,

• The results of this study indicated that ensemble models have higher accuracy for the
prediction of data than individual models.

• After a detailed study, it was observed that among the ensemble models, the DT model
showed the most accurate result for compressive strength compared to SVM, with
prediction accuracy of 94% for DT and 89% for SVM.

• Different researchers have utilized silica fume in concrete in different percentages to
enhance the mechanical properties of concrete. The accurate expressions and models
can efficiently increase the utilization of hazardous SF in the concrete on the industrial
level in construction practices rather than accumulating it as industrial waste. The
replacement of silica fume with cement and determining its optimum percentage in
concrete will help promote sustainable development by reducing energy consumption,
landfilling, and greenhouse gas emissions.
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5. Limitations and Directions for Future Work

An extensive and reliable database for compressive strength and split tensile strength
was used. However, to provide a more general expression, including more input parameters
and extending the database can provide the desired results. In addition, ML techniques
can be combined with heuristic methods, including whale optimization algorithm, ant
colony optimization, and particle swarm optimization, for better results. These methods
can then be compared with the techniques employed in this study. Moreover, multi-
expression programming (MEP) is an extended and improved form/version of GEP. GEP
and MEP analysis should be employed and compared to overcome the limitations of
ensemble algorithms.
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