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Abstract: PET bottlesare often used as airtight containers for filling carbonated drinks. Because
carbonated drinks contain large volumes of CO2 gas, the container needs to bear a tremendous
pressure from the inside of the bottle.If the stress exceeds the bearing limit, the material will show
the phenomenon of local cracking and liquid overflow.For the structural design, the method of
manual adjustment before automatic adjustment was adopted. First, through manual optimization,
the initial optimal parameter combination was as follows:the inner diameter of the bottle bottom
was 17 mm, the dip angle of the valley bottom was 81◦, the deepest part of the valley bottom was
25 mm, and the outer diameter was 27 mm. Comsol software was used for automatic optimization.
Compared with the original bottle bottom, the total maximum principal stress and total elastic strain
energy in the bottle bottom after manual–automatic double optimization decreased by 69.4% and
40.0%, respectively, and the displacement caused by deformation decreased by 0.60 mm (74.1%). The
extremely high reduction ratio was caused by manual–automatic double optimization.

Keywords: computer modeling; PET bottle; carbonated drinks; stress cracking; simulations

1. Introduction

Polyethylene terephthalate (PET) is an ideal container for food and beverage packag-
ing, with properties of non-toxicity, light weight, high transparency, and impact resistance.
PET has been widely used in the packaging of carbonated beverages because it can block
CO2 gas and retain the taste of soda water [1–3]. At present, the most commonly used
carbonated beverage bottle was designed in the mid-1980s [4]. This claw-flap-shaped
PET bottle with complex bottom structure was prone to stress cracking [5]. In order to
solve the cracking problem of the PET bottle bottom, scholars have conducted a great deal
of research on the process of PET bottle injection molding and the characteristics of the
material itself. In terms of production technology, Lontos et al. [6] found that with the delay
of pre-blowing pressure relative to the stretching effect, more materials would gather in the
lower area of the final product by studying the influence of stretching and blow molding
combination on the wall thickness distribution of 1.5Lt PET bottles. Akkurt et al. [7] used
Taguchi method (TM), Grey Relational Analysis (GRA), and ECHIP to analyze the effects
of preform temperature, stretching rod position, and final pressure, and optimized the
performance parameters. In addition, the orientation and crystallinity of PET molecules
are also the main factors that determine whether the mechanical properties of finished
products are excellent [8–10]. Demirel et al. [11] used PET/nano hydroxyapatite (nHAp)
composite particles to produce PET/nHAp bottles. The PET bottle blocked about 80%
light transmission in a wavelength range of 400–700 nm and could be used in the food
industry, especially in the packaging of dairy products, which are easily irradiated by light.
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Girard et al. [12] focused on the effect of annealing before stretching on strain-induced
crystallization of PET and found that treatment at 120 ◦C for 60 s would lead to amorphous
phase relaxation and higher crystallinity, and with time, higher mechanical strength and
smaller shrinkage would be obtained. However, most of the above studies are about the
characteristics of PET materials, without considering the geometric structure of products. In
fact, the structural design of the bottle bottom is also one of the important factors affecting
the stress cracking of the PET bottle bottom [13–15].

In this paper, by manually and automatically adjusting the structure of claw-flap
PET carbonated beverage bottle bottoms, the cracking phenomenon of PET bottle bot-
toms due to stress concentration was effectively alleviated.Simple manual comparison
is necessary, which can determine the optimal solution in a large range and reduce the
number of operation groups in automatic optimization, thus, greatly shortening the opera-
tion time.Firstly, the variables were controlled manually for preliminary comparison and
optimization. Based on the preliminary optimization, the computer was used for automatic
calculation and optimization. The concrete steps were as follows: firstly, a single variable
was adjusted by manual control and the best parameter combination was determined
through the comparison of 10 groups of data. Then, by changing the material distribution,
wall thickness, and fine structure shape, the combination parameters were automatically
optimized on the premise of keeping the mass of consumable materials unchanged, further
reducing the stress (23.4 MPa) and elastic strain energy (0.153 MPa cm3), and minimizing
the deformation inthe bottle bottom (0.21 mm). This work can provide theoretical guidance
for determining the mechanical structure parameters of PET carbonated beverage bottle
bottoms. In the follow-up work, this project should explore the impact of the blow molding
environment on the mechanical properties of bottle bottoms, which is combined with the
actual production needs.

2. Principle and Experiment
2.1. Computer-Aided Modeling of Bottle Bottom Structure

SolidWorks simulation software was used to build the structure model of claw-flap
PET carbonated beverage bottle bottoms.This model is composed of five concave claw-flap-
like valleys, called the CF model. The bottom model was equally divided into five identical
72◦ regions, so only one 72◦ region was needed. The complete bottom was generated by
copying and rotating the 72◦ region with an rotating array component. In this paper, in
order to compare and only compare the performance of the structure model before and
after optimization. In the whole optimization process, the influence of other environmental
factors, such as the temperature and time of blow molding, was not increased. In the
preliminary manual model optimization, the research did not consider the thickness change
and thickness distribution for the time being, but only compared the influence of the
geometric structure of the model on the mechanical properties of the bottle bottom, so
a uniform bottle bottom thickness of 1 mm was assumed first. It is worth noting that the
claw-flap-shaped bottle bottom structure is an irregular geometric shape. In SolidWorks
modeling, if the thickness of all irregular interfaces is defined as 1 mm, then there will be
obvious cracks or cliffs at the intersection of the two interfaces due to non-coincidence,
and the bottle bottom cannot be regarded as an unbroken whole. The modeling used
SolidWorks’ own shell-pulling command to make all parts smoothly connected; there was
no cliff, and the average value of the final result was still 1 mm.

As shown in Figure 1, this article named several important parts of the model, which
are the inner diameter of the bottle bottom (the Aidentification inthegraph), the inclination
angle of the valley (B), the deepest part of the valley bottom (C), and the outer diameter
(D). Parameter change in manual optimization was also carried out in SolidWorks. By
changing the parameters, the combination of 10 groups of single variables would lead us to
preliminarily determine the optimal solution of these four parameters. The parameters at
A and D are changed by directly changing the diameter of the circle in the sketch, the draft
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angle in cutting and stretching is used at B, and the distance from the datum plane to xoy
plane is actually at C.

Polymers 2022, 14, x FOR PEER REVIEW  3  of  12 
 

 

er  diameter  (D).  Parameter  change  in  manual  optimization  was  also  carried  out  in 

SolidWorks. By changing the parameters, the combination of 10 groups of single varia‐

bles would lead us to preliminarily determine the optimal solution of these four param‐

eters. The parameters at A and D are changed by directly changing the diameter of the 

circle in the sketch, the draft angle in cutting and stretching is used at B, and the distance 

from the datum plane to xoy plane is actually at C. 

 

Figure 1. Schematic diagram of CF model and naming: inner diameter (A), inclination angle of the 

valley (B), deepest part of valleybottom (C) and outer diameter (D). 

2.2. Selections of Material and Finite Element Mesh 

The model was  brought  into Comsol  simulation  software  and  the  bottle  bottom 

material was defined as linear thermoplastic PET with a thickness of 1 mm. The material 

density  of  the  plastic was  1190kg m−3,  and  its Young’s modulus,  Poisson’s  ratio,  and 

thermal expansion coefficient were 3200 MPa, 0.35, and 7×10−5 K−1,  respectively.  In  the 

mesh  selection,  triangular mesh  is used  to divide  the model, because  triangular mesh 

has good boundary adaptability, which can prevent the generation of bad elements and 

make  the  calculation  converge  quickly.  Polygonal  elements with more  sides  (such  as 

quadrilateral  elements)  have  higher  accuracy  than  triangular  elements,  so  the  grid 

number of  triangular elements was appropriately  increased  to make up  for  the  lack of 

accuracy, totaling 45,230 elements. No more elements were introduced because too small 

meshes would increase the processing time and might even lead to non‐physical under‐

standing. 

2.3. Pressure Setting 

It  is necessary  to apply constant pressure  to  the bottle bottom  to obtain  the maxi‐

mum principal stress, elastic strain energy, and deformation of finite element simulation 

analysis. Under the same pressure, by comparing the results of the maximum principal 

stress, we can easily obtain  the advantages and disadvantages of each parameter com‐

bination  set manually, which  is also applicable  in automatic optimization. This article 

Figure 1. Schematic diagram of CF model and naming: inner diameter (A), inclination angle of the
valley (B), deepest part of valleybottom (C) and outer diameter (D).

2.2. Selections of Material and Finite Element Mesh

The model was brought into Comsol simulation software and the bottle bottom
material was defined as linear thermoplastic PET with a thickness of 1 mm. The material
density of the plastic was 1190 kg m−3, and its Young’s modulus, Poisson’s ratio, and
thermal expansion coefficient were 3200 MPa, 0.35, and 7 × 10−5 K−1, respectively. In
the mesh selection, triangular mesh is used to divide the model, because triangular mesh
has good boundary adaptability, which can prevent the generation of bad elements and
make the calculation converge quickly. Polygonal elements with more sides (such as
quadrilateral elements) have higher accuracy than triangular elements, so the grid number
of triangular elements was appropriately increased to make up for the lack of accuracy,
totaling 45,230 elements. No more elements were introduced because too small meshes
would increase the processing time and might even lead to non-physical understanding.

2.3. Pressure Setting

It is necessary to apply constant pressure to the bottle bottom to obtain the maximum
principal stress, elastic strain energy, and deformation of finite element simulation analysis.
Under the same pressure, by comparing the results of the maximum principal stress, we
can easily obtain the advantages and disadvantages of each parameter combination set
manually, which is also applicable in automatic optimization. This article chose the pressure
of carbonated beverage bottle at 20 ◦C with 8.45 g L−1 CO2 in the bottle; that is, a pressure
of 0.4 MPa (0.04 kg mm−2), which simulated the real situation of the pressure caused by
the common CO2 content in carbonated beverage bottles. The direction of the force was
outward along the normal of the bottle bottom.

2.4. Constraint Conditions

Considering that there are some constraints in the actual production process, such
as sudden sharp protrusions or depressions, that are not allowed, before stress testing
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and shape optimization, some necessary constraints need to be added to make the results
conform to the reality, and the optimized model can be applied to product production.

2.4.1. Fixed Edge

The fixed edges of the constraint were set as the inner and outer edges of the upper
edge to prevent the rigid body from translating and rotating. The upper edge was chosen
because the research object was the bottle bottom, not the bottle body, and the fixed edge
was the extension of the bottle bottom and connected with the bottle body. Constraint
Equation 1 is presented by directly setting a fixed edge:

d = 0 (1)

Before optimization, the fixed edges were added with fixed constraint and pre-
scribed displacement.

2.4.2. Free Shape Domain

Although the Yeoh model [16] does not perform well in dealing with the complex strain
state of large deformation, it is applicable and accurate for the small deformation in this
study. The nonlinear Yeoh smoothing type was used to determine the mesh deformation,
which could describe a wide deformation range. Compared with other methods [17–20],
Yeoh smoothing prevents the further deformation of these regions to some extent, and
effectively distributes the mesh deformation in the domain more evenly. Its strain energy
expression is as follows:

W = C1(I1 − 3) + C2(I1 − 3)2 + C3(I1 − 3)3 (2)

Among them, the value of stiffing factor C2 controls the nonlinear hardening of
artificial materials under deformation, which is set to 10 in this experiment, and I1 is
Cauchy–Green deformation tensor.

2.4.3. Free Shape Boundary

A free shape boundary was added to the edge of the free shape domain. Simply
put, the points on the boundary are limited to move in the area of ±dmax. The constraint
equation of free shape boundary is as follows:

d = c + R2
min∇2

‖d, −dmax ≤ ci ≤ dmax (3)

where dmax = 1 mm is the set maximum allowable displacementand Rmin is the filtering
radius. The setting of free shape boundary ensured that there was no sudden sharp
protrusion or depression at a certain point similar to a sea urchin shape.

2.5. Steady State Solver

Considering that the matrix of the model was sparse, the PARDISO direct solver [21–23]
based on LU decomposition was adopted for the steady-state solution. This solver is lo-
cated in Intel Mathematical Kernel Library (MKL), which has very good computational
efficiency and parallelism. With an increase in the number of computing nodes, PARDISO
has a nearly linear acceleration ratio. Although the direct solver uses more memory than
the iterative solver, it is robust.

2.6. Data Comparison

In this paper, the steadystates of 10 groups of modulated models are calculated, respec-
tively, and the optimal combination in the manual group was determinedby comparing
the Von Mises stress. In the subsequent iterative process of automatic optimization, Von
Mises stress, elastic strain energy, and deformation were also calculated seriatim and
used as important indexes to evaluate the mechanical structure performance of the bot-



Polymers 2022, 14, 2845 5 of 12

tle bottom [24–26]. The final comparison covers four types: the original model (O-CF
bottom), the model only optimized manually (M-CF bottom), the model only optimized
automatically (A-CF bottom), and the model with manual–automatic double optimization
(MA-CF bottom).

2.6.1. Von Mises Stress and Elastic Strain Energy

Von Mises stress is an equivalent stress based on shear strain energyand the standard
unit should be Pascal (Pa), while the most suitable unit size of bottle bottom stress is
mega-Pascal (MPa). It comprehensively considers the first, second, and third principal
stresses, and its value is:

σs =

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2

2
(4)

where σ1, σ2, and σ3 refer to the first, second, and third principal stresses, respectively.
Elastic strain energy is the energy stored by a solid due to deformation under the ac-
tion of external force and its unit is Joule (J). In this paper, MPa cm3 was used as the
homogenization unit.

2.6.2. Deformation

Deformation is divided into elastic and plastic deformation. In this chapter, the elastic
deformation is discussed; that is, the relative position of each point is changed by the
external force, and when the external force is removed, the solid returns to its original state.
The principle is simple Hooke’s law:

F = kx (5)

where k is a constant and the elastic coefficient of an object and x is the deformation.

2.7. Optimization
2.7.1. Optimized Content

When the stress concentration caused by the structure of the bottom exceeds its maxi-
mum value, the bottle bottom will crack. In addition, when the bottle with high internal
pressure is opened, the elastic strain energy stored in the deformed bottle bottom will be
released, meaning that the liquid in the bottle overflows. After manually determining
the data combination in a large range, automatic optimization focused on adjusting the
thickness and material distribution of the bottle bottom. Theoretically, the more materials
invested in the production of a bottle bottom, the greater the overall average thickness
of the bottle bottom, and the less likely it is to crack. However, considering the cost and
other factors in actual production, the research took the premise that the total quality of the
materials used was the same to carry out automatic optimization, which was feasible and
meaningful.Therefore, in automatic optimization, the total mass of materials used should
be the same. Through shape optimization, the thickness and material distribution of the
bottle bottom were changed to solve the minimum and maximum principal stress and total
elastic strain energy, which cannot be completed by manual optimization.

2.7.2. Optimization Method

The shape optimization method was used to change the small geometric parame-
ters, thickness, and material distribution parameters in the model, so as to automatically
optimize the bottle bottom. The solution method is a method of moving asymptotes
(MMA) [27], which is a three-level nonlinear algorithm based on gradient and belongs to
a convex programming method. By introducing moving asymptote, it transforms the im-
plicit optimization problem into a series of explicit, separable, simpler, and strictly convex
approximate sub-optimization problems. In each iteration, the gradient algorithm can be
used to solve the convex approximation sub-optimization problem to obtain new design
variables. This optimization used the globally convergent version of MMA (GCMMA) [28],
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including external iteration and internal iteration. The subproblems of the k-th internal
iteration under the v-th external iteration are as follows:

minimize f̃0(x) + z +
1
2

d0z2 +
m

∑
i=1

(
ciyi +

1
2

y2
i

)
(6)

subject to f̃i(x)− aiz− yi ≤ bi, i = 1, . . . , m (7)

αj ≤ xj ≤ β j, j = 1, . . . , n (8)

yi ≥ 0, i = 1, . . . , m (9)

z ≥ 0 (10)

The approximate functionsare constructed as:

f̃i(x) =
n

∑
j=1

f̃ij
(

xj
)
=

n

∑
j=1

(
pij

uj − xj
+

qij

xj − lj

)
, i = 0, 1, . . . , m. (11)

Between each outer iteration, the bounds (αj, β j) and the asymptotes (lj, uj) are
updated. In this paper, the number of iterations of automatic optimization was 17; that
is, there was no obvious change in the value of 15–17 iterations, so it was judged that the
model converges and terminates.In addition, the boundary conditions of the mathematical
model are:

minimize f0(x) + z +
m

∑
i=1

(
ciyi +

1
2

y2
i

)
(12)

subject to fi(x)− aiz− yi ≤ f max
i , i = 1, . . . , m (13)

xmin
j ≤ xj ≤ xmax

j , j = 1, . . . , n (14)

yi ≥ 0, i = 1, . . . , m (15)

z ≥ 0 (16)

In the above formulas, f0, f1, . . . , fm are given differentiable functions, while xmin
j , xmax

j , ai, ci

are given real numbers and satisfy xmin
j ≤ xmax

j , ai ≥ 0 and ci ≥ 0.

3. Results and Discussion
3.1. Comparison of Model Structure before and after Optimization

Figure 2 shows a comparison of the model structure before and after optimization;
that is, a schematic diagram of the micro-geometric parameters, thickness, and material
distribution of the optimized model. The range of 0–1 in the legend is the boundary dis-
placement relative to the normal direction. The lowest value is 0, indicating no movement,
and the highest value is 1, indicating a thickness change of 1mm relative to the normal
direction. It can be seen that the material with less stress is mainly moved to the junction of
the outer diameter and the bottom of the groove, which is also where the stress of the O-CF
bottom is the largest.The location of the maximum principal stress is the same as that in
similar articles [29,30], which proves the correctness of the experiment.The optimization
results are repeatable, and the results of multiple optimization solutions of this model are
only slightly below the relative tolerance; the relative tolerance is limited to 10−3. The
results of repeated experiments verify this view.
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3.2. Surface Von Mises Stress

The surface Von Mises stress distribution before and after optimization is shown in
Figure 3, and more detailed parameters are given in Table 1. No matter the CF model before
and after optimization, its maximum principal stress is located in the outer diameter of the
bottle bottom, especially at the junction of the outer diameter and the groove bottom, there
is obvious stress concentration. The maximum surface stresses of the O-CF bottom, M-CF
bottom, and MA-CF bottom are 72.8 MPa, 66.9 MPa, and 23.4 MPa, respectively. After
manual optimization and manual–automatic optimization, the reduction rates reach 8.10%
and 67.86%. In addition, the A-CF bottomis also compared, which means that the automatic
optimization is performed directly and the manual steps are skipped. The maximum stress
on the surface of the A-CF bottom is 24.1 MPa (66.90%) and compared with the 17 iterations
of the MA-CF bottom, the number of iterations of the A-CF bottom is increased to 20, which
increases the amount of calculation and time. The distribution of maximum principal
stress in the computer simulation of bottle bottom cracking by the O-CF bottom is basically
consistent with the cracking phenomenon in the surface stress cracking test, which proves
that the maximum principal stress plays a key role in the cracking process [29–32]. In
addition, it should be pointed out that the maximum stress of the material sometimes
appears inside the object, and Figure 3 is added to visualize the stress distribution. In order
to express the maximum stress more accurately, the research introduces the concept of
overallVon Mises stress, and the data can be seen in Table 1.

Compared with similar articles, the maximum principal stress on the surface of the bot-
tle bottom after optimization decreased by 21% and 10.8%, respectively [30,33]. Obviously,
the reduction ratio of 67.86% in this paper achieved better results.

This study, therefore, provides a new strategy to optimize the model structure.Our
results prove that the double-optimization results are superior to the other two optimization
methods. This is because simple manual optimization can adjust the given parameters
greatly, but cannot realize the synergistic influence among the parameters. Compared with
simple manual optimization, simple automatic shape optimization is undoubtedly more
accurate, but it has a large amount of calculation and many iterations (20 times). Moreover,
automatic optimization is also aimed at finetuning. For the overall specific parameters,
especially the dip angle of the valley bottom, it is difficult to change the angle by automatic
optimization without manual adjustment.
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Table 1. The maximum values of calculation results under different optimization degrees inthe CF
model.

Degree of
Model

Optimization

Surface Von
Mises Stress

Overall Von
Mises Stress

Elastic Strain
Energy Deformation

O-CF bottom 72.8 MPa 77.9 MPa 0.255 MPa cm3 0.81 mm
M-CF bottom 66.9 MPa 69.2 MPa 0.236 MPa cm3 0.56 mm

MA-CF bottom 23.4 MPa 23.8 MPa 0.153 MPa cm3 0.21 mm

3.3. Overall Von Mises Stress

It can be seen from Table 1 that compared with the O-CF bottom (77.9 MPa), the overall
maximum principal stress inthe M-CF bottom model is 69.2 MPa, which is reduced by
8.7 MPa with a reduction rate of 11.2%; after automatic optimization, the overall maximum
principal stress in the MA-CF bottom model is 23.8 MPa, and the reduction rate reaches
69.4%. This proves that in the aspect of optimization, it is difficult to manually change each
factor, and it is easy to cause conflicts among variables. The model cannot achieve the best
optimization, so it is suitable for preliminary judgment. Automatic optimization, which
can take all kinds of factors into account, presents much better results and can maintain
higher accuracy.

It is worth noting that the overall Von Mises stress given in Table 1 is, indeed, higher
than the corresponding surface Von Mises stress in Figure 3, because the maximum stress
is located inside the bottle bottom instead of the surface, but the stress relationship is still
corresponding. In addition, the minimum stress inthe MA-CF bottom model is higher
than that of the M-CF bottom model, which is due to the fact that the mass of consumable
materials is unchanged, and the materials in the area with low stress are appropriated in
the process of automatic optimization, which changes the structure of the area and reduces
the thickness of the area, but the bottom fracture is caused by the maximum stress instead
of the minimum stress. Therefore, a moderate increase in the minimum stress is acceptable.
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3.4. Total Elastic Strain Energy

In this paper, it was considered that the model tended to converge when the relative
tolerance of the iterative solver was less than 10−3. Figure 4 shows the total elastic strain
energy-iteration number diagram forthe MA-CF bottom, with 17 iterations. In addition to
the maximum principal stress that caused the cracking of the bottle bottom in the previous
section, this research also considered the total elastic strain energy of the bottle bottom,
which was shown for a pleasurable drinking experience after actual sales. When the sealed
container is opened, the pressure greater than atmospheric pressure brought by CO2 gas in
the bottle is released, and the elastic strain at the bottom of the bottle can make the liquid
overflow. Too-high elastic strain energy will make the liquid overflow more, resulting in an
uncomfortable drinking experience. It can be seen that the elastic strain energy inthe M-CF
bottom is reduced from 0.255 MPa cm3 to 0.236 MPa cm3 by 7.45% after the first manual
optimization, and that of the MA-CF bottom is reduced to 0.153 MPa cm3 by 40.0% after
the second automatic optimization. This study provides a new research direction for the
introduction of elastic strain energy at the bottom of the bottle, which combines the needs
of science and public life, and this is the significance of science.
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3.5. Material Deformation

The bottom of the bottle will be deformed under pressure. If the pressure is excessive
and the deformation exceeds the bearing limit of the material itself, the material will break,
and the macroscopic manifestation is the cracking of the bottom of the bottle. In addition,
inordinate deformation will cause instability when placing the bottle. A pressure of 0.4 MPa
was applied to the model before and after optimization.The obtained material deformation
results are shown in Figure 5. It can be clearly seen that the material deformation mainly
occurs in the center of the bottle bottom, diverges outward, and gradually decreases. Before
and after the first manual optimization, the maximum deformation inthe M-CF bottom
model decreased by 0.25 mm, with a reduction rate of 30.9%; after the second optimization,
the deformation inthe MA-CF bottom was only 0.21 mm, which was reduced by 74.1%.
The reduction in deformation also shows the structural stability of the bottle bottom, and
the optimization is successful.

Generally speaking, this study established an evaluation covering the maximum
principal stress, elastic strain energy, and deformation, of which elastic strain energy and
deformation were not studied in detail in previous articles. This improves the evaluation
system of PET bottle bottom performance and helps people engaged in plastic packaging to
get more valuable information. However, this research also has limitations. Microscopically,
we did not consider the influence of molecular orientation and crystallinity on the fracture
characteristics of the bottle bottom. Secondly, the temperature is necessary during the bottle
processing, so it is necessary to further consider the heat transfer during the processing.
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Finally, according to statistics, the high temperature in summer will make the bottom of the
bottle break more easily. Therefore, after the bottle is produced and filled with a beverage,
further research should also consider the influence of pressure change and softening in the
bottle on the performance of the bottle at high temperature.
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4. Conclusions

In this paper, the influence of geometric structure on the cracking of a PET bottle
bottom was analyzed and optimized. Manual–automatic double adjustment was adopted
to optimize the bottom structure. Compared with the original bottom, the total maximum
principal stress and total elastic strain energy in the optimized bottle bottomdecreased by
69.4% and 40.0%, respectively, and the displacement caused by deformation decreased
by 0.60 mm (74.1%). The advantages of the double-adjustment method of automatic
optimization after manual adjustment are:

1. The characteristics of high precision inautomatic optimization are maintained;
2. Manual preprocessing saves computing resources.
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