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Abstract: In automobiles, lock parts are matched with inserts, and this is a crucial quality standard
for the dimensional accuracy of the molding. This study employed moldflow analysis to explore the
influence of various injection molding process parameters on the warpage deformation. Deformation
of the plastic part is caused by the nonuniform product temperature distribution in the manufacturing
process. Furthermore, improper parameter design leads to substantial warpage and deformation.
The Taguchi robust design method and gray correlation analysis were used to optimize the process
parameters. Multiobjective quality analysis was performed for achieving a uniform temperature
distribution and reducing the warpage deformation to obtain the optimal injection molding process
parameters. Subsequently, three water cooling system designs—original cooling, U-shaped cooling,
and conformal cooling—were tested to modify the temperature distribution and reduce the warpage.
Taguchi gray correlation analysis revealed that the main influencing parameter was the mold temper-
ature followed by the holding pressure. Moreover, the results indicated that the conformal cooling
system improved the average temperature distribution.

Keywords: injection molding; Taguchi method; gray relational analysis; warpage; temperature
distribution; conformal cooling

1. Introduction

With developments in the plastics industry, injection molding has become the most
widely used technique for molding plastic, with most plastic products manufactured using
this approach. This technique affords excellent dimensional accuracy, stability, and surface
accuracy. The main factor influencing the quality of injection-molded products is the
selection of the process parameters. The product quality varies with different process
settings and conditions. Therefore, the selection and setting of suitable process parameters
is crucial in injection molding. The process parameters for mold production are typically
established through trial-and-error or heuristic rules. This approach hampers quality
improvement. Therefore, in this study, we adopted a systematic modeling approach to
perform the single- and multiobjective quality optimization of the process parameters used
in injection molding.

Technological developments have resulted in the introduction of computer-aided
design and computer-aided engineering (CAE) simulation methods to assist developers in
analyzing and predicting problems relating to injection molding and production. These
technologies help to reduce the number of trials required and to maximize product quality.
In this study, we performed a moldflow analysis (Moldex3D) using CAE. In CAE, the finite
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element method (FEM) is generally used to simulate the various material conditions in
the mold cavity during plastic injection molding. The simulation results can serve as a
reference for establishing the injection molding parameters and model design, thereby
stimulating product development and reducing production and mold design costs [1].
Currently, plastic injection molding is widely used in the manufacturing of automotive
parts and components such as bumpers, lights, dashboards, and connectors. In particular,
auto lock parts are structurally complex and require high fitting accuracy. Finished lock
parts often exhibit warpage deformation, volume shrinkage, and suture flaws [2]. Therefore,
the selection and setting of the process parameters are vital.

Rosaa et al. [3] advocated the wide use of experimental design for optimizing the
molding parameters and thereby improving product quality. The Taguchi method can
be effectively used to reduce the number of tests required, thereby enhancing the test
efficiency. Gu et al. [4] applied the Taguchi robust design method to analyze the injection
molding process of recycled plastic (specifically, polypropylene). Their findings validated
that optimizing the process parameters effectively improved the mechanical performance.
Wang et al. [5] applied the Taguchi robust design method to examine the effects of plastic
valves on the optimization of the process parameter design. The results of an FEM CAE
analysis indicated that the mold temperature was the primary factor influencing mold-
ing. Marinset al. [6] applied the Taguchi method and conducted an analysis of variance
(ANOVA) to examine the flaws of injection molding and to evaluate the effects of various
injection molding parameters on warpage and shrinkage. They found that the holding
time and holding pressure were the key factors influencing warpage and bending. Chen
and Huang [7] integrated the analytic hierarchy process and Taguchi method to inves-
tigate injection molding warpage. They used the Taguchi design data to analyze four
factors—injection pressure, holding pressure, holding time, and mold temperature—and
they determined the optimal parameter combination to minimize warpage.

Chang et al. [8] adopted gray relational analysis combined with a fuzzy method to
optimize the process parameters for manufacturing cellphone cases. The results of a finite
element analysis indicated that the mold temperature and holding pressure were the main
factors influencing the volume shrinkage and temperature distribution. Lin and Chen [9]
applied the Taguchi method and gray relational analysis to analyze the multiobjective
optimization of injection-molded plastic lenses. Their simulation results confirmed that the
joint optimization process yielded an effective improvement in the quality of the injection-
molded lens. Sreedharan et al. [10] used gray relational analysis to achieve multiobjective
optimization for multistage sequential plastic injection molding. Their experimental results
indicated that the optimal settings produced the expected responses.

Ahn [11] examined different processes for producing conformal cooling channel molds
and analyzed the thermal transfer of various conformal cooling channels. Juan et al. [12]
compared the cooling channels of thin-walled products produced automatically and manu-
ally using software. Cooling channels that were manually designed based on the product
shape exhibited significantly less warpage. Wang et al. [13] examined the incorporation of a
cooling channel design within a complex automotive part. Subsequently, they analyzed and
tested the modified cooling channel design. They found that a uniform mold temperature
distribution was achieved and that the surface accuracy of the plastic part was enhanced.

In this study, we examined an auto lock part production line. Warpage deformation
was a major problem in the production process, causing misalignment and inaccurate
assembly. We combined CAE software with a smart modeling process to address this
problem. First, we conducted a CAE moldflow analysis and adopted the Taguchi robust
design method to identify a suitable parameter combination to optimize individual single-
quality factors and to examine the warpage deformation volume and average temperature.
Subsequently, we examined the Taguchi experiment data and conducted a gray relational
analysis to identify the optimal parameter combination for the multiobjective quality
process. Next, we compared the warpage deformation volume and the average temperature
of the modified process with those of the original process. Finally, we incorporated the
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optimal parameter combinations for the multiobjective quality process into several cooling
channel system designs—original cooling, square cooling and conformal cooling—for
comparison and analysis.

2. Experimental
2.1. Construction of Auto Lock Spare Parts

Figure 1 displays the shape of the auto lock parts examined in this study. The original
design had a four-cavity configuration. The diameter and height of Part A were 58 mm
and 39.20 mm, respectively, and those of Part B were 54.95 and 18.11 mm, respectively. The
mold material was NAK80. The injection molding process was simulated using polyamide
(PA66). This material exhibits excellent tensile strength, impact resistance, self-lubrication,
and abrasion resistance. Owing to its excellent mechanical and thermal resistance, favorable
barrier properties, and recyclability [14], PA66 is widely used in automotive parts and
components. Table 1 lists the basic characteristics of PA66. Moldex3D was adopted as
the CAE software in this study, and the Moldex3D/Solid module and Moldex3D-Mesh
module were adopted as the primary and secondary analysis tools, respectively. The mesh
comprised 750,000 cells and approximately 700,000 nodes (Figure 2). The original cooling
(square) system was used in the two experimental stages of Taguchi robust design process
and gray relational analysis.

Table 1. PA66 Material Characteristics.

Mechanical Properties PA66

Density 1.14 (g/cc)
Poisson’s ratio 0.3

Modulus E 2 × 1010 (dyne/cm2)
CLTE 7.5 × 10−5 (1/K)

Fiber Weight Percentage 33 (%)
Percentage 275–305 ◦C

Melt Temperature 1.14 (g/cc)
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Figure 2. Mesh Figure of a Car Lock Part.

2.2. Simulation and Analysis of Original Process Parameters and Comparison of Plastic Products

To clarify the status of auto lock parts, we adopted the process parameters provided
by the manufacturer as the original ones (Table 2). These were then imported into the
CAE software for simulation and analysis. To ensure that the simulations conformed to
real-world conditions, we measured the warpage of the product using the Tesa Micro-
Hite 3D 4.5.4 coordinate measuring machine with a measurement accuracy of 0.001 mm.
Subsequently, we cross-validated the CAE simulation results. Twelve points on the lock
part were measured (Figure 3). We then compared the Z-axis warpage value of the actual
measurements and that of the simulation results (Table 3). The results indicated that the
simulation results were highly similar to the actual measurements. The total average
comparison error was within 1.16%. The trend chart illustrated in Figure 4 validated that
the simulation results were consistent with actual production conditions.

Table 2. Original Process Parameters.

Factors Level

A. Injection Time (s) 1
B. Material Temp. (◦C) 245

C. Mold Temp.(◦C) 65
D. Injection Press. (MPa) 120
E. Packing Press. (MPa) 130

Table 3. Comparison of Actual and Simulation Measurements of Z-axis Warpage Deformation.

Point Actual Measurement (mm) Simulation (mm) Error (%)

1 0.50 0.54 1.08
2 −0.52 −0.62 1.19
3 0.39 0.44 1.13
4 0.59 0.48 0.81
5 −0.24 −0.26 1.08
6 0.55 0.42 0.76
7 0.48 0.50 1.04
8 −0.44 −0.61 1.34
9 0.23 0.49 2.13
10 0.46 0.47 1.02
11 −0.19 −0.26 1.37
12 0.43 0.42 0.98

AVG 1.16



Polymers 2022, 14, 644 5 of 22Polymers 2022, 14, x FOR PEER REVIEW 5 of 22 
 

 

 
Figure 3. Schematic of Locations of Measurement Points for Car Lock Part. 

 
Figure 4. Comparison of Actual and Simulated Measurement Points. 

2.3. Taguchi Robust Design Process and Gray Relational Analysis 
We divided the experimental framework into three parts. In the first part, the 

Taguchi robust design method was used to examine the warpage and average tempera-
ture of the auto lock part and to derive a single-objective optimization design. In the 
second part, gray relational analysis was conducted. In the third part, the performance of 
the multicharacteristic optimal parameter combinations in various cooling systems and 
the effects of these combinations on the warpage and average temperature were com-
pared. Figure 5 presents the overall experimental procedure. 

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10 11 12

W
ar

pa
ge

e 
V

al
ue

 (m
m

)

Measuring Position (Point)

Actual measurement (mm) Simulation (mm)

1.8%

1.19%

1.13%

0.81%

1.08%

0.76%
1.04%

1.39%

2.13% 1.02%

1.37%

0.98%

Figure 3. Schematic of Locations of Measurement Points for Car Lock Part.

Polymers 2022, 14, x FOR PEER REVIEW 5 of 22 
 

 

 
Figure 3. Schematic of Locations of Measurement Points for Car Lock Part. 

 
Figure 4. Comparison of Actual and Simulated Measurement Points. 

2.3. Taguchi Robust Design Process and Gray Relational Analysis 
We divided the experimental framework into three parts. In the first part, the 

Taguchi robust design method was used to examine the warpage and average tempera-
ture of the auto lock part and to derive a single-objective optimization design. In the 
second part, gray relational analysis was conducted. In the third part, the performance of 
the multicharacteristic optimal parameter combinations in various cooling systems and 
the effects of these combinations on the warpage and average temperature were com-
pared. Figure 5 presents the overall experimental procedure. 

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10 11 12

W
ar

pa
ge

e 
V

al
ue

 (m
m

)

Measuring Position (Point)

Actual measurement (mm) Simulation (mm)

1.8%

1.19%

1.13%

0.81%

1.08%

0.76%
1.04%

1.39%

2.13% 1.02%

1.37%

0.98%

Figure 4. Comparison of Actual and Simulated Measurement Points.

2.3. Taguchi Robust Design Process and Gray Relational Analysis

We divided the experimental framework into three parts. In the first part, the Taguchi
robust design method was used to examine the warpage and average temperature of
the auto lock part and to derive a single-objective optimization design. In the second
part, gray relational analysis was conducted. In the third part, the performance of the
multicharacteristic optimal parameter combinations in various cooling systems and the
effects of these combinations on the warpage and average temperature were compared.
Figure 5 presents the overall experimental procedure.

2.4. Taguchi Robust Design Process

We selected an L16(45) orthogonal array for testing. We performed moldflow simu-
lations (Moldex3D) based on the parameter combinations on the orthogonal array and
determined the optimal parameters for the injection molding of the auto lock parts on the
basis of the signal-to noise (S/N) ratios. The S/N ratios were also used as the ANOVA
data to validate the experiment and to determine the factor contribution. Table 4 lists the
parameters and levels for the Taguchi robust design method. The warpage and average
temperature of the auto lock parts were adopted as the optimal single-objective parameters.
The total warpage and average temperature of the auto lock parts were adopted as the
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optimal performance characteristics. A low performance characteristic value is preferred.
Therefore, the quality setting was defined as a static smaller-the-better characteristic.
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Taguchi methods are the most widely applied robust design methods in the planning
of process parameters [15,16]. The optimization of the injection molded parameters was
considered a static problem with smaller-the-better S/N ratios, and it is expressed as:

S/N = −10 log10

[
1
n

n

∑
i=0

y2
i

]
(1)

where n is the number of instances observed in each experimental combination, and yi is
the ith datum in the experimental combination.
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Table 4. Control Factors and Levels.

Control Factors
Level

1 2 3 4

A. Injection Time (s) 0.6 0.8 1.0 1.2
B. Material Temp. (◦C) 245 255 265 275
C. Mold Temp.(◦C) 65 75 85 95
D. Injection Press. (MPa) 120 125 130 135
E. Packing Press. (MPa) 130 135 140 145

2.5. Taguchi Gray Relational Analysis Method

In real-world manufacturing, single-objective quality characteristics cannot satisfy pro-
cess demands; only multiobjective quality characteristics can. Therefore, the optimization
analysis of multiobjective quality parameters was required to achieve the objectives of this
study. The Taguchi gray relational analysis method is a multiobjective optimization analysis
method. It can accurately improve the quality of multiobjective characteristics [17–19]. The
S/N ratios obtained using the Taguchi method must be normalized. Therefore, we selected
a suitable gray relation molding equation to determine the gray relation coefficients. We
also calculated the average values to determine the degree of gray relation among the
coefficients. The S/N ratio of each single-quality characteristic was normalized using gray
correlation generation, as expressed in Equation (2). The normalized values were between
0 and 1. The normalized data were then incorporated into a gray relational analysis to
calculate the gray relational coefficient, as expressed in Equation (3). The mean value of a
gray relational coefficient represents a gray relation. Gray relations were calculated using
Equation (4) and sorted in descending order.

x∗i (k) =
x(0)i (k)− minall i

[
x(0)i (k)

]
maxall i

[
x(0)i (k)

]
− minall i

[
x(0)i (k)

] , (2)

where x∗i (k) represents the gray relational values, and maxall i

[
x(0)i (k)

]
and minall i

[
x(0)i (k)

]
respectively represent the largest and smallest values in the x∗i (k) sequence.

γ
(
xi(k), xj(k)

)
=

∆min + ζ∆max

∆0i(k) + ζ∆max
, (3)

where γ
(

xi(k), xj(k)
)

represents the gray relational coefficients, ∆0i(k) represents the se-
quence differences between corresponding positions in sequence x0(k) and subsequence
xi(k), and ζ represents the identification coefficient (generally, 0.5).

R
(
xi, xj

)
=

1
n

n

∑
k=1

r(xi(k), xj(k)). (4)

2.6. Comparison and Analysis of Different Cooling Channel Systems

A nonuniform mold temperature distribution causes thermal stress, leading to warpage
deformation. Ineffective cooling channel designs not only increase the molding time but
also cause uneven cooling, resulting in plastic warpage deformation. In this study, we
examined three cooling configurations: original cooling, U-shaped cooling, and conformal
cooling, as illustrated in Figure 6. To effectively remove heat, the U-shaped cooling channel
design features three cooling channels that are placed above and below the product. In the
conformal cooling channel design, cooling channels are placed according to the shape of
the auto lock parts, which effectively increases the cooling efficiency [20–24]. The channels
surrounded the outer boundaries of the lock parts and were concentrated in regions with
slow heat dissipation to enhance cooling efficiency. Table 5 presents a basic comparison of
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the three cooling channel systems. We observed whether conformal cooling improved the
auto lock parts and the effects of conformal cooling on the temperature distribution and
warpage of the parts.
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Table 5. Comparison of Different Water Cooling Systems.

Type Number of Water
Inlets

Number of Water
Outlet

Reynolds
Number Cooling Liquid Inlet Water

Temperature

Original Cooling 2 2 6570 Oil 65 ◦C
U-shaped Cooling 6 6 6570 Oil 65 ◦C
Conformal Cooling 11 11 6570 Oil 65 ◦C

3. Experimental Results

The experimental results are presented in four parts: optimization of process parame-
ters for warpage deformation volume, optimization of process parameters for temperature
distribution, optimal multiobjective quality parameter combination, and comparison and
analysis of different cooling channel system designs.

3.1. Optimal Process Parameters for Total Warpage Deformation Volume

We tested the 16 process parameter combinations in the orthogonal array and ex-
amined the warpage deformation volume results to obtain the S/N ratios (Table 6). A
total warpage response table for the process parameters at different levels is presented in
Table 7. The test results indicated that the optimal process parameter combination was
A1B2C2D1E4, where A1 is injection time (0.6 s), B2 is material temperature (255 ◦C), C2 is
mold temperature (75 ◦C), D1 is injection pressure (120 MPa), and E4 is holding pressure
(145 MPa). The optimal total warpage value was 0.61 mm, representing a 0.29-mm in-
crease compared with the original process (Table 8). The total warpage deformation results
simulated using the original and optimal process parameters are indicated in Figure 7a,b,
respectively. Factor contribution was determined on the basis of the ANOVA results in
Table 9. In descending order of contribution, the factors were holding pressure (51.96%),
material temperature (22.68%), injection time (14.92%), and mold temperature (7.31%).
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Table 6. S/N Ratios of Total Warpage.

No. Warpage (mm) S/N

1 0.69 3.27
2 0.65 3.80
3 0.64 3.82
4 0.65 3.72
5 0.63 4.00
6 0.64 3.83
7 0.67 3.48
8 0.73 2.79
9 0.71 2.92
10 0.71 3.01
11 0.63 3.95
12 0.69 3.25
13 0.74 2.70
14 0.62 4.08
15 0.70 3.09
16 0.71 3.02

Table 7. Total Warpage Deformation Response.

Factor A B C D E

Level 1 3.65 3.22 3.52 3.51 3.04
Level 2 3.53 3.68 3.54 3.31 3.30
Level 3 3.28 3.59 3.40 3.46 3.40
Level 4 3.22 3.20 3.23 3.39 3.94
Effect 0.43 0.49 0.31 0.21 0.90
Rank 3 2 4 5 1

Optimal parameters A1 B2 C2 D1 E4

Table 8. Confirmation of Total Warpage Deformation.

No. Factor Warpage (mm)

Original Process Parameters 0.90
Orthogonal Array Worst (No.13) A4B1C4D3E2 0.74
Orthogonal Array Best (No.14) A4B2C3D4E1 0.62

Optimization A1B2C2D1E4 0.61

Table 9. Variance Analysis of Total Warpage Deformation.

Factor DOF Seq SS MS Contribution

A 3 0.49 0.16 14.92(%)
B 3 0.75 0.25 22.68(%)
C 3 0.24 0.08 7.31(%)
D Pooled
E 3 1.17 0.57 51.96(%)

Error 3 0.10 0.03 3.13(%)
Total 15 3.29 100(%)
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3.2. Optimal Process Parameters for Average Temperature Difference

We tested the 16 process parameter combinations in the orthogonal array and ex-
amined the average temperature difference results to obtain the S/N ratios (Table 10).
Table 11 presents the average temperature difference response for the process parameters at
different levels. The test results indicated that the optimal process parameter combination
was A1B1C1D2E1, where A1 is injection time (0.6 s), B1 is material temperature (250 ◦C),
C1 is mold temperature (65 ◦C), D2 is injection pressure (125 MPa), and E1 is holding
pressure (130 MPa). Therefore, this parameter combination was the optimal parameter
for the average temperature difference in injection molding, and it reduced the average
temperature difference by 6.84 ◦C compared with the original process parameters (Table 12).
The postfill average temperature difference results simulated using the original and optimal
process parameters are displayed in Figure 8a,b, respectively. The factor contribution was
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determined according to the ANOVA results in Table 13. In descending order of contri-
bution, the factors were mold temperature (64.70%), injection pressure (14.75%), material
temperature (8.34%), and injection time (6.23%).

Table 10. S/N Ratios of Average Temperature Difference.

No. Average Temperature Difference (◦C) S/N

1 9.19 −19.27
2 11.28 −21.05
3 14.36 −23.14
4 16.74 −24.48
5 11.73 −21.39
6 14.12 −22.99
7 21.35 −26.59
8 12.33 −21.82
9 15.41 −23.75
10 16.66 −24.43
11 10.27 −20.23
12 11.42 −21.15
13 14.04 −22.95
14 14.00 −22.92
15 13.29 −22.47
16 11.52 −21.23

Table 11. Average Temperature Difference Response.

Factor A B C D E

Level 1 −21.98 −21.84 −20.93 −22.48 −22.00
Level 2 −23.2 −22.85 −21.51 −21.51 −23.15
Level 3 −22.39 −23.11 −22.91 −22.55 −22.56
Level 4 −22.39 −23.17 −24.61 −23.42 −22.25
Effect 1.21 1.27 3.68 1.91 1.16
Rank 4 3 1 2 5

Optimal parameters A1 B1 C1 D2 E1

Table 12. Average Temperature Difference Validation Test.

No. Factor Average Temperature Difference (◦C)

Original process parameters 14.43
Orthogonal Array Worst (No.7) A2B3C4D2E1 21.35
Orthogonal Array Best (No.1) A1B1C1D1E1 9.19

Optimization A1B1C1D2E1 7.59

Table 13. Variance Analysis of Average Temperature Difference.

Factor DOF Seq SS MS Contribution

A 3 3.10 1.03 6.23(%)
B 3 4.15 1.38 8.34(%)
C 3 32.21 10.74 64.70(%)
D 3 7.35 2.45 14.75(%)
E Pooled

Error 3 2.98 0.99 5.98(%)
Total 15 49.79 100(%)
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3.3. Multiobjective Optimization Parameters

To identify the optimal parameters for multiobjective quality characteristics that meet
industrial requirements, we combined the gray relational analysis method with the Taguchi
robust design method. First, the S/N ratios for the 16 parameter combinations for warpage
and average temperature difference in the Taguchi orthogonal array were incorporated
into Equation (2) to calculate their gray relations and normalize the data. The S/N ratios
were converted into a value between 0 and 1 (Table 14). The normalized S/N ratios for
the quality characteristics were then incorporated into Equation (3) to calculate the gray
relational coefficients at an identification coefficient of 0.5. Finally, the coefficients were
incorporated into Equation (4) to determine the gray relation degrees. The degrees were
ordered in descending order (Table 15).

The gray relation degrees were consolidated into a response table using various factor
levels (Table 16), indicating the changes in the different factors at specific levels. The factor
response table and diagram reveal that the optimal process parameter combination for ana-
lyzing the multiobjective quality characteristics in the injection molding of auto lock parts
was A1B2C1D1E4, where A1 is injection time (0.6 s), B2 is material temperature (260 ◦C), C1
is mold temperature (65 ◦C), D1 is injection pressure (120 MPa), and E4 is holding pressure
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(140 MPa). Because this combination differed from all the other ones in the orthogonal array,
it had to be validated and compared with the original process parameter combinations and
the single-objective (warpage and average temperature difference) parameter combinations
(Table 17). The multiobjective optimization warpage value was 0.62 mm. The warpage
results simulated using the original process parameter are presented in Figure 7a, and those
simulated using the multiobjective optimization are shown in Figure 9a. The average tem-
perature difference obtained using the multiobjective optimization was 10.16 ◦C. Compared
with the single-objective optimization (warpage 0.61 mm and average temperature differ-
ence 7.59 ◦C, the multiobjective optimization must consider the two-objective optimization
characteristics and thus lose some quality characteristics. We compared the results with
the two single-objective optimal quality characteristics. We noted a 1.6% loss in warpage
quality and a 5.2% loss in average temperature difference quality. The average temperature
difference obtained by optimization using the original process parameters is shown in
Figure 8a, and that obtained by the multiobjective optimization is shown in Figure 9b. The
test results indicated that the parameters obtained using the multiobjective optimization
substantially improved the warpage and average temperature difference. However, the
multiobjective optimal parameters covered multiple quality characteristics.
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Figure 10 presents a comparison of the temperature interval values. The figure shows
that the main postfill average temperature range (220–240 ◦C) of the original process
accounted for 57.15%, followed by the 260–240 ◦C range (16.32%), and the 200–220 ◦C
range (15.67%). A significant difference was observed between the main temperature
interval (220–240 ◦C) and the other two intervals. For the optimized process using the
multiobjective optimization parameters, the main postfill average temperature range was
260–240 ◦C, which accounted for 53.21%, followed by 240–220 ◦C (32.07%). These two
intervals collectively accounted for 85.28%. The temperature distribution variance of the
optimized process was smaller than that of the other processes, and it reduced the likelihood
of uneven cooling rates caused by large temperature fluctuations and minimized obvious
injection flaws at the bonding sites due to warpage deformation.

Table 14. Variance Analysis of Average Temperature Difference.

No. Warpage
S/N Ratio

Average Temperature
Difference
S/N Ratio

1 1.00 0.70
2 0.86 0.87
3 0.73 0.88
4 0.67 0.84
5 0.83 0.96
6 0.74 0.89
7 0.59 0.77
8 0.80 0.61
9 0.70 0.63
10 0.68 0.65
11 0.91 0.93
12 0.85 0.71
13 0.74 0.59
14 0.75 1.00
15 0.77 0.67
16 0.84 0.66

Table 15. Gray Correlation Degree and Rank.

NO. Gray Relation Rank

1 0.85 5
2 0.86 4
3 0.81 7
4 0.76 9
5 0.90 2
6 0.82 6
7 0.68 13
8 0.71 12
9 0.67 14
10 0.66 16
11 0.93 1
12 0.78 8
13 0.67 15
14 0.87 3
15 0.72 11
16 0.75 10
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Table 16. Multiobjective Response Form.

Factor A B C D E

Level 1 0.82 0.77 0.86 0.80 0.73
Level 2 0.77 0.80 0.81 0.79 0.74
Level 3 0.76 0.77 0.76 0.78 0.77
Level 4 0.75 0.75 0.69 0.74 0.86
Effect 0.07 0.05 0.17 0.06 0.12
Rank 3 5 1 4 2

Optimal parameters A1 B2 C1 D1 E4

Table 17. Multiobjective Optimization Comparison.

No. Factor Warpage
(mm)

Average Temperature
Difference (◦C)

Original Process
Parameters 0.90 14.43

Warpage Optimization A1B2C2D1E4 0.61
Average Temperature

Difference Optimization A1B1C1D2E1 7.59

Multi-Objective
Optimization A1B2C1D1E4 0.62 10.16
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3.4. Analysis and Comparison of Different Cooling Channel System Designs

In this section, we examine the effects of the process parameters obtained using mul-
tiobjective optimization (discussed in the previous section) on different cooling channel
systems. We also compare the CAE analysis results of different cooling channel designs.
The average temperature distribution differences with the original cooling, U-shaped cool-
ing, and conformal cooling were 10.16 ◦C, 7.02 ◦C, and 5.78 ◦C, respectively. Figure 11
presents the postfill temperature distribution and their interval ranges for the three designs.
Figure 12 displays the simulation results. The cooling channels in the conformal cooling
design followed the shape of the auto lock parts. Therefore, the temperature differences
were relatively low. Moreover, the temperature interval distribution of the conformal
cooling design was the most favorable of the three designs. The postfill average tempera-
ture intervals of 240–260 ◦C and 220–240 ◦C accounted for 21.14%, 22.41%, and 3.79% in
the original, U-shaped, and conformal cooling channel designs, respectively (Figure 11).
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These results confirmed that the conformal cooling channel design achieved more uni-
form temperatures and a smaller temperature interval distribution than the other designs.
Therefore, this design reduces the likelihood of uneven cooling rates caused by fluctuating
temperatures and warpage deformation caused by a nonuniform temperature distribution.
We subsequently compared the effects of the three cooling channel designs on the warpage
deformation. Figure 13 displays the three-axis displacement and overall displacement of
the three cooling channel designs.

Table 18 lists the effects of the cooling channel designs on warpage deformation
volume. The results indicated that the total warpage deformation of the conformal, U-
shaped, and original cooling designs was 0.54 mm, 0.57 mm, and 0.61 mm, respectively,
suggesting that the conformal cooling design coupled with parameters obtained using
multiobjective optimization effectively reduced the warpage deformation volume.
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Table 18. Comparison of Warpage Deformation of Different Cooling Water Systems.

Warpage Original Cooling U-Shaped Cooling Conformal Cooling

Total Warpage (mm) 0.61 0.57 0.54
X-Axis Warpage (mm) −0.33~0.33 −0.29~0.29 −0.23~0.24
Y-Axis Warpage (mm) −0.34~0.34 −0.41~0.42 −0.29~0.29
Z-Axis Warpage (mm) −0.45~0.58 −0.43~0.54 −0.38~0.52
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4. Conclusions

In this study, we combined the Taguchi robust design method and gray relational
analysis to assess the effects of various process parameters on the multiobjective optimiza-
tion of the warpage and average temperature difference. We subsequently incorporated
the parameters obtained using multiobjective optimization into different cooling channel
designs and analyzed the differences. The findings were as follows:

1. The results of the Taguchi robust design tests combined with the optimization analyses
indicated that the optimal parameter combination for warpage was A1B2C2D1E4,
where A1 is injection time (0.6 s), B2 is material temperature (255 ◦C), C2 is mold
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temperature (75 ◦C), D1 is injection pressure (120 MPa), and E4 is holding pressure
(145 MPa). The warpage was 0.61 mm; this was 0.29 mm less than that obtained using
the original process parameters. The optimal parameter combination also enhanced
the quality characteristics by 32.22%;

2. The results of the Taguchi robust design tests combined with the optimization analyses
revealed that the optimal parameter combination for average temperature difference
was A1B1C1D2E1, where A1 is injection time (0.6 s), B1 is material temperature
(250 ◦C), C1 is mold temperature (65 ◦C), D2 is injection pressure (125 MPa), and E1 is
holding pressure (130 MPa). The average temperature difference was 7.59 ◦C; this was
66.84 ◦C less than that obtained using the original process parameters. The optimal
parameter combination also enhanced the quality characteristics by 47.40%;

3. Regarding the multiobjective optimization parameters obtained using the Taguchi
gray relational analysis method, we adopted the smaller-the-better quality characteris-
tics of the warpage and average temperature difference. The test results indicated that
the multiobjective optimization parameter combination was A1B2C1D1E4, where A1
is injection time (0.6 s), B2 is material temperature (260 ◦C), C1 is mold temperature
(65 ◦C), D1 is injection pressure (120 MPa), and E4 is holding pressure (140 MPa).
The total warpage deformation volume was 0.62 mm, and the average temperature
difference was 10.16 ◦C. Compared with the original parameter combination, the
warpage deformation of the optimal parameter combination was 0.28 mm smaller,
and the average temperature of the optimal parameter combination was 4.27 ◦C lower.
To account for the multiobjective quality characteristics, we compared the results
with the two single-objective optimal quality characteristics. We noted a 1.6% loss in
warpage quality and a 5.2% loss in average temperature difference quality;

4. The results revealed that the warpage in the conformal cooling system was lower than
the warpage in the other two systems. The conformal cooling system also improved
the average temperature difference. The warpage was 0.54 mm, and the average
temperature difference was 5.87 ◦C. These values are smaller than those of the original
cooling system; specifically, the warpage and average temperature difference were
reduced by 11.47% and 43.11%, respectively.
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