
Citation: Bui, C.M.; Ho, A.-N.T.;

Nguyen, X.B. Flow Behaviors of

Polymer Solution in a Lid-Driven

Cavity. Polymers 2022, 14, 2330.

https://doi.org/10.3390/

polym14122330

Academic Editors: Sharadwata Pan

and Thomas Goudoulas

Received: 27 April 2022

Accepted: 2 June 2022

Published: 9 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Flow Behaviors of Polymer Solution in a Lid-Driven Cavity
Cuong Mai Bui * , Anh-Ngoc Tran Ho * and Xuan Bao Nguyen *

The University of Danang—University of Technology and Education, 48 Cao Thang, Da Nang 550000, Vietnam
* Correspondence: bmcuong@ute.udn.vn (C.M.B.); htangoc@ute.udn.vn (A-N.T.H.);

xuanbao233@gmail.com or nxbao@ute.udn.vn (X.B.N.)

Abstract: In this work, a numerical study of polymer flow behaviors in a lid-driven cavity, which is
inspired by the coating process, at a broad range of Oldroyd numbers (0 ≤ Od ≤ 50), is carried out.
The Reynolds number is height-based and kept at Re = 0.001. The fluid investigated is of Carbopol
gel possessing yield stress and shear-thinning properties. To express rheological characteristics, the
Herschel–Bulkley model cooperated with Papanastasiou’s regularization scheme is utilized. Results
show that the polymer flow characteristics, i.e., velocity, viscosity, and vortex distributions, are
considerably influenced by viscoplastic behaviors. Additionally, there exist solid-like regions which
can be of either moving rigid or static dead types in the flow patterns; they become greater and tend
to merge together to construct larger ones when Od increases. Furthermore, various polymer flow
aspects in different cavity configurations are discussed and analyzed; the cavity width/aspect ratio
and skewed angle are found to have significant impacts on the vortex structures and the formation
of solid-like regions. Moreover, results for the critical aspect ratio at which the static dead zone is
broken into two parts and the characteristic height of this zone are also reported in detail.

Keywords: non-Newtonian fluid; yield stress; polymer rheology; cavity flow

1. Introduction

The lid-driven cavity flow has been widely realized for benchmarking computational
fluid dynamics (CFD) approaches not only due to its simple geometric setup but also
since it sufficiently exhibits basic hydrodynamic features. Additionally, this problem has
various important engineering applications such as solar collector [1], fluid mixing [2],
and polymer coating processes [3]. In fact, the flow behaviors inside a lid-driven cav-
ity was extensively studied using analytical, experimental, and numerical techniques;
Shankar and Deshpande [4] provided a comprehensive review on this problem. To men-
tion a few, Ghia et al. [5] proposed a flow modeling approach with the multigrid method
and then investigated the shear-driven flow in a square cavity. Various flow features,
e.g., velocity field, vorticity distribution, and flow streamlines, at Re ≤ 104 were revealed.
The results for Re ≤ 103 were then compared with those obtained by experimental works
of Mochizuki et al. [6]; good agreements were observed in terms of flow field pattern and
velocity distribution. As indicated, there existed three vortices, a large one near the cavity’s
center (i.e., primary vortex) and two much smaller at its corners (i.e., secondary vortices).
The location and size of these vortices were stated to depend on Reynolds number. More
recently, Xu et al. [7] and Khorasanizade and Sousa [8] carried out the flow analysis at,
respectively, Re = 10–1000 and Re = 400–3200 using the newly developed Smooth Particle
Hydrodynamics (SPH) method.

It is worth reminding that the fluids investigated in the aforementioned studies
are of a Newtonian type whose viscosity does not vary during the flowing. This as-
sumption is supposed to not be suitable for many engineering flows in which the fluids
can possess rheologically complex properties such as shear-dependence, yield stress, vis-
coelasticity, or thixotropy. Examples of non-Newtonian materials can range from mineral

Polymers 2022, 14, 2330. https://doi.org/10.3390/polym14122330 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14122330
https://doi.org/10.3390/polym14122330
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0003-3113-6202
https://orcid.org/0000-0001-6551-1387
https://doi.org/10.3390/polym14122330
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14122330?type=check_update&version=1


Polymers 2022, 14, 2330 2 of 13

suspensions [9,10], clay suspensions [11,12], and lava [13,14] to crude oil [15–17], melt-
ing metal [18,19], printing ink [20,21], painting [22], polymer [23–28], or even human
blood [29,30]. To deal with the lid-driven cavity flow problem of these fluids, computa-
tional approaches were mainly adopted in previous works. Amongst them, the Bingham
type was the most focused [31–36]. For such fluid, the flowing occurs provided that the
applied shear stress exceeds the yield stress of the material; moreover, the correlation
between the shear stress and deformation is assumed to be linear during the flowing.
Compared to a Newtonian fluid, the flow structures of a Bingham one were found to be
more complex with the development of unyielded zones, which were solid-like, in the flow
pattern when Bn > 0. In these works, artificial fluids with rheological properties added
was considered. Recently, Hoang–Trong et al. [37] provided information of the flow mor-
phology of real Bingham fluids, i.e., kaolinite suspensions, at Re = 100–1000 in rectangular
lid-driven cavities. As indicated, the unyielded zones became greater with the increase in
the kaolinite concentration. Moreover, the effects of aspect ratio on the flow morphology
was determined to be significant. For different non-Newtonian types, Pakdel and his team
published a series of experimental results for polymer–oil solutions, which was assumed to
possess a constant elastic viscosity, in [38–40]. Viscoelastic fluids were also discussed and
well analyzed in both square [41–43] and rectangular cavities [43]. Mahmood et al. [44] and
Shuguang [45] described the power-law fluid behaviors by Carreau model and performed
simulations in the square cavity with, respectively, finite element and finite deference
methods; results indicated that the impacts of power-law index became more significant
with the larger Re.

In this work, we are aiming at exploring the flow morphology of a polymer solution in
a lid-driven cavity. The gel targeted exhibits both viscoplastic (i.e., yield stress effect) and
shear-thinning behaviors, making the investigation relevant to the application case of the
polymer coating. Furthermore, the influences of cavity configurations on the flow structures
are also examined; this would contribute to optimizing the coating process designs.

The remaining of this paper is organized as follows: Section 2 introduces the research
approach, i.e., the governing equations and simulation implementation; Section 3 provides
and analyzes the results obtained; and concluding remarks are given in Section 4.

2. Methodology
2.1. Governing Equations

The laws of mass and momentum conservations for a fluid flow are, respectively,
expressed as

∇ ·u = 0, (1)

ρ

(
∂u
∂ t

+ u ·∇u
)
= ρf+∇ ·σ , (2)

where u is the velocity vector and ρ the fluid density; σ is the total stress tensor and
determined as

σ= −pI+τ , (3)

where p is the pressure, and I the unit tensor. Additionally, τ is the shear stress tensor; for a
Newtonian liquid, it is defined as

τ = µ γ̇ , (4)

with µ being the fluid viscosity and γ̇ the strain rate tensor. For a non-Newtonian liquid, τ
can be generally expressed using Herschel–Bulkley (HB) model as follows [46],τ =

(
Kγ̇n−1 +

τ0

γ̇

)
γ̇ if τ > τ0

γ̇ = 0 if τ ≤ τ0 .
(5)
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Here, K is the plastic viscosity, n the power index controlling the curve of γ̇-τ after

the fluid material being yielded, and τ0 is the yield stress. Furthermore, γ̇ =
√

1
2 γ̇ : γ̇ and

τ =
√

1
2 τ̇ : τ̇ are the strain rate magnitude and the intensity of the extra stress, respectively.

In addition, to generally characterize the viscoplastic fluid flow, Reynolds (Re) and
Oldroyd (Od) numbers are, in turn, defined as follows,

Re =
ρu0

2−nHn

K
, (6)

Od =
τ0Hn

Ku0n , (7)

where u0 is the incoming velocity and H the cavity’s height. It is worth mentioning that in
this work, the flow is very slow with Re being kept at Re = 0.001.

2.2. Fluid Materials

In this work, we use water properties to describe the Newtonian characteristics as
ρ = 1000 kg/m3 and µ = 0.001 Ns/m2.

For the non-Newtonian material, the polymer solution prepared with Carbopol 940,
which was adopted in experimental series of Ouattara et al. [26], is utilized. Specifically,
its rheological properties are determined to be of K = 40.4 Pasn, n = 0.4, and τ0 = 115 Pa.
Furthermore, the fluid density is chosen as ρ = 1000 kg/m3. The influences of the material
microstructural evolution are neglected. With HB model, the flowing curve of this material
can be illustrated in Figure 1.

Figure 1. Correlation between the shear stress τ and the deformation rate γ̇ during the flowing of
Carpobol gel.

2.3. Computational Approach
2.3.1. Regularization Scheme

As can be seen in Equation (5), there has a discontinuous point at τ = τ0, possibly
leading to unexpected numerical oscillations and/or deviations. Furthermore, with this
model, the deformation rate is assumed to be zero at the yield point and below it. This is
unreasonable with real materials; for instance, Carbopol gel has the critical shear rate of
γ̇c = 0.001 s−1 showing a non-zero deformation when τ = τ0 [26]. To tackle the mentioned
issues, Papanastasiou’s regularization method is employed as [47]

τ =

(
Kγ̇

n−1 +
τ0[1− exp (−mγ̇)]

γ̇

)
γ̇ , (8)

where m is the regularization parameter. It is determined to ensure the flowing curve to
pass the point of (γ̇c, τ0) [48,49]. In detail, it is m = 3809 for the Carbopol gel adopted [49].
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2.3.2. Computational Implementation

Figure 2 shows the geometry of the problem studied in this work including the square,
rectangular, and skewed cavities. Moreover, computational mesh and boundary conditions
applied are provided in Figure 3. Only the top wall is moving with u = u0; other walls
are stationary. For the calculations, the domain is discretized to a system of structured
mesh constituted by uniform square elements. Additionally, a mesh sensitivity study
has been conducted to detect the most optimal resolution. In detail, three resolutions
with different mesh element widths, i.e., ∆x = L/240, ∆x = L/320, and ∆x = L/360, are
tested. Figure 4 illustrates the influences of mesh resolution on the yield lines at Od = 10;
it is indicated that the deviations become insignificant with ∆x ≤ L/320. Additionally,
as can be observed in Figure 5, the velocity distributions along vertically and horizontally
central lines produced by the mesh widths of ∆x = L/320 and ∆x = L/360 are nearly the
same. It is worth mentioning that the former shows the greater computational efficiency;
specifically, it takes ∼11.5 h meanwhile the mesh of ∆x = L/360 requires up to ∼18 h
for the solution convergence. Therefore, we select the mesh width of ∆x = L/320 for all
simulations. Furthermore, the calculations are performed using the Finite Volume Method
(FVM); second-order schemes are used for spatial discretization.

Figure 2. Geometry of the lid-driven cavities.

Figure 3. Computational mesh for a square cavity and boundary conditions.
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Figure 4. Influence of mesh refinement on the yield lines of γ̇ = 0.001 s−1 in a square cavity at Od = 10.

Figure 5. Influence of mesh refinement on velocity distribution: (a) x-velocity along the vertical
centerline and (b) y-velocity along the horizontal centerline of a square cavity at Od = 10.

Due to the lack of experimental data for non-Newtonian fluid flow, we perform the
validation with the Newtonian one. Our simulation results at Re = 400 and 1000 shown
in Figure 6 are compared to those experimentally obtained by Mochizuki et al. [6]. It is
good to observe that ours agree very well with the experimental results; in detail, both
affirm the appearance of vortices at the cavity center and the corners. In addition, results
for velocity magnitude provided by our numerical approach also perfectly match those in
Ghia et al. [5] at Re = 100, 400 and 1000 (see Figure 7).

Figure 6. Flow streamlines of a Newtonian fluid in a square lid-driven cavity at (a) Re = 400 and
(b) Re = 1000.
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Figure 7. (a) x-velocity along the vertical centerline and (b) y-velocity along the horizontal centerline
produced by a Newtonian fluid in a square cavity at Re = 100, 400 and 1000.

3. Results and Discussion
3.1. Polymer Flow Morphology

The polymer flow structures in a square lid-driven cavity at Re = 0.001 are discussed
and analyzed in this part. Values of Oldroyd number are ranged in Od = 0–50. It is noted
that the extreme case of Od = 0 represents the Newtonian fluid flow.

Results for the velocity distribution and flow streamline patterns are shown in Figure 8.
The variation zone of velocity is observed to narrow and get closer to the moving (top)
wall when Od increases. At high Od, i.e., Od ≥ 5, it occurs that the velocity magnitude
is smaller than 0.1u0 in almost the whole cavity, indicating a very slow motion of the
fluid there when the viscoplastic effect becomes profound. Similar to the Newtonian fluid
flow (i.e., Od = 0), there appear one primary and two secondary vortices in the flow field
pattern of the polymer gel; however, their location and size differ with various values of Od.
For instance, the primary vortex eye is found to move up with the increasing Od. Moreover,
for the polymer flow, the larger Od, the greater size of the left secondary vortex, and the
further its center is positioned from the cavity corner (see Figure 9). Due to the similar
flow distribution at two corners when the inertial effect is negligibly insignificant, the right
secondary vortex is nearly the same as the left one (see Figure 8); the finding observed for
the latter is also reasonable for the former.

Figure 8. Velocity contour and flow streamlines of the polymer flow in a square lid-driven cavity at
Od = 0–50.
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Figure 9. Formation of the left secondary vortex obtained by the polymer flow in a square lid-driven
cavity with various values of Od.

Figure 10 illustrates the viscosity field at several Od. As can be seen, highly viscous
areas are noticed to develop in the flow pattern; these zones significantly extend as Od
is increased. Indeed, the polymer viscosity during the flowing can even be 1000 times
greater than the plastic viscosity, in almost the entire cavity at Od = 10. The existence
of high-viscosity zones, which prohibit fluid displacement, is probably the main reason
for the very slow movement of polymer flow mentioned above. Furthermore, solid-like
regions can be formed inside these zones. Within them, the polymer solution is unyielded;
the material deformation is very small as γ̇ ≤ 0.001 s−1. Results for unyielded zones with
various Od are shown in Figure 11. It is evident that the unyielded zones can be classified
into two different types: the moving rigid and the dead zone firmly adhering to the bottom
and sidewalls of the cavity. As Od is greater, unyielded zones considerably expand and
tend to assemble to become large ones. Indeed, when Od is in the range of Od = 1–20,
there still appear two types of unyielded zones clearly in the flow field pattern; however,
only a very large dead zone filling the whole cavity is found at the highest value of Od
investigated, i.e., Od = 50. The appearance of such a large non-moving rigid sticking on
cavity walls should be paid a great attention since it blocks the flow circulation and then
negatively affect the operation of the lid-driven cavity scheme.

Figure 10. Viscosity distribution of the polymer flow in a square cavity at various Od.
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Figure 11. Solid-like zones (γ̇ ≤ 0.001 s−1) as the red areas produced by the polymer flow in a square
cavity at various Od.

3.2. Cavity Configurations

In this part, effects of cavity configurations on the polymer flow characteristics, espe-
cially the formation of unyielded regions, are presented and examined. Rectangular and
skewed cavities are, respectively, investigated. Moreover, regarding the mesh employed,
the resolution of ∆x = L/320 is continued to be realized.

3.2.1. Rectangular cavity

We carry out simulations on rectangular cavities with different widths; the aspect ratio
is varied in range of Λ = L/H = 0.5–4.

Results for flow streamlines and unyielded zones produced by the polymer flow at
Od = 1 and Od = 10 are, respectively, presented in Figures 12 and 13. It is noticeably seen
that another primary vortex is formed in the lower half of the cavity with Λ = 0.5 (see
Figures 12a and 13a); this was also observed for the Newtonian [4] and Bingham fluid
flows [37]. Additionally, the primary vortex (only the upper one for Λ = 0.5) is found to
lengthen and shift down with the increasing aspect ratio for both Od = 1 and Od = 10.
For the unyielded zones, at Od = 1, the moving rigid region generally shrinks when the
cavity is greater in width; with Λ = 4, it nearly disappears. However, this trend is reversed
for Od = 10 at which the moving rigid considerably enlarges as Λ increases.

Figure 12. Flow morphology of the polymer gel in rectangular cavities with different aspect ratios at
Od = 1.
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Figure 13. Flow morphology of the polymer gel in rectangular cavities with different aspect ratios at
Od = 10.

Table 1. Results for critical aspect ratio Λc.

Od 0.1 1 5 10 20 50

Λc 0.8 1.2 1.6 1.8 >4 >4

Furthermore, the dead zone dramatically varies with the cavity width. It tends to split
into two smaller ones attaching to the cavity corners as the aspect ratio is large. When Λ

increases, due to the polymer shear at the middle of the cavity bottom, the rigid layer there
becomes thinner (see Figure 14). It is then fragmented into two parts as discussed above
when the aspect ratio reaches a critical value, Λc. Table 1 reveals results of Λc for different
values of Od. As can be seen, the larger Od, the greater the aspect ratio required to divide
the dead zone; for instance, at very high Od, e.g., Od = 20 or 50, Λc is found to be even
larger than 4 meanwhile it is only Λc = 0.8 for Od = 0.1. In addition, the detailed results
for the characteristic height, Hs, of the dead zone are reported in Table 2. The cavities of
L = 2H and L = 4H are seen to provide a similar results for Hs at all Od studied. Moreover,
it is evident that Hs is decreased with the greater cavity width at Od = 0.1–20; for Od = 50,
the characteristic height is remained at Hs = 0.99, indicating the nearly full coverage of the
dead zone in the whole cavity for a wide range of Λ.

Table 2. Results for characteristic height Hs/H of the dead zone with different cavity widths.

Λ 0.5 1 2 4

Od = 0.1 0.46 0.12 0.11 0.11

Od = 1 0.63 0.34 0.26 0.26

Od = 5 0.75 0.54 0.42 0.4

Od = 10 0.79 0.6 0.49 0.48

Od = 20 0.82 0.65 0.56 0.56

Od = 50 0.99 0.99 0.99 0.99
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Figure 14. Transformation in the dead zone with various cavity widths at Od = 5.

3.2.2. Skewed Cavity

The flow morphologies, i.e., formation of unyielded zones and vortex distribution,
in a cavity with various skewed angles are presented and discussed. The schematic of the
skewed cavity can be found in Figure 2c. The skewed angle is in the range of α = 45–120o;
moreover, Od is kept constant at Od = 1 in this part.

Figure 15 illustrates the polymer flow structures in skewed cavities with various
values of α . Different from the straight cavity (i.e, α = 90o), the distribution of the dead
zone is asymmetrical about the horizontally central line when the sidewall tilts. In detail,
with 45o ≤ α < 90o, the dead zone clinging on the left wall is higher while it is lower on
the right one with 90o < α ≤ 120o. Furthermore, the moving rigid obtained by the skewed
cavities does not exist or is very small compared to that created by a straight one (see
Figure 11b).

In addition, the vortex characteristics, i.e., quantity, location and size, is observed to
be significantly affected by the skewed angle (see Figure 16). For example, at the left corner,
the number of secondary vortex is reduced with the increasing α ; specifically, this quantity
is of three for α = 45o but decreases to one and even zero with, respectively, α = 105o and
α = 120o.

Figure 15. Flow morphology of the polymer gel in skewed cavities with different α at Od = 1.
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Figure 16. Vortex structures at the left corner produced by the polymer flow in the skewed cavities
with different α at Od = 1.

4. Concluding Remarks

The creeping lid-driven cavity flow characteristics of a polymer solution at Re = 0.001
and Od = 0–50 were numerically investigated in this work. The fluid targeted simultane-
ously exhibited yield stress and shear-thinning features; the rheological behaviors were
described by the Herschel–Bulkley model coupled with Papanastasiou’s regularization tech-
nique.

The polymer flow characteristics were determined to be greatly dependent on the
viscoplastic property. In detail, when the yield stress effect was serious, i.e., Od was
large, the velocity magnitude became very small inside the cavity. Moreover, the vortex
distribution was varied with different Od. For instance, as Od was larger, the primary
vortex shifted up; additionally, the secondary vortices became larger and moved further
away from the cavity corners. Furthermore, solid-like regions including moving rigid and
(static) dead zones were found to develop in the polymer flow field patterns, reducing the
flowing and then the lid-driven cavity operation. These zones were significantly enlarged
and tended to merge together to form larger ones when Od increased.

In addition, the formations of vortices, moving rigid regions, and dead zones were
strongly affected by the cavity configuration. For the rectangular cavity, as the aspect ratio
increased to a critical value, the dead zone broke into smaller ones sticking on two bottom
corners; Λc was found to be greater with the increasing Od. Detailed results for Λc and the
characteristic height of the dead zone are also provided. Furthermore, the skewed angle
also had considerable impacts on the polymer flow morphology, especially the quantity,
location, and size of vortices.
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