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Abstract: As a unique and important biopolymer composite, silkworm cocoons have evolved a
wide range of different structures and combinations of physical and chemical properties to resist
environmental damage and attacks from natural predators. A combination of characterization
techniques including scanning electron microscopy, mechanical tests, and Fourier transform infrared
spectroscopy were applied to investigate the morphologies, mechanical properties, and nanoscale
organizations of Antheraea pernyi cocoons from two different source regions. Mechanical tests were
carried out by using rectangular specimens cut from four directions 0◦ (width of the cocoons), ±45◦,
and 90◦ (the length of the cocoon), separately. The mechanical properties such as tensile strength,
initial modulus, and maximum load of cocoon in four directions were measured. The structural
analysis of silkworm cocoon shows that there is a slightly different combination of morphology and
properties that have adapted to coping with diverse local environments. The results of the mechanical
properties of silkworm cocoons show that the A. pernyi cocoon from north of China behaved stronger
and tougher. Besides, there were slight differences among the results of mechanical properties for
0◦, ±45◦, and 90◦ directions of these cocoons. Our studies will help formulate bio-inspired design
principles for new materials.

Keywords: silkworm cocoon; mechanical properties; composites; structure-properties; biomimetic
protective materials

1. Introduction

Cocoon is a type of unique and important biopolymer composite in nature with
excellent microstructure and ecological functions, which plays important roles in the trans-
formation from silkworm and pupa to adult moth. In comparison with domesticated
silkworm, such as Bombyx mori (B. mori), wild silkworm cocoons, such as Antheraea pernyi
(A. pernyi), are reared in the open environment require much greater protection from envi-
ronmental, biotic and physical hazards [1]. The A. pernyi cocoon is one of the major sources
of wild silk fibers [2]. The growth of the silkworm cocoon undergoes several stages: ovum,
larva (feeding phase), silkworm spinning, cocooning, preadult, and silkworm moth, as
shown in Figure 1. After hundreds of millions of years evolution, the A. pernyi can produce
cocoons with special structure and functions, which can provide a suitable temperature,
humidity, and living environment for silkworm pupae in the incubation process, and avoid
external damage such as wasp stings and bird pecking [3]. Guo et al. [4] studied the
gradient structure and property of cocoon layers, which could provide inspiration for the
separator design research focusing on the high safety and high performance for the devel-
opment of lithium-ion batteries. Kwak et al. [5] developed high-toughness natural polymer
nonwoven preforms inspired by silkworm cocoon structure with excellent mechanical
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strength and high physical stability. Hu et al. [6] provided a new way to design better static
puncture resistant materials by studying the structure of cocoons. Therefore, studying the
internal microstructure of silkworm cocoons is beneficial to the further application of these
natural biopolymer composites and developing the biomimetic materials.
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Figure 1. The growth cycle of A. pernyi: (a) eggs laid by an adult moth; (b) larva; (c) silkworm
spinning; (d) cocooning; (e) preadult; (f) an adult moth.

Nowadays, much attention has been given to the field of mechanical properties of
silkworm cocoons for years [1,7]. Despite the rapid growth of research interest in B. mori
cocoons [8–11], limited studies have been conducted to understand the structure and
functions of wild silkworm cocoons. For example, Zhou et al. [12] studied the structural
characteristics and differences in performance of every layer of the Eri Silkworm cocoon
as well as their role in the cocoon’s mechanical protection, humidity control, temperature
buffering, and UV protection. Zhou et al. [13] compared the morphological structure and
basic properties of stereoscopic cocoons, flat cocoons, and multi-silkworm flat cocoons,
which were constructed by B. mori from different cocooning sites for single or multiple
silkworms. Moreover, some research also carried out a comparative study of domestic
silkworm and wild silkworm. Chen et al. [14] described a diversity of structural features
of 27 different species of silkworm cocoons. Zhang et al. [1] explored the structure and
mechanical property relationships of four types of silkworm cocoon walls (domesticated
B. mori, semidomesticated Antheraea assamensis, and wild A. pernyi and Antheraea mylitta
silkworm cocoons) by peeling, out-of-plane compression, and nano-indentation tests and
analysis of microstructure. Guan et al. [15] showed that B. mori behaves as a weak and
brittle fiber composite, while A. pernyi behaved strong and tough. Song et al. [16] studied
the microstructure of domesticated and wild silkworm cocoons by using X-ray micro
computed tomography.

In recent years, much attention has been given to non-mulberry cocoon types such as A.
pernyi, because of its special mechanics, thermal regulation [17–19], puncture resistance [20],
and UV screening properties [21,22]. In order to maximize the utilization of green resources
and to produce silk materials that are suitable for different applications, it is necessary
to understand the structure and properties of fibers from different components of a wild
cocoon. Studies conducted on the A. pernyi cocoon in the past few years were also limited
to the cocoon shell and fibers within the shell [1]. For instance, Du et al. [23] studied
the silk fibers from three key components of the A. pernyi silkworm, i.e., peduncle, outer
floss, and the cocoon shell (both outermost and pelade parts). Dai et al. [24] conducted
a comparative analysis of iTRAQ-based proteomes for cocoons between the domestic
silkworm (B. mori) and wild silkworm (Bombyx mandarina). However, limited research
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has recently been conducted on the performance and function of A. pernyi cocoons from
different source regions.

Therefore, the main aim of this study is to explore the effects of different environ-
mental characteristics on the microscopic and macroscopic morphology, composition, and
the mechanical properties of A. pernyi cocoons by scientific experimental methods, and to
obtain a clear understanding of the structure-property of silk materials, structural charac-
terization and analysis at a molecular level is required. Two different A. pernyi cocoons
from two source regions were selected as experimental objects. The specifications, sur-
face morphology, and section microstructure were observed and compared. Besides, the
complete stress-strain curves of rectangular specimens cut from these cocoons in different
directions (0◦, ±45◦, and 90◦) were discussed and the relationship between the microstruc-
ture and properties were also analyzed. The microstructure and the fracture surfaces
of cocoons were observed by scanning electron microscopy (SEM). Exploration of the
physical and mechanical properties of this kind of natural polymer composite materials
might provide inspirations for designing and developing the next-generation bio-mimic
protective materials.

2. Materials and Methods
2.1. Preparation of Materials

The A. pernyi cocoons from two source regions were selected and the source region
of these cocoons were the Henan province (A. pernyi H, Middle-China) and the Liaoning
province (A. pernyi L, North China), separately. In China, north latitude 36◦ is the demar-
cation line of A. pernyi silkworm’ voltinism, as the A. pernyi silkworm in the area of the
south of demarcation line is classified as univolitine and the A. pernyi silkworm in the area
of north of demarcation line is classified as bivoltine races. The geographical coordinates
of Nanyang (in the Henan province) and Dandong (in the Liaoning province), are 33◦and
40◦07′ north latitude, respectively. Therefore, the A. pernyi silkworm cocoons used in this
study are univolitine (A. pernyi (H)) and bivoltine races (A. pernyi (L)). The two kinds of
A. pernyi silkworm cocoons were free-ranging in the mountains and mainly eating tussah
leaves. Besides, the time of harvest is at the beginning of September. All the cocoons
were stored in the fresh-keeping area of the refrigerator under the same environmental
conditions to prevent the live pupas from hatching. In addition, the pupa inside were
removed from these silkworm cocoons before the test. Biological replication has been
carried out for all the tests in this study. The cocoons were measured or tested by random
selection. Potassium bromide and anhydrous ethanol analytical pure (AR) were purchased
from Sinopharm Chemical Reagents Co., LTD, Shanghai, China.

2.2. Specifications Measurements

The elliptical model of cocoon was shown in Figure 2. Ten samples of cocoons from
different source regions were randomly selected and we weighed the cocoons without the
pupa. The physical dimensions of the A. pernyi cocoon, including the length of the cocoon
(2R1), width of the cocoons in minor (2R2), and major axes (2R3), were measured by using
an electronic vernier caliper (Guanglu Co., LTD, Dongguan, China). Besides, the thickness
of the cocoon layer was measured using an electronic vernier caliper by cutting the cocoon
with special tools. Each sample was measured 5 times for the average value.
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2.3. Scanning Electron Microscope (SEM) Observation

The cocoon layers with a damaged puncture area were cut into strips with a dimension
of 3 mm × 3 mm, which were then attached to conductive tape on aluminum stubs. The
microstructure of A. pernyi cocoon was observed by Scanning Electron Microscope (SEM)
(JSM6510, JEOL, Tokyo, Japan) under constant temperature and humidity (20 ◦C, 65%
humidity) after sputtering with gold for 70 s. The fiber bonding length, which can be
roughly linked to the fiber diameter, of the silk from different cocoon layers (outer layer,
inter layer, and inner layer) was also measured by using Image J software. The Image J
software was used to analyze a SEM image to find the porosity [25].

2.4. Fourier Transform Infrared Spectra (FITR)

The silk of two A. pernyi cocoons was cut into uniform fine powders and mixed evenly
with dried potassium bromide (A.R.), respectively, in the agate mortar under a constant
temperature and humidity environment of 20 ◦C and 65%. These two mixed powders were
loaded into the mold and pressed into slices. The test was carried out by a NEXUS470
Fourier infrared spectrometer (Thermo Nicolet Corporation, Waltham, MA, USA) with the
blank KBr tablet as the comparison test. Data was collected from 300 to 4000 cm−1 with a
nominal resolution of 4 cm−1 and scanned 32 times.

2.5. Tensile Properties Test

To test the tensile strength, the A. pernyi cocoon layer was cut into 15 mm × 5 mm
splines along four directions 0◦ (the width of the cocoon), the ±45◦, and 90◦ (the length of
the cocoon) separately, as shown in Figure 2b. The test samples were put into the laboratory
for 48 h before tensile properties test. The tests were carried out using an Instron 5967 with
speed of 2 mm/mm and 5 mm gauge length.

3. Results and Discussions
3.1. Specifications of Cocoon

Figure 3 shows the photographic images of the A. pernyi cocoon and a cocoon shell of
different layers. The porous A. pernyi cocoon consists of five parts: pedicle, husks, pupa,
cocoon floss, and ecdysis, which morphologically has extra cocoon grip or peduncle and
minerals by compared to the B. mori cocoon [7]. The cocoons from two source regions are
mostly long oval. The lengths of the cocoon handle, which is the unique component of
A. pernyi cocoons, are different. As shown in Figure 3a, the upper part is long-pointed, the
middle part is wider, and the lower part is slightly blunt and relatively soft. Besides, on
visual observation, the surface of the inner layer cocoon was found to be extremely smooth
compared to the surface of the outer layer cocoon. In contrast, there is a conical, closed, and
invisible hole in the lower part, that is, the sealing part, which is also the unique structure
of the tussah cocoon, as shown in Figure 3b.
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Figure 3. Digital images of the A. pernyi cocoons (a) vertical section; (b) cross section.

Cocoons vary in weight, thickness, color, and stiffness due to the rearing environ-
ment [1]. The geometrical parameters of A. pernyi cocoons were measured and summarized
in Table 1. By comparison, the weight, thickness and the size of A. pernyi (L) and A. pernyi
(H) have a significant difference (p-value < 0.01), as the former is higher and larger than the
corresponding part of the latter, as shown in Figure 4 and Table 1. The thin wall is less than
1 mm in thickness. The aspect ratio of an ellipsoidal cocoon, defined as the length ratio
between the long- and the short-axes, is around 1.84~1.95. Both these two silkworm cocoons
have brown-yellow pigment as the protective color [26]. The outer layer appears flossy
due to the relatively weak interlayer bonding for forming a three-dimensional non-woven
structure in the cocoon [3]. There are many uneven wrinkles on the outer surface of the
cocoon [27], which is gradually formed during the process of spinning silk into cocoons.
The reason is that the outer silk of A. pernyi was spun first, and therefore was dried faster
and shrunk more because the sun shined on it, as shown in Figure 4. The inner layer
was spun later, which then dried slowly with less shrinkage and was relatively compact
and smooth, as shown in Figure 3b. The structural and morphological type of cocoons
employed is usually constant within a genus [14].

Table 1. Geometrical parameters of the A. pernyi cocoons from two different source regions (the error
in this table is standard deviation).

Weight
(g)

Thickness
(mm)

Length (mm) Width (mm) Ratio
2R1 2R2 2R3 R1/R2 R1/R3

A. pernyi (H) 0.54 ± 0.04 0.39 ± 0.08 41.45 ± 3.60 21.32 ± 1.43 22.51 ± 1.38 1.94 1.84
A. pernyi (L) 0.84 ± 0.05 0.45 ± 0.06 46.52 ± 3.10 23.89 ± 1.52 24.67 ± 1.55 1.95 1.89

p-value 1.14 × 10−7 7.30 × 10−4 2.11 × 10−5 4.98 × 10−7 2.11 × 10−6 - -
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3.2. Morphological Characteristics of the Component Layers of Silkworm Cocoon

It can be seen from the SEM image of Figure 5 that the silk consists of two threads
bonded by sericin, which is a group of glue proteins spun by the middle silk gland of the
silkworm. Fibroin fibers were surrounded by sericin and were fixed to each other in the
cocoons. At the most general level, the A. pernyi cocoon is an optimal and a multi-layer
porous fiber structure made of overlaying bave and a limited amount of raw materials. Both
layers may be considered as a porous matrix of sericin reinforced by randomly oriented
continuous fibroin fibers [9]. The silkworm cocoon comprises multiple layers along with
high porosity, which is attributed to a cluttered nonwoven structure [3,14,28]. Silk sericin
in the percentage of 30–35% of the whole cocoon [5,29], as a natural binder, provides the
inter fiber and inter layer adhesion to form a structural integrity composite cocoon and
enhance the mechanical properties of cocoons. A. pernyi silk fiber is wide and flat, and each
silk is formed by continuous twin silk filaments bonded by sericin [3].
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The SEM images in Figures 6 and 7 show the micro-structures of different A. pernyi
cocoon layers (outer layer, middle layer, and inner layer) from two source regions at
different magnifications to make a comparison on their morphologies. Cocoons with this
structure always have a graded layer structure, with the porosity decreasing through the
thickness direction from the outer layer to the inner layer [14]. Compared with the cocoon
of the middle and the inner layers, the pores in the cocoon of the outer layer are more
numerous and larger. The outer silk is loose and round, while the inner silk is interlaced
tightly and is smooth and flat, as can be seen in Figure 8. It is seen in Figures 6 and 7 that
the inner layer has a lower porosity (i.e., a higher silk density), which can be certified by
the results shown in Table 2.
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Table 2. Fiber bonding length of different cocoon layers.

Fiber Bonding
Length (µm) Porosity (%)

A. pernyi (H)
Outer layer 51 ± 9 25.65 ± 1.84

Middle layer 61 ± 4 10.25 ± 1.02
Inner layer 63 ± 5 5.21 ± 1.01

A. pernyi (L)
Outer layer 55 ± 4 11.62 ± 2.67

Middle layer 65 ± 4 5.61 ± 0.66
Inner layer 66 ± 5 3.70 ± 0.90

Besides, the cocoon surface is not smooth and was loosely stacked to dense and
cubic crystals with different size, uneven shape, and un-uniform distribution. These
crystals, identified as calcium oxalates [14], are deposited on the outer and middle layer
surface of the outer layer fiber [6]. This feature may have a functional role, such as
preferential gating of CO2 from the cocoon inside to outside and temperature regulation to
maintain a physiological temperature inside the cocoon irrespective of the surrounding
environment [30]. These varied size crystals are piled up on the silk fibers, especially in
the crevices where fibers cross, and filling the gaps between them, thereby decreasing
the cocoon porosity, as shown in Figures 6b and 7b. They did not show any influence
in enhancing the interlaminar adhesion between the cocoon layers, but exhibited much
higher hardness than the cocoon pelades [1]. They contribute by trapping still air inside the
cocoon structure and enhancing the thermal stability of the cocoon [16]. The wider function
of calcium oxalate has not yet been investigated in detail and this trait, shared by many
cocoons, is hence still little understood [30]. Besides, little crystals were observed on the
surface of the inner layer cocoon, as shown in Figures 6c and 7c.

Moreover, the fiber bonding length from the SEM pictures of cocoon has been roughly
measured, which can be roughly linked to the fiber diameters (Table 2). From Table 2, it
can be seen that the fiber bonding length (i.e., fiber diameter) of the silk from different
layers of A. pernyi (L) is higher than the corresponding part of A. pernyi (H). Besides, the
bonding length of outermost layer is a little larger than the innermost surface due to the
faster spinning speed of silkworm cocoons. All of the parameters manifest like this may
ascribe to the spinning method of cocoons [31]. In general, with the increase of spinning
speed of silkworm cocoons, the fibers become finer and the fiber arrangement becomes
denser. As the materials inside the silkworm caterpillar diminished, the movement speed
of the caterpillar begins to undulate [32].

Comparisons were performed to find the differences of porosity between the outer
layer, middle layer, and inner layer of the cocoons (Table 2). The results show that porosity
has significant differences in the cocoons’ outer layer, middle layer, and inner layer. It can
be seen that the outer and inner layers have the highest and lowest porosity in both the
two A. pernyi cocoons. Besides, the porosity of A. pernyi (H) cocoon layers are larger than
the corresponding part of A. pernyi (L) cocoon layers.
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Moreover, the cross-sectional images of the A. pernyi (H) and A. pernyi (L) cocoons
were shown in Figure 8. The cross section of the silk from the outer layer is flat and the
arrangement is regular. The cross section of the middle layer is more regular than silk from
the outer layer and the arrangement is relatively fluffy. The cross-section of silk from the
inner layer is flat and the distribution is compact. Therefore, it can be noted that from the
inner layer to the outer layer, the morphological structure of the fiber surface is first densely
packed, then becomes loose and finally begins to be closely embraced.

3.3. FTIR Spectra Analysis

In Figure 9a, the FTIR spectra showed absorption peaks over the range
4000−400 cm−1 using 32 scans of the A. pernyi cocoons. The infrared spectrum of silk
fiber is formed according to the different vibration wave bands generated by the structural
characteristics of amide groups in the protein polypeptide chain of the fiber. The silk spectra
are typical with a characteristically strong polypeptide backbone amide absorption bands.
For proteins, the main group is amide, and all the amide bands can be characterized as a
combination of separate contributions from the various protein structural motifs such as
β-sheets, α-helices, turns, and random coils [33]. There are some characteristic peaks in
Figure 9b, and the analysis of these characteristics can be found below. The higher wave
number broad absorption at 3423 cm−1 as observed from the raw outer surface of A. pernyi
cocoon (H) shows the presence of other functional groups in addition to the vibration
arising out of O-H due to the presence of water in Figure 9a. In the absorption peaks of the
3300−2800 cm−1 region (C-N stretching vibration), 3300−3000 cm−1 and 3000−2800 cm−1

are unsaturated and saturated C-H stretching vibration absorption separately. The weak
wave number broad absorption around 2927 cm−1 was observed vibration arising out of
C-H.
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For protein components, the most discriminating zone in FTIR spectra is the so-
called fingerprint region, located around 1700−700 cm−1, where the complexity of the
vibrational components is expressed [34]. It is well-known that the amide I bands (around
1700−1590 cm−1) and amide II bands (around 1590−1460 cm−1) are extremely sensitive
to atmospheric water vapor and amide III bands (around 1280−1190 cm−1) is less-water
sensitive [35]. Therefore, when analyzing the secondary structure of proteins, amide III
is generally taken as the main research object. In Figure 9c, the very strong vibration
around 1632 cm−1 (1636 cm−1 and 1641 cm−1, respectively) is assigned to asymmetric
CO vibration and the strong vibration around 1315 cm−1 is assigned as symmetric CO
vibration of the oxalate group [29]. The two main diagnostic bands identified for calcium
oxalate hydrate are the O-CO out of phase bonding at 779 cm−1 and the asymmetric C=O
stretching at 1315 cm−1 [14]. The two peaks corresponding to calcium oxalate at 1315 cm−1

and 779 cm−1 are well identified. Besides, the adsorption peaks show as 1240 cm−1 in
amide III band and 695−700 cm−1 in amide V band, β-sheet. In the 960−966 cm−1 region,
there is a moderate absorption (amide IV band, β-sheet). The study shows that alanine
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and alanine are connected to each other in the silk protein molecule, forming the propyl-
propyl peptide chain structure, and the absorption peak of ~965 cm−1 is the characteristic
absorption band of this structure and correspond to the C-N stretching and movements of
CH3 groups and/or to the N-H rocking [36] from the Ala-Ala peptide structure constituting
β-sheet crystals. It can be seen that the characteristic peaks of silk in the two regions are
basically the same, that is, the protein secondary structure is very similar, but it is different,
to some extent, to the absorption strength and the vibration strength of the wave of tussah
silk in the two different regions.

Magoshi et al. [37] proposed to use the ratio of two bands ( RA1265
RA1235

) as the basis for
the qualitative and quantitative determination of the crystallization index of the silk. As
shown in Table 3, silk from A. pernyi (L) shows the higher crystallization index than the
corresponding part of A. pernyi (H), which indicated that the silk in A. pernyi (L) has
relatively higher oriented fiber.

Table 3. The crystallization index of silk measured by infrared absorption spectroscopy (RA is
relative absorbance).

RA1265 RA1235 Crystallization Index

A. pernyi (H) 0.98 0.97 1.01
A. pernyi (L) 0.85 0.81 1.05

3.4. Tensile Mechanical Properties of Cocoon Composites

The tensile properties of samples were investigated in the cocoon of 0◦, ±45◦, and 90◦

directions. Several representative tensile stress-strain curves of rectangular specimens of
the plane cocoon walls obtained from tension tests are given in Figure 10. It is observed
that these two cocoons have a similar general form to their tensile stress–strain deformation
profile in the plane of the cocoon wall. Although delaminations of the sub-layers occur in
the thickness directions due to the relatively weak bonding of sericin of the outermost layer
during tension, the stress rises nonlinearly with the increasing strain prior to failure, which
has more complex stress-strain profiles and is correlated well with the large elongation
of wild silk fibers [38]. The stress rises with strain to a maximum value and the gradient
of these curves change twice through apparent yield points until the stress falls relatively
rapidly after the maximum strain. Then, the cocoon shell specimen enters its “plastic”
stage, where a post-yield modulus can be obtained (Table 3). The bonding of sericin was
damaged, as a failed planar structure was observed after tensile failure from A. pernyi due
to the stronger bond in the 3D cocoon fibrous assembly [39]. Then, the fibers were broken,
which is the main fracture mechanism for the cocoons [17].
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In addition, the A. pernyi cocoon (L) exhibits a high ability of elastic deformation,
with an elastic limit strain higher than 18% in the four directions. It is observed that
the maximum elongation was significantly higher in A. pernyi cocoon (L) (20.24 ± 1.9%)
than A. pernyi cocoon (H) (14.29 ± 1.18%). Evidently, the maximum load of A. pernyi
cocoon (L) (101.1 ± 10.62 N) specimens are much higher than those of A. pernyi cocoon (H)
(125.79 ± 11.2 N). The results were confirmed by the relatively higher oriented fiber of the
silk in A. pernyi (L). However, the tensile modulus of the A. pernyi cocoon (L) specimens in
different directions is lower than that of the A. pernyi cocoon (H).

The mechanical properties of the cocoon, such as tensile modulus, maximum load,
ultimate tensile strains, and ultimate tensile stress in different directions are summarized
in Table 3. It can be seen that the maximum load and ultimate tensile stress of the A. pernyi
cocoon (H) in the ±45◦ directions are evidently higher than those in the longitudinal and
transverse directions. This is due to the anisotropic distribution of the silk orientations in
the cocoon, resulting from the manner in which silkworm caterpillars spin silks [40]. This
interesting phenomenon of anisotropic morphology may have essential meanings for the
cocoons’ biological functions to protect pupae [41].

4. Conclusions

In summary, the microstructure and mechanical properties of A. pernyi cocoons
from two different source regions were studied in this work. The obtained results are
summarized below.

(1) There is a slightly different combination of morphology and properties that have
adapted to coping with diverse local environments. In general, the A. pernyi (L) cocoon has
a bigger size, heavier and thicker cocoon layer, and longer fiber bonding length than the
corresponding part of A. pernyi (H).

(2) Both of these two A. pernyi cocoon composites share a similar fibre-network struc-
ture with fibroin fibers overlapped and connected by sericin binder. A large number of
cubic crystals were attached to the surface of cocoon layer. The porosity of A. pernyi (H)
cocoon layers are larger than the corresponding part of A. pernyi (L) cocoon layers.

(3) The protein secondary structure of the silk from the two regions is similar, while
the absorption intensity of infrared light and vibration intensity are different.

(4) Tensile mechanical tests showed that the A. pernyi (L) cocoon behaved stronger and
tougher. Besides, there are no significant differences among the results of the mechanical
properties for 0◦, ±45◦, and 90◦ directions of these two cocoons.

(5) In general, A. pernyi (L) cocoons from northern China have relatively excellent
performance compared to A. pernyi (H) cocoons, which is perhaps due to the physic-
geographical environment and meteorological environment in northern China.

Understanding such natural composite structures and the mechanical behaviors will
be the basis for the bionic design of new protective and light-weight fibrous materials and
structures. Researchers pay attention to the design and develop next-generation bio-mimic
protective materials on the basis of their biological functions, such as defense against
natural enemies, thermal regulation, and anti-bacterial function.
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