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Abstract: We explore the foam extrusion of expanded polypropylene with a long chain branched
random co-polypropylene to make its production process simpler and cheaper. The results show that
the presence of long chain branches infer high melt strength and, hence, a wide foamability window.
We explored the entire window of foaming conditions (namely, temperature and pressure) by means
of an ad-hoc extrusion pilot line design. It is shown that the density of the beads can be varied from
20 to 100 kg/m3 using CO2 and isobutane as a blowing agent. The foamed beads were molded by
steam-chest molding using moderate steam pressures of 0.3 to 0.35 MPa independently of the closed
cell content. A characterization of the mechanical properties was performed on the molded parts.
The steam molding pressure for sintering expanded polypropylene beads with a long chain branched
random co-polypropylene is lower than the one usually needed for standard polypropylene beads by
extrusion. The energy saving for the sintering makes the entire manufacturing processes cost efficient
and can trigger new applications.
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1. Introduction

Polymer bead foams are produced by a sintering process (usually, steam chest molding)
of foamed polymer beads. The sintering process allows us to obtain complex shapes with
low density, a unique feature among all the technologies to produce polymer foams [1].
For this reason, polymer bead foams have attracted enormous attention from various foam
industries, and they are used in automotive, leisure, sport, and long-life packaging. In
the early 1980s, expanded beads of polypropylene (ePP) were introduced into the market
and, since then, their applications have been constantly growing [2]. In recent years, ePP
applications in the automotive sector have been spreading rapidly (i.e., bumpers, exterior
and interior energy absorbers, door panels, knee protection, tool kits, trunk liners, console
components, seat backs, bolsters etc.) with the goal to minimize car weight and increase
safety. Moreover, the current green revolution asks for more sustainable polymers, and
polypropylene (PP) could be a good candidate to replace polystyrene (PS) because it has
a more advantageous Life Cycle Assessment for many categories (e.g., Ozone depletion,
Climate change, Water resource depletion etc.) [2].

One of the limitations to ePP application is the low production productivity and
the higher price compared to expandable and expanded polystyrene beads (EPS). ePP
can be produced with two different technologies; autoclave (it can be considered as the
conventional technology) or foam extrusion [3]. The extrusion technology, compared to
the autoclave, is more cost-efficient and assures higher productivity and more flexibility.
Indeed, it allows the economical production of small batches of foamed beads because
solubilization, compounding and expansion happens in a one-step process [3]. Moreover,
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the extrusion technology allows us to obtain a narrower distribution of foamed bead size
and smaller particles than the autoclave case. However, it is challenging to achieve a proper
foam structure and density [4]. This is the reason more than 90% of ePP on the market is
produced by autoclave technology [5].

There has been extensive research on the foaming process of ePP by autoclave [6]
and many patents can be found [7–9]; however, even though the literature recognizes
the great potential of developing a foam extrusion technology for ePP for the earlier
mentioned advantages, the foamability of ePP by extrusion is not investigated deeply
and only few patents [10] present promising technology. It is believed that, despite the
numerous advantages for using the extrusion technology, the resulting extruded ePP beads
have poorer mechanical properties compared to the autoclave ones and require more energy
for being sintered. However, no studies can be found in the scientific literature and no
explanation of the governing phenomena was given.

The foaming of beads by foam extrusion is different from the autoclave foaming.
In extrusion foaming, the polypropylene/gas solution passes through small channels
(where it is subjected to a high pressure drop rate (PDR), usually much higher than the
one experienced in autoclave foaming [11]) and the beads are cut under water by a fast
knife that may affect the morphology. The cooling history is usually much faster in
extrusion foaming than in autoclave foaming because of the turbulent water flow around
the extruded beads [12]. The extruded beads that are cooled quickly crystallize within a
strong temperature inhomogeneity across the cross section of the beads that could result
in an inhomogeneous crystal structure and lower crystallinity content compared to the
autoclave foamed beads [13]. The degree of crystallinity and/or shape of crystals have a
strong effect on final mechanical properties in the foamed beads. Moreover, the autoclave
technology allows us to obtain a double peak of melting [14] in ePP that simplifies the
sintering of beads, which can be done at a steam pressure of 2–3 bar [15,16]. The extruded
beads currently available on the market have a difficult molding process that requires more
energy for welding the surfaces [17].

Herein, we present a study on producing expanded beads of random copolymer
PP using a commercially available extrusion line. We present insights into the process
and the characterization of the foamed PP beads produced by extrusion using isobutane
and CO2 as blowing agent. The choice of the blowing agent has to comply with not
only technical (solubility, diffusivity, boiling point etc.) and economic requirements, but
environmental and safety requirements as well. Based on the previous considerations, we
selected: (I) isobutane that is a good solvent for PP and its solubility is very high offering
the possibility to achieve low density foams [18,19]; (II) CO2 has a lower solubility in PP
than isobutane, but it is an environmentally friendly choice and it is also more economical
than the isobutane.

The resulting beads are characterized in terms of density and open cell content. Fur-
thermore, steam chest molding was performed to investigate the molding and mechanical
properties of sintered boards.

2. Materials and Methods

High melt strength polypropylene (HMS PP) was supplied by Borealis and it was
used as received. The material exhibits strain hardening at high shear rates comparable
with those one in a foaming experiment. The presence of strain hardening ensures a setting
mechanism for the growing bubbles that avoids the collapse and the rupture of cell walls.
Indeed, it is well known in the literature [20] that a high degree of close cells is required for
optimizing the mechanical properties.

Moreover, two types of additives were tested: anti-shrinking agent (influencing the
permeability of the blowing agent through the cell walls) and a nucleating agent master-
batch of talc microparticles (with a maximum size of 20 microns). The materials were
extruded as received. The isobutene and CO2 at a purity of 99.8% were supplied by Linde
(Switzerland). The materials used for the experimental campaigns were: (a) RACO PP name
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WB260HMS from Borealis, Linz, Austria; (b) anti-shrinking agent name Atmer 7300 from
Croda, Munich, Germany; (c) nucleating agent name PEA0025793 from Croda, Germany.

The cell structure was analyzed by Scanning Electron Microscope (i.e., Hitachi TM
3000 SEM) on the samples cut in nitrogen. ImageJ software was used for shape identification.
Density was measured by two methods: (a) multiple beads density: weighting 1 L of beads;
and (b) single bead density done by ASTM D792 that is not affected by the beads shape.

The open cell content was measured by pycnometer (i.e., Ultrapyc 5000 foam, Anton
Paar, Munich, Germany) following the ASTM method D6226 using nitrogen.

The average beads size and their sphericity was analyzed by the optical method
using a Camsizer (model 0208, Retsch Technology, Geneve, Switzerland). The steam chest
molding machine used for sintering the beads was a commercial molding machine Teubert
TransTec72/52 PP (Teubert Maschinenbau GmbH, Blumberg, Germany).

Mechanical properties were measured according to ISO 844 for the compression test
and DIN 1789 for the tensile tests, using a Zwick Z1485 testing machine (Zwick. GmbH
& Co. KG, Ulm, Germany) with a displacement of 500 mm/min for the tensile strength
test and a Zwick Z050 testing machine (Zwick. GmbH & Co. KG, Ulm, Germany) with a
displacement of 5 mm/min for the compression test. The test specimens have parallel top
and bottom surfaces and essentially perpendicular sides; the dimensions were 50 by 50 by
25 mm.

The linear rheological response was measured by means of a Physica MCR 301 Rheome-
ter from Anton Paar. The measurements were performed under nitrogen atmosphere using
a plate–plate system with a radius of 25 mm (PP25) under oscillatory conditions; the gap
between the plates was set to 1 mm. The test sweeps the angular frequency from ω = 0.1 to
50 rad s−1, with a fixed strain rate of 1%. The non-linear rheological response of the HMS PP,
at high shear rates and deformation, was measured by means of a stress-controlled micro-
capillary rheometer [21]. The microcapillary has a diameter of D = 70 µm and a land length
of L = 1500 µm. Above the microcapillary there is a reservoir with diameter Dr = 1 mm
and a converging section to facilitate sample loading. Nitrogen was used to impose the
pressure and a camera used for observing the polymer strand at the capillary exit.

The results of density and molding were averaged over at least three samples.

2.1. Sulzer Extrusion Foaming Equipment and Process

The expanded PP-beads were produced using the foam extrusion line from Sulzer
(Winterthur, Switzerland, www.sulzer.com, accessed on 15 December 2021) optimized for
ePP foams. Sulzer’s ePP foaming process consists of a combination of dosing devices, an
inter-meshing co-rotating twin screw extruder, a melt conditioning section including melt
cooler, melt pump and die plate (Figure 1). Sulzer operates a multi-purpose demonstration
unit with ~20 kg/h capacity in its customer test center in Winterthur, Switzerland.
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in Figure 1); the dispersion of the additives in the melt is controlled by the screw design
and various operating parameters. The blowing agent is injected directly into the extruder
via an injection valve (the exact position is pointed out by the arrow in Figure 1) and, under
those conditions, the supercritical state is reached for CO2 [22]. The extruder has heating
elements and water cooling, to maintain a constant and even temperature distribution
throughout the housings and the melt.

The impregnated melt is transferred into a conditioning section mainly consisting
of a heat exchanger (part 3 of Figure 1) and a melt pump. The heat-exchanger allows
us to precisely set the temperature of the melt for optimal foaming conditions. The melt
pump provides a constant flow rate of the melt into the underwater granulation system
(part 4 in Figure 1). The person is depicted to give a size reference respect to the machine
size, additional details are given in [23]. The temperature of the melt cooler and of the
die is controlled by two independent thermal oil heat transfer units (HTU) and melt bolt
thermocouples to measure the polymer processing temperature inside the polymer stream.
The most relevant processing conditions are given in the results section, that are, the melt
temperature at the foaming and pressure in the die plate.

2.2. Testing Procedure

The foaming window was mapped for each formulation by investigating the effect
of the foaming temperature and blowing agent concentration. The extruder temperature
profile was kept constant to melt the PP properly. The melt cooler temperature was varied,
and beads were collected when stable conditions were reached. The melt temperature was
measured immediately before the die plate with a Gneuss (Bad Oeynhausen, Germany)
temperature sensor equipped with a ceramic insulation close to the measuring tip (i.e.,
TF-CX-12A-00S-S0-F0-T1J-2G).

3. Results

A complete rheological characterization of the polymer is fundamental for designing a
stable extrusion foam process of expanded PP beads. The linear and non-linear rheological
behavior of HMS PP was investigated at 170 ◦C. The complex viscosity, η*, as a function
of shear rates, is shown in Figure 2a (black rhombus); at low shear rates the viscosity
approaches at a plateau value of ca. 5000 Pa s. The shear viscosity obtained by the
microcapillary rheometer [20] is plotted in Figure 2a (grey triangles). The viscosity decreases
dramatically at high shear rates, and it was modelled by fitting a power law equation (i.e.,
η = K

.
γ

n−1, where η, K,
.
γ, n are the shear viscosity, the consistency, the shear rate and

the flow index) from 20 to 1000 s−1. The fitting results have a coefficient of determination
equal to 0.8 and show a flow index equal to 0.2, typical of a highly entangled polymer [24].
The observation of the exiting strands supplies important insights into the non-linear
rheological behavior (e.g., die swell) that are directly linked to the extrusion of the material
through the die plate for bead production. In particular, the observed die swell is used to
calculate the first normal stresses difference, N1, (shown in Figure 2b), using the empirical
equations [25–27]: N2

1 = 8τ2
w((B − 0.13)6 − 1), where τw and B are the shear stresses at

the wall and the die swell is defined as the ratio between the diameter of the polymer
strand and the capillary diameter. It is worth noting that the swell measurements, B, can
be considered independent of the geometry because the capillary design is characterized
by Dr/D < 20 and L/D = 21 (where Dr is the diameter of the cylindrical reservoir) [27].
Moreover, the direct observation of the polymer flow provides qualitative information on
the final foamed beads’ shape and size. The absence of melt fracture, in the entire range
of shear rate investigated, makes this polymer particularly suitable for extrusion where a
perfect control of the strand dimension is required.
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3.1. Bead Properties

The branched structure of random copolymer PP molecules exhibits rheological prop-
erties, such as high melt strength and rapid crystallization, that assure easy stabilization of
the foaming beads. We tested WB260 HMS with isobutane and CO2 as blowing agents and
compared the resulting foamed beads. The PP can be foamed within a broad range of melt
temperature and density can be tuned between 100 to 20 g/L. The most relevant pressure
for the foaming, the one at the die plate, was kept constant as much as possible between 150
and 200 bar. Figure 3a shows the comparison between the foam density measured with the
two methods, a and b. As expected, method a (multiple beads density) always gives a lower
density than the one measured with method b (single bead density) and the difference is
ca. 40%. The insert d in Figure 3a shows the picture of an ePP bead with a foam density of
30 g/L. In the rest of the paper, density will always be the multiple beads density, that is,
the density used by industry to define the requirements of ePP for automotives. Figure 3b
shows the bulk density (in scale log-log) as a function of melt temperature, Tfoam, for five
different blowing agent concentrations. For each concentration of blowing agent, we iden-
tify an optimum for foaming temperature, Toptimal

f oam , at which we reach a low density and
high concentration of a closed cell. Tfoam is a very important process variable for defining
the final foam structure both in terms of density and morphology. A bell-shaped curve
typically describes the effect of Tfoam on the foam density, with a maximum of the expansion

ratio at optimal temperature, Toptimal
f oam . Below Toptimal

f oam , the viscosity of the polymer increases,

and crystallization or vitrification may occur [28–30]. Above Toptimal
f oam , the reduction of the

polymer viscosity induces bubble coalescence, and the increased diffusivity of the blowing
agent is responsible for its loss through the external surface of the strand, followed by a
corresponding reduction of foaming efficiency. All those phenomena hinder bubble growth.
The foaming window is ca. 10 ◦C wide.

The effect of an anti-shrinking agent (i.e., GMS) and a nucleating agent (i.e., talc) on the
cell morphology of ePP foamed with 7.4 wt% of isobutane was investigated at the optimum
foaming temperatures. Figure 4a shows a rapid decrease of closed cell content when the
talc concentration is increased. In our case, the talc particle size of 20 microns is much
bigger than the thickness of the cell walls (Figure 4b) and we can speculate that during
the bubble growth the accumulation of stresses around rigid solid talc particles leads to
the breaking of cell walls. On the other hand, we did not observe any sensitive changes in
open cell content as a function of GMS concentration that acts as a lubricating agent.
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3.2. Molding

Five sets of extruded beads were molded into the shape of boards later used for
mechanical property determination: low, medium, and high-density beads produced using
isobutane as the blowing agent (Sulzer 1, 2 and 3) and low and medium density beads
produced using CO2 as the blowing agent (Sulzer 4 and 5). The molding of extruded beads
was achieved using steam pressure to 3 bar (the details are given in Table 1). All the samples
were well sintered, having straight surfaces without wrinkles and shrinking of the object.
The increase of density after the steam chest molding process is shown in Table 1. When
formulations were submitted to the molding process the final part densities of the materials
differ around 40 g/L compared to the bulk density values. The increment perceived was
related to the pressure filling used (higher filling pressures produce molds with bigger final
part densities) due to the compaction of the beads during the molding process.

Table 1. Steam chest molding conditions and density of the molded parts.

Property Sulzer 1 Sulzer 2 Sulzer 3 Sulzer 4 Sulzer 5

Blowing agent isobutane isobutane isobutane CO2 CO2
Bulk Density of beads

[kg/m3] 26 ± 2 43 ± 2 103 ± 1 35 ± 1 58 ± 1

Open cell content [%] 20 ± 1 8 ± 1 1 ± 1 34 ± 1 26 ± 1
Moulding pressure [MPa]

(28 mm plate) 0.3 ± 0.01 0.3 ± 0.01 0.3 ± 0.01 0.28 ± 0.01 0.28 ± 0.01

Moulding cycle time [s] 228 ± 1 228 ± 1 159 ± 1 118 ± 1 110 ± 1

3.3. Mechanical Properties

The boards molded as described above were analyzed for their mechanical properties.
In Tables 2 and 3, mechanical properties are displayed along with the respective density
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values of the measured samples. The tensile strength and elongation at break after the
steam chest molding of the board (i.e., thickness 20 mm) are shown in Table 2.

Table 2. Mechanical properties of molded ePP.

Property Sulzer 1 Sulzer 2 Sulzer 3 Sulzer 4 Sulzer 5

Blowing agent isobutane isobutane isobutane CO2 CO2
Density of test piece [kg/m3] 60 ± 1 83 ± 1 137 ± 6 52 ± 2 76 ± 2

Tensile strength [kPa] 340 ± 6 441 ± 22 589 ± 15 266 ± 11 411 ± 24
Elongation at break [%] 20 ± 1 15 ± 3 12 ± 1 12.8 ± 2 11.3 ± 1

The compression test values at 25%, 50% and 75% of compressive strain after the steam
chest molding of the board (i.e., thickness 60 mm) are shown in Table 3.

Table 3. Compression test mechanical properties of the materials.

Property Sulzer 1 Sulzer 2 Sulzer 3 Sulzer 4 Sulzer 5

Blowing agent isobutane isobutane isobutane CO2 CO2
Density of test piece [kg/m3] 65 ± 2 90 ± 2 150 ± 3 51 ± 1 75 ± 2

Compression strength 25% [kPa] 139 ± 4 228 ± 3 529 ± 33 128 ± 2 252 ± 15
Compression strength 50% [kPa] 207 ± 2 339 ± 4 813 ± 63 196 ± 4 405 ± 22
Compression strength 75% [kPa] 405 ± 7 715 ± 14 2037 ± 252 456 ± 12 1061 ± 62

No direct comparison between the mechanical properties of boards produced with
the described extruded beads and those produced with beads of the same material but
produced with the autoclave process, is available. However, compared to commercially
available ePP-beads produced with the autoclave method, the described beads reach
somewhat lower specific mechanical properties [31,32]. Autoclave foaming technology
allows PP to foam at temperatures comparably close to its melting temperatures, which
is not possible in an extrusion process due to viscosity. The rearrangement of crystalline
structure in PP in impregnation and foaming steps during the autoclave process leads to
the development of a double melting peak in the expanded beads and higher mechanical
properties caused by the presence of two different crystalline phase structures combined
with higher crystallinity [33]. This very characteristic annealing effect of ePP beads made
by the autoclave process is not observed in beads produced by the extrusion bead process.

The tensile and mechanical compression properties of boards (Sulzer 1–5) are linearly
dependent on the final part density of the piece. Furthermore, it was found that there is
no significant difference between the mechanical properties of the beads produced with
isobutane compared to the ones foamed with carbon dioxide.

4. Conclusions

The foamability of random co-polypropylene by foam extrusion of expanded beads
was explored. The results show that all polypropylene grades can be foamed with a fine
tuning of processing conditions and the densities can be varied from 20 to 100 kg/m3.
The optimal foaming temperature was investigated by changing the melt temperature and
concentrations of isobutene and CO2. The curve of density as a function of temperature has
the classical bell shape and the minimum ranges from 140 to 130 ◦C depending on the gas
concentration. In particular, it decreases with the concentration of the blowing agent. The
steam chest molding of the foamed beads shows that it is possible to sinter the beads in a
wide range of steam pressures (from 0.25 to 0.3 MPa) and a cycle time from 110 to 228 s.
The compression test on the molded parts shows that the compression strength at 25%, 50%
and 75% (i.e., from 200 to 800 kPa) is slightly lower than for the ePP by autoclave reported
in the literature. Surprisingly, the sintering of beads can be performed independently on
the closed cell content and at only 3 bar steam pressure. The energy saving for the sintering
makes the entire manufacturing process cost efficient and can trigger new applications.
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