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Abstract: Explosive detection has become an increased priority in recent years for homeland security
and counter-terrorism applications. Although drones may not be able to pinpoint the exact location
of the landmines and explosives, the identification of the explosive vapor present in the surrounding
air provides significant information and comfort to the personnel and explosives removal equipment
operators. Several optical methods, such as the luminescence quenching of fluorescent polymers, have
been used for explosive detection. In order to utilize sensing technique via unmanned vehicles or drones,
it is very important to study how the air flow affects the luminescence quenching. We investigated the
effects of air flow on the quenching efficiency of Poly(2,5-di(2′-ethylhexyl)-1,4-ethynylene) (PEE) by
TNT molecules. We treated the TNT molecules incorporated into the polymer film as non-radiative
recombination centers, and found that the time derivative of the non-radiative recombination rates
was greater with faster air flows. Our investigations show that relatively high air flow into an
optical sensing part is crucial to achieving fast PL quenching. We also found that a “continuous light
excitation” condition during the exposure of TNT vapor greatly influences the PL quenching.

Keywords: conjugated polymer; explosives detection; computational fluid dynamics; photoluminescence

1. Introduction

Detecting the presence of explosives in the surrounding environment, whether in
the battle field or in the fight against terrorism, is (increasingly) critical to saving lives
and property. The majority of casualties in modern and urban warfare are from the
failed detection of improvised explosive devices (IED) [1–4]. Many present and past
conflict zones are still littered with millions of landmines, continuing to bring havoc to the
local populations, as well as preventing the further advancement of these mostly under-
developed regions and nations [5,6]. Homeland security and border control spend an
enormous amount on explosive material screening and detection [7], bringing various
levels of discomfiture to passing passengers or travelers. The basic science and technologies
used to enable such detection have been known for a few decades, with researchers seeking
effective non-contact detection devices. However, the meaningful application of such
technologies in widely available devices remains a very elusive task.

Explosive materials often contain nitro compounds, such as nitroaromatics (TNT),
nitramines (RDX), and nitrate esters (PETN) [8,9]. Various detection methods of these
compounds, including ion mobility spectrometers, surface enhanced Raman spectroscopy,
and luminescence-based techniques, have been developed [10–14]. Among these methods,
luminescence-based methods utilizing the reduction in photoluminescence (PL) intensity
produced by sensing materials (known as fluorescence quenching) using nitro-containing
explosive vapors have been extensively studied after the pioneering work done by Yang
and Swager in 1998, who used conjugated polymers for the sensing of explosives [15].
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As a typical exciton lifetime is on the order of ~ns, in this paper, we will use the term
photoluminescence (PL) rather than fluorescence.

A Korean company, PNL global, initiated a “drone” project in order to detect land-
mines, as the PL quenching method requires relatively little electric power consumption
and the equipment can be lighter compared to other sensing systems. In the case of Raman-
based sensing, for example, a laser is used as an excitation light source, whereas an LED
(light-emitting diode) can be used for luminescence quenching; this difference is important
for the flight time of drones. Although drone flying may not be able to pinpoint the exact
location of the landmines and explosives, the identification of the explosive vapor present
in the surrounding air provides significant information and comfort to the personnel and ex-
plosives removal equipment operators. In this system, the speed of the drone will naturally
direct the nitro-containing air flow into the sensing compartment.

In 2005, Zhao and Swager compared the luminescence quenching of PPE and PPD
polymers in solutions and in films, and discovered that the response behaviors in the solid
states are governed by different factors than those in solutions [16]. For real-time landmine
sensing, it is necessary to detect nitro-containing vapors using film-type sensors. Despite the
enormous progress made in sensing polymers, it is difficult to find any literature regarding
the effect of air flow in PL quenching, as most gas-phase PL quenching experiments have
been carried out in quartz vessels without air flow [1,2,6,9,15,17–24]. In order to utilize
a sensing technique employing unmanned vehicles or in drones, it is very important to
study how the air flow affects PL quenching. In this paper, we discuss how the air flow
containing TNT vapors affects the PL quenching (PQ) efficiency in polymer films. We also
discuss how the exposure of excitation light influences PQ. Our study provides information
on the theoretical understanding of molecular diffusion from air into a polymer film.

2. Materials and Methods
2.1. Film Fabrication

Poly(2,5-di(2′-ethylhexyl)-1,4-ethynylene) (PEE) powders were purchased from Sigma
Aldrich(St. Louis, MO, USA). It is well known that the solvent is an important parameter
affecting the degree of aggregation and the nature of chain conformation in the final film
formation, which can influence the optical properties of the films [25]. We tested acetone,
ethanol and toluene for use as the solvent in PEE polymer. Among the solvents tested,
PEE polymer was successfully dissolved only in toluene up to 10 g/L concentration. The
solution was sonicated for ~10 min to ensure a uniform mixture. The PEE thin films were
fabricated on 1 cm× 1 cm microscope slide glass. An extensive cleaning protocol, described
below, was followed to prepare glass substrates for film deposition to get rid of all the
particles and organic residues on the surface. The glass substrates were first wiped with
ethanol. The substrates were sonicated for 10 min each in acetone, in isopropyl alcohol and
in ethanol. The substrates were then dried by blowing nitrogen gas.

PEE polymer films were deposited on the cleaned glass substrates by spin-coating
20 µL PEE/toluene solution at 3000 RPM (revolutions per minute) for 60 s. For thicker
(very thin) films, 20 µL of 10 g/L (0.01 g/L) was spin-coated at 2000 RPM (3000 RPM) on
the cleaned glass substrates. After the spin-coating, the films were thermally annealed on a
hot plate for ~1 min at 100 ◦C in order to ensure the complete evaporation of toluene. The
annealed samples were then stored in a tray and covered with aluminum foil. The foil was
used to protect the photo-degradation of the films. We found that the vacuum sealing of
the aluminum-covered tray containing the polymer films prevented possible degradation
under atmospheric conditions.

The interaction between polymers and metal was studied earlier in Refs. [26–28]. We
spin-coated the PEE solution onto various metals and semiconductors, such as Au, Zn, Ti,
TiO2, FTO, ZnO and meshed Ni substrates, in order to observe the effects of substrates.
Among the various substrates that we tried, the quenching efficiency was improved only
on Zn substrates. For the deposition of PEE thin film onto Zn foil, the Zn foil was attached
on a glass slide to prevent bending or folding during spin-coating. The surface morphology
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of PEE polymer on glass was determined using a cold type field emission scanning electron
microscope (FESEM, S-4800, Hitachi High-Technologies, Tokyo, Japan and Merlin Compact,
Carl Zeiss, Jena, Germany). A uniform morphology was observed from the surfaces of films,
and the thickness of the film deposited with 1 g/L solution was estimated to be ~40 nm.

2.2. PL Quenching Set-Up

A custom-built unit was used as shown in Figure 1. The set-up was made up of a
TNT chamber, a sample chamber covered by a transparent sapphire window, a pump,
Teflon, and silicon tubes, as well as valves that were manually opened and closed during
measurements. The flow rate of the pump was controlled with a computer. During PL
quenching measurements, valves 1, 2 and 6 were closed while the rest were opened to
allow the flow of TNT vapor in a closed cycle. To maintain a relatively constant vapor
pressure, a closed cycle was used. After the PL quenching measurement, valves 3, 4 and 5
were closed, and all the other valves were opened so that the air could be pumped into
the sample chamber and residual TNT molecules could flow into a fume hood. A FLAME-
S-VIS-NIR-ES (FLAME miniature spectrometer, Ocean Insight®, Orlando, FL, USA) was
employed to measure the PL spectra. The polymer films were illuminated with an LED
(~400 nm) operating in a pulse mode. Pulse mode was used to decrease the effects of optical
degradation, which may be caused by the CW mode and highpower LED excitations. All
the optics as well as the sample chamber were completely covered with a dark curtain to
block out any external light during measurements.

Figure 1. Experimental set-up. A closed flow cycle system was used to maintain a constant vapor
pressure and to ensure personnel safety.

3. Results and Discussion
3.1. Spectral Analysis

In this section, we discuss the bandgap energies and the PL spectra of PEE polymer.
The electronic delocalization of conjugated polymers was discussed earlier [29–31], and
HOMO LUMO levels were calculated by Density Functional Theory (DFT) simulations
for some conjugated polymers [32,33]. In Figure 2a, we show the HOMO and LUMO
energy levels and bandgap energies of the PEE polymer obtained from DFT simulations
(Orca 4.2.0) using the B3LYP method with a 6-31G basis function. In the PEE polymer
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that we used, the attached side chains were slightly different from the PPE polymers
previously studied [15,19,34–36]. Figure 2b shows the decrease in the theoretically expected
bandgap of the polymer as the number of repeating units increased from 1 to 9, reflecting
the increased delocalization of the electronic wave function. The result fits well with the
formula [37] E(n) = E0 + 2βcos

(
π

n+1
)
, with E0 = 4.54 eV and β = 0.79 eV, where n is the

number of repeating units.
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Figure 2. (a) The HOMO and LUMO energy levels of PEE and TNT. Calculations were done with the
Orca ab-initio calculation package with the DFT-B3LYP/6-31G level of theory. (b) Energy gap as a
function of the number of PEE monomer repeating units. Red and blue dots are the experimentally
observed PL peak energies in solution and in film, respectively. (c) PL spectra of PEE in toluene
solution phase (red), film phase (blue), thin film phase (magenta), and thicker film phase (black). The
molecular structure of PEE is shown in the inset.

Figure 2c shows the PL spectra of the PEE polymer in the solution phase (red) as
well as in the solid film (blue, magenta, black) with an excitation wavelength of 400 nm.
The PL peak is seen at ~432 nm (2.86 eV) in film and at ~420 nm (2.95 eV) in a (toluene)
solution form. The experimentally observed value of the PL peak energy agrees reasonably
well with the bandgap energy predicted from the DFT simulation with nine repeating
units (2.98 eV) (see Figure 2b). Although our calculations did not take into account the
conformation change of polymer, the variation in the conformation may also affect the
electronic wave function and bandgap.

In Figure 3, we show the normalized PL spectra of the film and solution as a function
of photon energy (eV) rather than the wavelength (nm). In Figure 3, we divide the PL
spectra shown in Figure 2c by the CCD spectral sensitivity (Sony ILX511B linear silicon
CCD array), and resolve the modified PL spectra into several Gaussian peaks. The small
peak at ~3.0 eV originated from the reflected/scattered light of the 400 nm excitation beam.
As seen in Figure 3a,b, the energy difference between the main PL peak (labeled 0th) and
the closest phonon side-band peak for both solid and solution (labeled 1st) was about
170 meV, corresponding to a phonon energy of 1400 cm−1 [38–40]. We also performed
micro-Raman measurements of our polymer film. In order to obtain a sufficient Raman
signal from our polymer film, we made a thick film and confirmed a broad Raman peak at
around 1400 cm−1, as shown in Supplementary Figure S1.

In Figure 3c, we show the PL spectra of the films spin-coated with 10 g/L (0.01 g/L)
toluene solution, where the film is thicker at higher concentrations of solution. The red
shift (blue shift) of the 0th PL peak energy can be observed for thicker (thinner) film. The
thickness-dependent PL peak shift and relative peak intensities are very similar to those
in the case of MEH-PPV [41]. The authors mentioned that the conformations of molecular
chains and the stacking of the chains in films varied with film thickness, and were different
from those in solutions. We note here that the relative peak intensities of the side bands
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(first and second) with respect to the main peak (0th) appear to be smaller for thinner films
and larger for thicker films. A detailed discussion of the origin of the variation in the PL
spectra is out of the scope of this paper, but we would like to mention that the quenching
efficiencies of these thinner and thicker films were found to be lower.

Figure 3. PL spectra of PEE with toluene solvent. The spectra were divided by spectrometer sensitivity.
In the spectra, the main PL peak (labeled 0th) corresponds to the bandgap energy and the PL peaks
(labeled lst and 2nd) are attributed to the phonon side-band peaks. Green curves show the peak
deconvolution results with Gaussian functions. (a) Solution phase of PEE in a concentration of 0.1 g/L.
(b) PEE film fabricated with a concentration of 0.1 g/L. (c) PEE films fabricated with concentrations
of 10 g/L (black) and 0.01 g/L (magenta).

3.2. PL Quenching Results

We employed the PEE polymer for use as an explosive sensing material based on
PL quenching. It has been reported that the PL quenching of conjugated polymer by
nitro-based explosives is mainly due to the photo-electron transfer, whereby the photo-
excited electrons (excitons) in the LUMO states transfer to the lower-lying energy levels
of the analyte molecules [5,9,13,15,31]. As seen in Figure 2a, the electron affinity of the
PEE polymer is smaller than that of TNT, allowing the photo-electron to transfer to TNT
molecules. We tested the PL quenching observed with both the solution (TNT/DI wa-
ter) and vapor phases of TNT. We expect the vapor pressure of TNT will be reduced to
about one-third of the equilibrium vapor pressure of TNT, which is known to be 7 ppb at
25 ◦C [13,42,43], considering the ratio of the TNT chamber volume and the total volume of
the closed cycle system, including the tubes and sample chamber.

In Figure 4a, we show the integrated PL intensity as a function of time after the TNT
vapor exposure with a 6 L/min flow rate, corresponding to the air drift velocity of 3 m/s.
Figure 4b shows the PL quenching efficiency PQ = (I0 − I)/I0, where I0 and I are the PL
intensities before and after TNT vapor exposure. The quenching efficiency was ~23%
(~41%) after 1 min and ~44% (~55%) after 3 min for glass (Zn) substrates, respectively.
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Figure 4. (a) Time-dependent integrated PL intensity of PEE films deposited on glass and on Zn sheet
when exposed to TNT vapor at a flow rate of 6 L/min. (b) PL quenching curves of PEE films by TNT
vapor as a function of time. (c) The change in the PL spectra observed with a glass/PEE film, which
was initially placed in a transparent glass cuvette containing DI water. When 1 mM aqueous TNT
solution was added, PL quenching was observed. (d) Time-dependent integrated intensity curve of
PEE film deposited on glass and placed in aqueous solution. The arrow in the figure indicates the
time when the TNT solution was added. A schematic diagram of the experimental set-up is shown in
the inset.

The PQ values obtained with Zn substrates were found to be somewhat better than
those on glass substrates. One possibility is that the improved PQ is due to the surface
roughness. A planar SEM image of the Zn substrates depicting the surface roughness
is shown in Supplementary Figure S2. The gas reaction is supposed to increase with
increasing surface to volume ratio. Yang and Swager [15] utilized three-dimensional
pentiptycene moieties to make polymer films with a porous structure. The lower PQ
values that we obtained were probably due to the planar structure of PEE polymer, which
could be partially overcome by the increased surface to volume ratio in Zn substrates.
However, no improvement was observed with other rough substrates, such as rough
sapphire substrates. This may be simply because the films deposited on rough substrates
often induce aggregation conformation. Since the work function of Zn is 4.3 eV, it is
difficult to assume that electrons are provided by the Zn metal substrates. Due to the
reflection of the excitation light on the metal surface, the PL intensity was 2–3 times
greater compared to the film deposited on glass under identical conditions. Although the
quenching efficiency was better with the film on Zn substrates, in this paper, we mostly
focus on the results derived with glass substrates, since the reproducibility and uniformity
were better on glass substrates.

In Figure 4c, we show the change in the PL spectra with TNT solution after every
10 s. Figure 4d shows the integrated intensity as a function of time. For the solution phase
test, we used a glass cuvette and slide glass block to measure the PL change. The PL from
the polymer film coated on glass was measured while immersed in DI water contained
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in a glass cuvette. The film was excited with 400 nm LED light operating in pulse mode.
After ~3 min of excitation, 0.2 mL of 1 mM TNT/DI water solution was added into the
1.8 mL of DI water, and the quenching of PL intensity was observed. The schematic of the
experimental set-up is shown in the inset of Figure 4d.

3.3. Flow Dependence of PL Quenching

In order to investigate the flow dependence of PQ (PL quenching), the PL intensity
was monitored with controlled air flow rates (Figure 5a). Prior to the measurements, TNT
vapor was initially contained inside of a TNT chamber, and a valve in the TNT chamber
was closed so that only TNT vapor, not TNT powder, could circulate through the sample
chamber (see Figure 1). The air flow was controlled by the pumping speed. For the first
3 min, the air flow was maintained at zero, and the PL intensity was found to be slightly
increased. The increase in PL under light exposure was observed earlier in MEH-PPV
polymers, and was attributed to the planarization of polymer chains by light [44,45]. After
3 min, we turned on the pump to circulate the air containing the TNT vapor inside of the
closed system for 1 min. PL quenching was clearly observed as we turned on the pump.
We then turned off the pump, so that there was no air flow for the next 1 min. The arrows
in the plots represent when the pump was turned on and off.

Figure 5. Time-dependent integrated PL intensity with various flow rates observed with glass/PEE
films. The flow rate was controlled with a pump, as shown in Figure 1. The pump was turned on and
off for a minute for each flow rate. A closed cycle was used while the TNT vapor was already inside
of the sample chamber. Blue shaded parts indicate the pump-on period. The flow rates were changed
(a) from 1 L/min to 6 L/min and (b) from 6 L/min to 1 L/min. The cycle was repeated 3 times and
the inset of (a) shows the reciprocal of the normalized intensity. The inset of (b) shows the PQ (%)
as a function of flow rates for the repeated cycles. The PQ from Zn/PEE film is also included. (c,d)
represent the first derivatives of the reciprocal normalized integrated intensities of (a,b).

Although the TNT vapor remained in the sample chamber, the PL intensity remained
slightly increasing when the pump was turned off. We continued this process with a flow
rate increasing from 1 L/min to 6 L/min (Figure 5a). We note here that we circulated the
TNT vapor for 30 s before we started this measurement, so that the PL intensity was not
affected by the initial unstable change in the TNT vapor pressure in the sample chamber.
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Considering the total volume of the air hoses and sample chamber with respect to the
volume of the TNT chamber, the stabilized vapor pressure in the sample chamber was
expected to be one-third of the equilibrium TNT vapor pressure at 25 ◦C. As seen in the
inset of Figure 5a,b, it is very clear that the quenching efficiency was greater with a faster
air flow.

We then repeated the process with a decreasing flow rate from 6 L/min to 1 L/min
three times, and the PQ during the first minute of TNT containing air flow is shown in the
inset of Figure 5b. Again, the PQ was observed to be larger with a larger air flow, and even
with a decreasing air flow. Same experimental procedures were followed using polymer
films deposited on Zn substrates. The PQ values derived with the Zn substrate are included
in the inset of Figure 5b.

In the inset of Figure 5a, we show the reciprocal intensity of the flow-dependent PL
intensity change. When the TNT molecules are attached on the surface or diffused into the
film, the decrease in PL intensity by the photo-electron transfer or by the energy transfer
can be considered as caused by the increase in the non-radiative recombination rate knr(t).
From the internal quantum efficiency (η) of the polymer film,

η =
Number o f emission photons

Number o f absorption photons

η(t) =
kr

kr + knr(t)

where kr is radiative recombination rate.
Then we obtain

η0

η(t)

(
=

I0

I(t)

)
=

kr + knr(t)
kr + knr0

d
dt

η0

η(t)

(
=

d
dt

I0

I(t)

)
=

1
kr + knr0

d
dt

knr(t)

Here, knr0 is the initial non-radiative recombination rate, and η0 is the internal quantum
efficiency without TNT molecules. We assume that kr is independent of time. Figure 5c,d
show the first derivatives of the reciprocal PL intensity ( I0

I(t) ) obtained from the raw data

in Figure 5a,b, respectively. The term d
dt knr(t) represents how rapidly the non-radiative

recombination rate increases as TNT molecules are attached on the surface or diffused into
the film.

As seen in Figure 6a, the d
dt

I0
I(t) values become larger with increasing flow rates. Since

TNT molecules act as non-radiative recombination centers, the increase in d
dt knr(t) with air

flow can be attributed to the increased mass transport of TNT molecules onto the polymer
film under a fast flow rate.

In order to understand mass transport as a function of air flow, we performed CFD
(computational fluid dynamics) simulation. For the CFD simulation, we assumed that the
TNT molecules would react on the sample’s surface with some specific reaction constant. In
Figure 6b, we show the CFD simulation result of the surface reaction rate as a function of the
air flow. Detailed simulation parameters and conditions are listed in Table 1. As seen, the
surface reaction rate may strongly depend on air flow, but the surface reaction rate predicted
by the CFD simulation tends to become saturated with flow. The CFD model does not
account for the chemical binding interaction or electrostatic force between the molecules and
the polymer’s surface. In the PL quenching process, the importance of the binding strength
between the sensing polymer and analytes has already been suggested [13,15,46,47]. As
the CFD simulation predicts that the diffusion of TNT molecules is affected by the flow
rate, we suspect that some other factors, such as inter-molecular forces and photochemical
interactions, may also affect the flow rate dependence of PL quenching.
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Figure 6. (a) The peak values of the first derivatives of the reciprocal normalized integrated intensities
obtained from Figure 5c,d as a function of flow rate. The first derivative represents how rapidly the
non-radiative recombination rate increases as TNT molecules are attached on the surface or diffused
into the film. The effect of flow rate on the first derivative is clearly observed. (b) Effect of flow
velocity on surface reaction rate. The black points are those obtained from CFD simulation. A fitting
curve is shown in red. The fitting formula is included.

Table 1. Simulation parameters. A simulation result of the TNT mole fraction is included.

Parameter Value Unit

Mesh size 0.1 × 0.1 mm2

Polymer surface concentration 3.20 × 10−8 kmol/m2

TNT diffusion coefficient 5.76 × 10−6 m2/s
O2 diffusion coefficient 1.76 × 10−5 m2/s
N2 diffusion coefficient 2.00 × 10−5 m2/s

TNT mole fraction 0.000000263
O2 mole fraction 0.21
N2 mole fraction 0.789999737

Chemical reaction rate constant
pre-exponential factor 106
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3.4. Light Illumination Effect

In an effort to investigate possible factors that affect the quenching efficiency, we
studied the influence of the excitation light. During the measurements shown in Figure 7a,
we shined the LED excitation light for only three seconds every 1 min, rather than using
continuous light exposure. As expected, the PL intensity was zero when there was no light
exposure. After 3 min, the pump was turned on and TNT vapor flowed at 1 L/min for one
minute, and the PL intensity was measured only during the short exposure time. Then,
the pump was turned off for the next minute and the PL intensity was recorded again.
The experimental process was identical to that used for Figure 5a,b, except that the light
exposure was only three seconds every minute. In Figure 7b, we compare the quenching
efficiencies obtained from the raw data shown in Figure 5a. As seen, the PQ was reduced
to about one-fifth, compared to the case of continuous light exposure. To our knowledge,
there has been no report on the effect of “continuous light exposure” on PL quenching
efficiency. One possible cause may be the interaction between excitons and phonons; the
binding of TNT molecules with a polymer film gets easier as the atoms constituting the
polymers vibrate. Another possibility is that the planarization of polymer chains by light
helps molecule transport. In any case, LED light is necessary not only for the excitation of
the PL measurements, but also for the interaction of polymers and TNT molecules.

Figure 7. (a) Time-dependent integrated PL intensity with various flow rates observed with glass/PEE
films. LED illumination was only for 3 s. Blue shaded parts indicate the pump-on period and the
arrows indicate the flow rate change. (b) PQ values calculated from the raw data obtained from
(a). The PQ values were compared with the raw data from Figure 5a and the effect of continuous
LED illumination was observed. (c) Integrated intensity of glass/PEE film with various LED powers.
LED currents are indicated. Blue shaded parts indicate the pump-on period with 6 L/min flow rate.
(d) The PQ values were obtained from (c). Modified PQ (1 − I3/(2I2 − I1)) calculated based on the
assumption that the intensity increases linearly with time.

We investigated the excitation power dependence and have shown the results in
Figure 7c. As seen in Figure 7d, the PQ values (blue) appeared somewhat decreased when
increasing the excitation power up to the LED power of 0.4 mW, above which the PQ was
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almost independent of the LED power. As in Figure 5a, the air flow was zero for one
minute, and then the pump was turned on so that the air flow (containing TNT vapor) was
6 L/min for the next one minute. We note that the PQ values in Figure 7d were obtained
without taking into account the increase in PL due to the LED excitation. Considering the
increase in PL intensity with the exposure of the light, we used I0 = I2 + (I2 − I1) rather than
I0 = I2, where I1 was the recorded PL intensity when the light was turned on and I2 was the
PL intensity just before TNT vapor exposure. Here we assumed that the PL intensity would
linearly increase during the light exposure. The quenching efficiency was thus calculated
using the relation (I0 − I3 = (1 − I3/(2I2 − I1)), where I3 is the PL intensity after quenching.
We have included the calculated “modified PQ” values in Figure 7d. Above 0.4 mW, the
PQ was found to be almost independent of the LED power.

In addition to luminescence quenching, the change in surface morphologies was also
investigated. Figure 8 shows the planar SEM images of the as-deposited polymer films
and those of the films after exposure to TNT molecules. In Figure 8c, it appears that TNT
exposure led to the formation of localized swelling on the surfaces of the films.

Figure 8. SEM images of polymer films. (a) Fresh PEE film morphology deposited with 10 g/L
concentration. (b) Fresh film with 0.1 g/L concentration. (c) Film with 0.1 g/L concentration. (d–f)
SEM images of the used polymer films obtained from PNL global company. In order to observe the
morphologies more clearly, the samples were slightly tilted for SEM measurements.

4. Conclusions

We investigated the air flow dependence of quenching efficiency using TNT molecules
for future drone applications. In order to maintain a relatively constant vapor pressure of
TNT molecules, the vapors were circulated in a closed cycle. CFD (computational fluid
dynamics) simulation showed that the mass transport of TNT molecules can be enhanced
with air flow under sufficiently high reaction conditions. The photo-electron transfer
process from the polymer to the TNT molecules probably involves an electro-static force,
which can be assisted by surface friction. This may imply that turbulence flow helps the PL
quenching process, while an ideal laminar flow was assumed in the CFD simulation. It was
found that PL quenching was somewhat increased with the polymer film deposited on the
Zn sheet with a rough surface. We also found that “continuous light excitation” during the
exposure of TNT vapor greatly influences PL quenching.

We treated the TNT molecules attached on the surface or diffused into the film as non-
radiative recombination centers, similar to carrier trapping impurities in semiconductors,
and the PL quenching was associated with the increase in non-radiative recombination
rate. From the time-dependence of the reciprocal PL intensity, we found that d

dt knr(t) was
greater with faster air flows. For drone applications, a flow-guiding device is used to
supply sufficient air flow into an optical sensing part, as well as for completely blocking
any external light [48]. Our study shows the influence of the air flow on PL quenching
efficiency, which can be very useful for general gas sensing applications using polymers.
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Supplementary Materials: The following supporting information can be downloaded at https://
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