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Abstract: Direct digital manufacturing consists of a set of techniques that enable products to be
fabricated directly from their digital definition, without the use of complex tooling or moulds. This
manufacturing approach streamlines prototyping and small-scale production, as well as the mass
customization of parts with complex designs immediately fixed before fabrication. With broad
applicability, there are clearly opportunities in the field of medical devices for its use. However,
many of the developments of direct digital manufacturing focus on simply specifying the shape or
the form of the product, and this limited scope throws away many of the particular advantages of
direct digital manufacturing. This work is focused on remedying this situation so that the digital
specification of the fabricated product includes the properties as well as the form of the product.
We use in situ time-resolving small-angle X-ray scattering measurements performed at the ALBA
Synchrotron Light Source in Barcelona to evaluate the control that can be exerted on the morphology
of a semi-crystalline polymer during extruder-based 3D printing. We use this as a methodology
for printing the patterns of the morphology of the polymer to realise the patterns of properties of
the polymeric material, specifically the modulus of the polymer. We give an example of products
produced in this manner that contain spatial variation in their properties.

Keywords: 3D printing; polymer texture printing; polymer morphology; crystal orientation; mechan-
ical properties

1. Introduction

Direct digital manufacturing is a family of technologies that enable products to be pro-
duced from a digital definition directly, without the use of specialised tooling or moulds [1].
Such technologies include stereolithography and fused deposition modelling; the latter is
the focus of this work. These technologies have developed out of methodologies developed
specifically for rapid prototyping in which the external shape or form of the product was
the focus.

Although the realisation that products could be produced from materials with suitable
properties for application has been widely adopted in additive manufacturing, there has no
real effort to further develop the technology to include patterns or the texture of properties
so as to be able to deliver the function of the product at the point of fabrication. Of course,
there are other advantages of additive manufacturing, and the abilities to control the
volume of material used by changing the infill pattern and to optimise the design of the
product through topological optimisation [2] have played a significant role in the design of
products using FDM.
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2. Three-Dimensional Printing

Fused deposition modelling, commonly referred to as 3D printing, was developed by S.
Scott Crump, co-founder of Stratasys, in 1988 [3]. In this process (Figure 1), a thermoplastic
strand is heated to the liquid state and fed through a small extruder and emerges as a
viscous liquid strand to be deposited on a moving build platform, where it cools to retains
its shape on solidification through vitrification or crystallisation. The print head moves
relative to the build platform in order to deposit material where it is required. The three-
dimensional structure is built up layer by layer. Since that time, variants have emerged
that are based on pellet-fed extruders [4] and those that process a fluid suspension to print
ceramic and cement-based products [5], as well as hybrid systems, which print a metal
powder in a polymer matrix, wherein the matrix is burnt away, leaving a metallic part [6].
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Figure 1. A schematic representation of the essential elements of fused deposition modelling technol-
ogy. Reproduced with permission from [7].

Whatever the design, for plastics, a fluid polymer is passed through a nozzle, starting
with a large diameter and then a small diameter nozzle with a particular length-to-diameter
ratio. Although it is most likely that the polymer jet swells as it emerges from the nozzle [8],
the nozzle diameter in a large part defines the strand diameter that is deposited on the
build platform, and this, in part, defines the resolution of the print process. Now, it is
well known that passing a fluid polymer through a restricted die will lead to flow effects
involving shear and elongational flow [9].

For a structured material such as a liquid crystal polymer, in which domains with
different director orientations exist in the quiescent fluid, passing through the die leads to
a common alignment of these director patterns. This is shown schematically in Figure 2,
and Figure 3 shows the wide/angle X-ray scattering pattern for an extruded pellet of a
thermotropic liquid crystal polymer [10].

An intense equatorial peak at Q ~ 1.3Å−1 can be observed. This arises from inter-
chain correlations, and the limited spread of this peak indicates a high level of preferred
orientation in the extruded pellet. The fact that this interchain peak is centred on the
equatorial section indicates a high level of preferred orientation of the polymer chains
parallel to the extrusion axis. The extent of the arcing arises from the level of orientation,
which is a convolution of the nematic order parameter within a domain and the orientation
distribution of the director of each domain. In the example shown here, we expect that the
pellet is essentially a nematic mono-domain and, hence, the spread is related to the order
parameter.
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Figure 2. A schematic of liquid crystal fluid passing through a restricting die. The lines represent the
local liquid crystal director. Reproduced and adapted from [11].
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Figure 3. The wide-angle X-ray scattering pattern recorded for an extruded pellet of a thermotropic
liquid crystal polymer. The extrusion axis is vertical (s = 4πsinθ/λ). Reproduced with permission
from [10].

This high level of preferred molecular alignment will have a large impact on the
physical properties of the resultant solid part. The part will be much stiffer in the direction
parallel to the extrusion direction than an isotropic structure.

For an amorphous polymer, the level of preferred orientation induced by flow will
be much less marked, as it depends on chain deformations between entanglement points
and will strongly depend on the molecular weight distribution of the polymer. For a
semi-crystalline polymer, the situation is rather different.

The level of preferred orientation in the melt phase during shearing has been shown
to be very low at 〈P2〉 ~ 0.01 using in situ wide-angle X-ray scattering measurements [12]
and via small-angle neutron scattering on isotopically labelled mixtures [13].

Essentially, the longest chains support the stress and become elongated in flow, and
the remainder of the melt is in a relaxed state. On reaching a temperature at which
crystallisation occurs, if these chains are still present in the elongated state, they act as row
nuclei for the remaining polymer melt to crystallise, and chain-folded lamellar crystals
grow out from the row nuclei with the growth direction normal to the elongated chains
and, therefore, the flow direction.
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The massive impact of this templating was shown dramatically by contrasting the
morphology of a sample of a branched polyethylene (Mw = 76,800) crystallised from
a sheared melt, which exhibited no preferred orientation, with that of a blend of the
branched polyethylene with 10% linear polyethylene (Mw = 312,000) [14]. The resultant
microstructure shows a massively high level of preferred orientation through the sample
examined. Clearly, the two morphologies shown in Figure 4 will exhibit very different
physical properties. We anticipate observing very similar effects as a consequence of 3D
printing using different process parameters.
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Figure 4. Transmission electron microscopy images of replicas of differentially etched samples of
(a) branched polyethylene subject to shear flow at 25s−1, wherein the arrow shows the shear direction,
and (b) a blend of the same branched polyethylene containing 10% linear polyethylene crystallised at
115 ◦C, also subjected to shear at 25s−1. Reproduced with permission from [13].

Others have made observations of the development of preferred orientation during
extrusion [15], although not using in situ techniques, and [16], whose work was restricted
to WAXS studies, provides ambiguous information on the preferred orientation of the
lamellar crystals. If we can adjust the process parameters in real time during printing,
then we will have a method for depositing patterns of different morphologies or different
properties. This is the focus of this work.

3. Materials and Methods

The current work is focused on poly(e-caprolactone) (PCL), a widely studied biodegrad-
able material with biomedical applications, including as scaffolds for tissue engineering [17].
It was supplied in the form of small pellets (~3 mm) with an Mw = 50,000 by Perstorp
(Cheshire, UK).

The thermal characteristics of the PCL were determined using a Perkin Elmer STA
6000. All operations were performed under a nitrogen atmosphere with a flow rate of
20 mL/min, and the weight of the sample varied between 6 and 7 mg. Each sample was
heated first to 120 ◦C at 10 ◦C/min and then held at that temperature for 1 min to erase any
thermal history. The crystallisation temperature was obtained from an equivalent cooling
scan at 5 ◦C/min.

Small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) mea-
surements were performed at the ALBA Synchrotron Light Source in Barcelona using the
NCD-SWEET Beamline [18]. The beamline provides facilities for measuring both SAXS
and WAXS simultaneously. SAXS patterns have been taken in a q-range from 0.017 Ǎ-1 to
0.125 Ǎ-1 and the WAXS ones from 1.0 Ǎ-1 to 3 Ǎ-1. The SAXS detector was a Pilatus3S 1M
system from DECTRIS, which is a hybrid single-photon counting system. The absorption of
the X-ray photon in the detector leads to the formation of electron–hole pairs and a charge
which is proportional to the photon energy.

The Pilatus system is built up of an array of silicon sensors equipped with CMOS
electronics. As a consequence, a small portion of the detector is not active (~7%), which appear
as black stripes in the recorded intensity images. The charge is detected and processed by the
pixel readout system. This detector has an effective pixel size of 172 × 172 µm and a dynamic
range of 20 bits. To prevent the saturation of the detector by the zero-angle X-ray beam, a
beam stop is placed in front of the detector to absorb the transmitted beam. The sample-to-
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SAXS detector distance was 6.73 m with an incident X-ray wavelength of 1 Ǎ. The detector
orientation and sample-to-detector distance was calibrated using the well-known standard
silver behenate. The WAXS detector was a Rayonix LX255 HS, which is a triple-cooled
CCD detector bonded via fibre optic tapers to the X-ray photon detector surface with a
pixel size of 44.27 × 44.27 µm. The detector geometry and shape ensure that the direct
beam and the SAXS pattern are not blocked by the detector. The WAXS orientation and
sample-to-detector distance was calibrated using Cr2O3. For each 2d SAXS pattern, an
azimuthal section I(α) was obtained at constant |Q| and as a function of α, where α is the
angle between the extrusion axis, which was vertical to the beamline, and the scattering
vector Q. The azimuthal section I(α) was used to evaluate the level of preferred orientation
of the chain-folded lamellar crystals using the methodology developed by Mitchell [19–21],
which is shown below.

〈P2n〉Q =
1

(4n + 1)P m
2

π/2∫
0

I
(∣∣Q∣∣, α

)
sin αP2 (cos α) dα

I
(∣∣Q∣∣, α

)
sin α dα

(1)

The orientation parameter 〈P2〉 is the first component of an even series that describes
the orientation distribution function of the normal crystals to the lamellar crystals. If
〈P2〉 = 0, then the distribution is isotropic; if 〈P2〉 = 1, then the crystals are arranged with
the same perfect preferred orientation

4. Results and Discussion
4.1. Thermal Analysis

The thermal analysis of the quiescent material was performed in preparation for the in
situ experiments, and Figure 5 shows the DSC cooling scan for the poly(ε-caprolactone used
in this work. We can observe that in the quiescent material, the onset of crystallisation occurs
at 37.9 ◦C, while the maximum rate of crystallisation is observed to be at a temperature of
35.5 ◦C. We need to note that the material that has been extruded may start to crystallise
at a higher temperature than observed with the quiescent material due to the presence of
flow-induced row nuclei.
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showing the crystallisation peak, which reveals that the maximum crystallisation rate for a quiescent
melt is 35.5 ◦C.
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4.2. Three-Dimensional Printer

The 3D printer was mounted on the NCD-SWEET beamline using the standard user
platform, which could be adjusted in all three directions. The 3D printer was specifically
designed for these experiments, and a schematic is shown in Figure 6.
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Figure 6. Left: a CAD representation of the 3D printer developed for this work. Right: a schematic
of the quasi-static state of the extrudate in a constant gradient of temperature. The evolution of the
structure can be evaluated by moving the incident X-ray beam down the jet.

The system shown in Figure 6 enables the extruder to be operated with a constant
extrusion temperature, a varied extrusion velocity, and a variable write velocity. The latter
is the relative motion of the build platform to the extrusion nozzle.

The equipment uses a single extruder with a dual-channel screw to push the material
through a 300 µm needle. Then, the material is deposited onto a rotating collector. In this
case, the extruder was designed to intake material in the form of beads or solid grains,
instead of filament, which is more commonly used in fused deposition modelling (FDM);
thus, the material reservoir is heated to melt the polymer material in order to feed the
extruder with molten polymer. This configuration requires temperature monitoring of the
three main sections of the extruder: the reservoir, the feeder connection, and the extrusion
chamber. In each of these zones, we assembled an independently controlled coil heater
with an integrated thermocouple sensor and feedback loop. This is a similar design to that
used in the bioextruder [4], which was also developed at CDRSP. The option of defining the
three temperatures allows for precise control of the temperature gradient of the material
throughout the extrusion process. Figures S1–S4 in the Supplementary Materials provide
details of the 3D printer and its specification.

In order to meet the requirements imposed by the NCD-SWEET beamline, we have
designed a specific printer for this purpose (Figure 7), particularly taking account of:

• The boundaries of the mounting platform;
• The operability at the beamline;
• The process stability;
• The extruder and collector positioning;
• The range of extrusion rate;
• The thermal insulation.

As the boundaries of the sample stage are limited (200 mm × 200 mm), the equipment,
consisting of the extruder, the collector, and the supporting structure, constitutes a compact
solution that can be adjusted in all three directions. The collector is a small winding
mechanism powered by a stepper motor. We have opted for a rotational build platform
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rather than the normal translation stage, as it offers a more compact solution and, also, it
enables higher write speeds, if these are required. The extrudate is deposited on the surface
of a roll that simulates the continuous translation of an extruder during FDM, maintaining
the melted polymer flow in the same direction and the stable positioning of the filament for
data acquisition.
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Synchrotron Light Source.

The limited space for the experiment is a major condition since, ideally, the detector
and the vacuum chamber should be as close as possible, to reduce the contribution of the
air scattering in the sample region to the background.

Simultaneously, it is necessary to provide enough space for a safe operation, which
includes not only the disposition of the apparatus elements, but also the freedom to perform
the tasks of the experiment: feeding the system with raw material, cleaning and removing
deposited material, and replacing extruder dies, among other maintenance actions. This is
a particular concern when working with high temperatures near the beamline equipment,
and thus the heated zones of the extruder in contact with the supporting structure are
insulated with a 6 mm heat insulation board.

Crucial input instruments, such as the power supply, the heater-controlling modules,
and the pneumatic actuation of the extruders’ feeder (as shown in Figure 8), were placed
on a table adjacent to the beamline.

During the analysis, direct temperature measurements were performed using an in-
frared (IR) thermal camera at a distance of 200 mm from the sample. Processing variables,
such as screw rotation velocity, write velocity, processing temperature, and needle-to-
collector distance, were fully remotely controllable, with values in the range of the normal
operation of 3D printers. At the beamline, the stability of the position of the extrudate dur-
ing extrusion is mandatory from the first instance of each trial. In this specific experiment,
the sample was only available while the extruded material was flowing, and vibrations or
irregular portions of the material deposited on the collector negatively interfered with this
stability and limited the duration and quality of the test. Long trial durations were required
to perform a vertical scan along the height of the extruded filament, which involved moving
the sample platform in the z-axis, maintaining the filament aligned with the X-ray beam,
by using the collector presented in Figure 9.
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The smooth movement of the filament was induced by the stable rotation of the main
roll, made of a 50 mm diameter acrylic tube, with input power from a 3:1 timing belt
transmission from the motor’s axis. Once at low rotations, the vibrations induced by the
stepper motor are significant and, therefore, the angular velocity of the motor was increased
to reduce the impact of vibrations, allowing the test to proceed with a range of write speeds
from 5 to 50 mm/s.
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Figure 9. Configuration of the filament collector/build platform.

The remaining two rolls were also important for the sample quality. Powered by the
smallest roll (in the driving shaft, also working as a gear), the middle roll has a rough
surface from which to remove the filament from the main roll via contact, and a gap to
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pressure it and secure it during the winding, which ends at the third roll. These components
were manufactured in ABS using FDM printing technology. Structural and functional parts
were rapidly produced to generate a modular configuration with custom parts in which the
position of the extruder and the position of the collector could be adjusted. For instance,
the distance between the needle and the collector is variable between 0 mm and 50 mm,
meaning that the X-ray beam can traverse the length of the sample filament. With this
degree of freedom, experiments were performed by continuously extruding a steady-
state polymer filament and acquiring simultaneous SAXS and WAXS patterns at varying
distances from the needle.

4.3. Three-Dimensional Printer Evaluation

To explore these concepts, we have developed the pellet feed extruder-based 3D
printer shown in Figure 6 (left) which could be mounted on the NCD-Sweet beamline at
the ALBA Synchrotron Light Source in Barcelona in order to observe the structure and
morphology in real time using small-angle and wide-angle X-ray scattering techniques [22].

Figure 10 shows a plot of the temperature of the extrudate as a function of the distance
from the outlet of the extruder die. The plotted values correspond to an extrusion rate of
300 mm/min. The graph shows that it takes much longer for the extrudate to cool from an
extrusion temperature of 75 ◦C to the temperature at which the maximum crystallization
rate occurs than for an extrusion temperature of 45 ◦C or 37 ◦C.
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Figure 10. Plots of the temperature of the extrudate after it emerges from the extruder die, measured
for different temperatures of the extruder using an infrared camera.

The longer cooling time is sufficient for the extended chains induced in the extruder
die to relax to an isotropic random coil configuration. The shorter cooling times ensure that
the extended chains have not relaxed at the point at which crystallization is initiated. These
data are specific to PCL, and other polymers will have differing extrusion temperatures
and temperatures at which the maximum crystallization rate is observed.

The small-angle X-ray scattering provides information about the chain-folded lamellar
crystals and the level of preferred orientation with respect to the extrusion axis. If we position
the X-ray beam close to the extrusion nozzle, then, as can be seen in Figures 11 and 12(right), the
SAXS pattern is featureless, as the sample is molten and contains no electron density variations
on this scale. If we move the X-ray beam further down the extrudate, the temperature has
started to drop, and when the crystallization temperature is reached, crystals start to grow.

Figures 11 and 12 show patterns taken at different points along the extrudate. The
only difference between the two sets is the write speed, which is lower in Figure 11 and
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higher in Figure 12. The right-hand pattern in Figure 11 shows that the solidified extrudate
has a more or less isotropic crystal orientation, whereas the equivalent pattern in Figure 12
shows a high level of orientation, as revealed by the two sharp maxima above and below
the zero-angle point with a small level of isotropic scattering.
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Figure 11. SAXS patterns of the PCL extrudate measured with the incident X-ray beam positioned
at increasing distances from the exit of the extruder die (x = 0 mm). The left-hand image is closest
to the extruder die, and those to the right are positioned further away. The vertical arrow defines
the extrusion axis. The black spot in the centre of each image corresponds to the area of the detector
masked by the absorbing beam stop to prevent the forward beam flooding the detector. For all of
these images, the 3D printer parameters were fixed for extrusion temperature, extrusion speed, and
ambient temperature, and with a low write speed.

Figure 12. An equivalent set of SAXS patterns of the PCL extrudate measured with the incident X-ray
beam positioned at different distances from the exit of the extruder die (x = 0 mm) and prepared with
the same parameters as those shown in Figure 11, but using a higher write speed.

Now, in the extruder nozzle, the longest chains may be extended in the flow field,
while the remaining polymer is unstressed. If the extrudate reaches the crystallization
temperature and these extended chains are still present, they serve as row nuclei and
templates for the crystallization of chain-folded lamellar crystals, which grow out nor-
mal to the extrusion direction [23]. If, on the other hand, the extended chains relax and
adopt a random conformation, then crystals are nucleated by other heterogeneities and an
isotropic spherulitic morphology results. These two possibilities are shown schematically in
Figure 13. Previous studies [22] showed that the moduli of these two different morphologies
differed by more than a factor of 2.
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of the process of developing different morphologies with different properties by controlling the 3D
printing parameters.
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This difference arises directly from the change in writing speed. The very high level
of orientation of the lamellar crystals shown in Figure 12 is very typical of row-nucleated
crystallization, as the row nuclei provide a common, highly aligned templating mechanism.
It might be thought that these effects are caused by the deformation of the printed strand
by the relative movement of the build platform with respect to the extruder die. In such a
scenario, we would see the crystallization of lamellar crystals with a low level of orientation,
which would increase in time as the filament is deformed.

There is no evidence for this mode of behaviour, as is clear from Figure 12, which
shows a high level of orientation of the first formed crystals. We attribute this behaviour to
the fact that the higher write speed leads to faster cooling as the printed material is moved
away from the hot region close to the extruder more rapidly, meaning that crystallization
takes place before the extended chains have relaxed.

Switching between these two different morphologies could be achieved by changing
the extrusion temperature, although, of course, this requires a certain amount of time to
equilibrate. We also found that the overall level of preferred crystal orientation in the
deposited material could be changed continuously using a combination of the extrusion
speed and the write speed. The latter is the relative motion of the build platform to the
extrusion nozzle.

This behaviour is confirmed in Figure 14. Quantitative values can be evaluated directly
from the recorded small-angle X-ray scattering patterns in a fully rigorous manner [22].
The vertical scale is the orientation parameter <P2>, which can take values from 0.0 (corre-
sponding to an isotropic morphology) to 1.0 (corresponding to a uniform orientation of
crystals).
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Figure 14. A plot of the level of preferred orientation of the chain-folded lamellar crystals in ex-
truded strands of poly(ε-caprolactone) as a function of the position within the extrudate relative
to the extrusion die exit. Here, � represents data evaluated from the SAXS patterns in Figure 11,
N represents data evaluated from the SAXS patterns in Figure 12.

The plot of orientation parameters derived from the patterns in Figure 14 (triangles)
shows that the initial orientation is high, but as the level of crystallinity increases, the
average orientation reduces in value. Of course, the highly aligned crystals that were
first formed are still present in the final product. In contrast, the level of orientation of
the crystals formed during the lower write speed (Figures 11 and 14 (squares)) is lower,
but increases as more crystals form. In these plots, we underline the value of in situ
measurements for revealing the complex crystallisation processes taking place during
printing.
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As an example of the use of this new approach to modulating the properties by
controlling the morphology, we show in Figure 15 a photograph of a hexagonal open
structure typical of that used as a scaffold for tissue engineering.
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Figure 15. A photograph of a porous structure, typical of that used as a scaffold for tissue engineering,
prepared by printing poly(ε-caprolactone) at a constant extrusion temperature with a deposition rate
(collector velocity) which was proportional to the distance from the centre of the object, with all other
print parameters fixed. As a consequence, the material on the outer part is stiffer than the central
region. The height is about 2 cm.

The part is fabricated from PCL, as used in the previous experiments, and prepared
using a pellet-fed extruder-based printer, in which the extrusion rate and temperature were
fixed throughout the fabrication, but the relative speed between the print head and the
build platform was varied as a function of the radial distance between the centre of the
object and the print position.

This can be easily achieved through a suitable modification of the g-code [24] file used
as an input to the printer. As a consequence, the central part of the product is softer than
the outer part due to the differing morphologies of the printed PCL.

One limitation of this approach is that the anisotropy, in the study performed here,
only develops in the direction of the extrudate axis and, therefore, follows the pathway of
the print head. This needs to kept in mind when designing a product and the tool path. We
are currently exploring such aspects, and we have observed some interesting phenomena,
and we will present the outcomes of such studies when completed in a future paper.

5. Conclusions

We have shown that the process of extrusion inherent in fused deposition modelling
technology can be controlled using the natural processing parameters to produce deposited
polymeric material with different morphologies that exhibit different physical properties.

As some of these process parameters can be varied in real time during the printing
process, essentially on the fly, this provides a method of depositing the polymer with
different properties in different zones of the product.

Exploiting time-resolved X-ray scattering studies of in situ 3D printing, we have
mapped out the correlations between the print parameters and the level of preferred
orientation in the deposited material.
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We have used this understanding to prepare a part with a design similar to that of a
porous scaffold for use in tissue engineering, with a gradient of properties of the printed
part highlighted in a radial manner. The variation and control of properties in this example
exists in the direction parallel to the tool path.

We are currently exploring the design of products to take advantage of this new
approach. Preliminary studies have revealed some interesting results, and these will be
presented in a future paper when the work is completed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14091638/s1, Figure S1 Schematic of the equipment with
the collector and winding systems highlighted; Figure S2 Filament collector components; Figure
S3 Detailed drawing of the extruder; Figure S4 Representation of the extruder with the exploded
view of the nozzle.
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