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Abstract: In this study, natural fiber-reinforced polylactic acid (NFRP) composite materials were
prepared by adding nucleating agents (NAs) and natural fiber (NF) to compensate for the low
thermal stability and brittleness of polylactic acid (PLA). The thermal stability of the fabricated
composite material was investigated by differential scanning calorimetry and thermogravimetric
analysis. In addition, the tensile modulus of elasticity according to the crystallinity of the composite
was measured. The crystallinity of the PLA composite increased to ~700% upon the addition of
the NA; thus, the thermal stability also increased. However, the changes in crystallinity and tensile
modulus were insignificant when the concentration of the NA added was 4 wt.% or higher. The
study demonstrates that the addition of NA and NF is effective in improving the thermal stability
and mechanical properties of NFRP.

Keywords: biodegradable polymer; natural fiber; nucleating agent; thermal stability; natural
fiber-reinforced plastics

1. Introduction

Petroleum-based plastics, which are hard to decompose, have contributed significantly
to our daily lives owing to their excellent processability, high physical properties, low
specific gravity, and low price. However, a large amount of waste, including vinyl, styro-
foam, and plastic containers, are disposed of in landfill or by incineration after use, causing
serious environmental pollution, such as environmental hormones and air pollution [1–3].
Due to these problems, the automobile industry employs eco-friendly materials such as
natural fibers and biodegradable polymers to fabricate the interior and exterior materials
of automobile bodies. Consequently, there is a growing interest in the development and
utilization of more environmentally friendly materials [4,5].

Polylactic acid (PLA) is a biodegradable polymer obtained by polymerizing natural
polysaccharides such as corn and potato starch. Owing to its better processability, biocom-
patibility, biodegradability, and mechanical properties compared withother biodegradable
polymers, it has been applied to medical products, packaging industries, and filaments for
3D printers [6–13]. Additionally, owing to the decomposition of PLA into HO2 and CO2 at
the time of disposal, it is attracting considerable attention as a substitute for petroleum-based
hard-to-decompose plastics [14–17]. However, the scope of its commercialization is greatly
limited by the low heat resistance and low crystallinity due to slow crystallization [18–23].

The crystallinity of PLA is an important factor for mechanical and durability per-
formances and heat deflection temperature in molding applications [24]. The addition
of a nucleating agent (NA) to increase the crystallinity of PLA reduces the surface free
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energy barrier to nucleation and results in a higher crystallization temperature [25,26].
Harris et al. [24] demonstrated that the half-life of isothermal crystallization at 115 ◦C with
2 wt.% talc in PLA could be reduced by approximately 65 times compared with that of pure
PLA. Nagarajan et al. [27] increased the crystallinity of PLA from 10% to 45% of that of pure
PLA by adding 0.25 wt.% of LAK-301, an aromatic sulphonate derivative (potassium salt of
5-dimethyl sulfoisophthalate); crystallinity of up to 50% was achieved for LAK-301 1 wt.%.

Furthermore, another method of increasing the crystallinity of PLA is the addition
of natural fibers (NF) to the polymer matrix [28,29]. The NFs can be used as a reinforcing
agent in the PLA to increase the crystallinity and heat resistance and has the effect of
reducing production cost by replacing a certain percentage of the matrix material with
cheap NFs [30].

In this study, NA (LAK-301), an aromatic sulphonate derivative, was used in lyocell
and PLA to investigate the thermal properties and crystallinity of NF-reinforced composites
as a function of the added NA content. The crystallinity and thermal stability of the
composite according to the LAK-301 content were studied, and the effect of the increased
composite crystallinity on the mechanical properties was determined.

2. Experiment
2.1. Materials

PLA (PLA-2003D, Nature works, Minneapolis, MN, USA), NA (dimethyl 5-sulfoisophthalic
acid potassium salt, LAK-301, Takemoto oil & fat Co. LTD., Gamagori-shi, Japan), and NF
(Lyocell, Hyosung, Seoul, Korea) were used in the experiments.

2.2. Specimen Preparation

All the composites were prepared by blending in a lab-scale homemade internal
mixer. To prepare the composite, PLA, NA, and NF were mixed in a tailored ratio and
melt-blended at 180 ◦C in a mixing chamber temperature with a screw speed of 250 rpm
for 30 min in a lab-scale home-built internal mixer. The total weight ratio of matrix to fillers
was fixed at 4:1, and the NA was mixed in the PLA polymer in ratios ranging from 2 to
6 phr. Table 1 presents the various mixing ratios of the PLA/NA/NF in the composites.
After melt-blending, each sample was molded by hot press using the vacuum bag molding
method. The optimized processing temperature, time, and pressure were 180 ◦C, 15 min,
and 10 MPa, respectively.

Table 1. PLA/NA/NF formulation for the composite preparation.

Samples PLA (wt.%) NA (phr) NF (wt.%)

P-NA0-NF 80 0 20
P-NA2-NF 80 2 20
P-NA4-NF 80 4 20
P-NA6-NF 80 6 20

2.3. Measurement Methods

The miscibility and calorimetry of each resin were measured by differential scanning
calorimetry (DSC 204 F1 Phoenix, Netzsch, Selb, Germany). Approximately 7 mg of
each sample was used for the analysis. All the samples were heated at a constant rate of
10 ◦C/min up to 200 ◦C and then cooled under the same conditions (−10 ◦C/min up to
room temperature). The chamber in which the sample was kept was purged with nitrogen
gas at a flow rate of 20 mL/min to maintain an inert environment.

The thermal stability of the fabricated composites was determined in a nitrogen
atmosphere at a heating rate of 10 ◦C/min up to 800 ◦C using a thermogravimetric analyzer
(TGA 550, TA Instruments, New castle, PA, USA).

The different structures of the composites treated under different NA contents were
determined using a wide-angle X-ray diffractometer (XRD, EMPYREAN, PANalytical
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LTD.,Worcester, UK), employing an EMPYREAN X-ray diffractor with a customized auto-
mount and a CuKα radiation source at 40 kV and 30 mA. Diffraction patterns were recorded
for the diffraction angles ranging from 10◦ to 60◦ at a speed of 2 ◦/min.

The tensile modulus of NF-reinforced PLA composites was measured using a universal
test machine (5982, Instron LTD., Norwood, MA, USA), and the test method for studying
the tensile properties of composites was conducted in accordance with ASTM D638-14
type I. The testing grip pressure and loading speed were set to 20 bar and 5 mm/min,
respectively. The average values were calculated after measuring the tensile properties of
five specimens under each condition.

The fractured surfaces of the tensile modulus test samples were examined by scanning
electron microscopy (SEM, CX-200TA, Coxem, Deajeon, Korea) with an excitation voltage of
20 kV. The fractured surfaces were cleaned with alcohol to eliminate any impurities before
the test and coated with a thin platinum layer by evaporation to improve conductivity.

3. Results and Discussion
3.1. Thermal Properties and Crystallinity after the Addition of NA

PLA has poor thermal stability and impact resistance due to its low crystallinity and
slow crystallization rate, making it difficult to use in fields requiring good thermal and
mechanical properties. To improve the thermal stability and mechanical properties of PLA,
it is necessary to add a NA that can accelerate the crystallization as well as endow high
crystallinity [31,32].

PLA crystallizes in approximately 2 h in the temperature range of 90–120 ◦C, between
its Tg (glass transition temperature) and Tm (melting temperature). NA was added to
compensate for these shortcomings, and the DSC curves of the PLA composites as a
function of the added NA content are shown in Figure 1.
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Figure 1. DSC thermograms of the NF-reinforced PLA composites with different NA contents; DSC
curves of (a) first heating cycle, (b) cooling cycle, and (c) second heating cycle.

As shown in Figure 1b, crystallization peaks were observed during cooling for the
PLA composites containing NA. In the case of the PLA composite that did not contain
NA, no peak corresponding to Tc (crystallization temperature) could be observed during
secondary heating. In the case of P-NA2-NF, the structures that were not crystallized during
the cooling process showed a fine crystallization peak during secondary heating. During
the cooling process, the extent and rate of crystal formation increased with increasing
NA content [22,31,32]. In addition, as shown in Figure 1c, double peaks corresponding to
melting were observed in the DSC curves of the PLA composites containing the NA. The
crystallinity improved upon the addition of a NA, and it can be inferred that crystals with
a shape different from that of the conventional PLA available were generated.

An equation was used to obtain the percentage crystallinity (Xc) of composites, and the
relationship between the NA contents and crystallinity is shown in Figure 2. The method
uses Equation (1)

Xc =

[
∆Hm − ∆Hcc

∅× f .∆H0
m

]
× 100% (1)
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Figure 2. Percentage crystallinity of the NF-reinforced PLA composites with different NA contents.

Here, ∆Hm represents the melting enthalpy; ∆Hcc is the cold crystallization enthalpy;
f.∆H0

m is the 100% crystalline PLA’s melting enthalpy (93.7 J/g). ∅ is the weight fraction of
PLA in the composites [22,32].
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Figure 2 and Table 2 shows the crystallinity calculated according to Equation (1) based
on the DSC data. For PLA composites with added NA, the crystallinity increased more than
that of P-NA0-NF. The size of the PLA crystal becomes smaller as the NA is added; however,
the crystallinity did not increase for P-NA6-NF even when 6 phr of the NA was added [33].
Thus, there is a critical minimum concentration of the NA. Above this concentration there
is no significant change in the crystallization rate due to the motion of the NA. In this study,
the economical amount of the NA to be added for PLA crystallization was determined to
be 2 phr.

Table 2. Thermal characterization of the NF-reinforced PLA composites with different NA contents.

Samples 1stTm (◦C) 2ndTm (◦C) ∆Hm (J/g) Tmc (◦C) 1stTcc (◦C) 2ndTcc (◦C) ∆Hcc (J/g) Xc (%)

P-NA0-NF 150.4
/158.0

150.6
/157.1 34.16 - 106.9 112.7 29.58 6.11

P-NA2-NF 149.9
/157.4

150.6
/156.9 32.93 105.0 105.8 105.3 7.733 33.61

P-NA4-NF 150.6
/158.0

151.5
/157.2 34.05 106.7 107.1 - - 44.31

P-NA6-NF 150.5
/158.1

151.3
/157.0 33.33 109.2 105.1 - - 44.46

In addition to the crystallinity measurement using DSC, the reliability of crystallization
was confirmed using XRD. Figure 3 shows the XRD results of the PLA composites with
added NA (0, 2, 4, 6%) and without NA (P-NA0-NF). For P-NA0-NF, which did not contain
NA, no peak corresponding to crystallinity was observed. For PLA composites with added
NA, the percentage crystallinity (Xc) increased, and a new crystal peak (203) appeared
in the XRD pattern [4,6]. This peak appears due to the change in the crystal phase with
increasing crystallization rate owing to the addition of the NA; the crystallization proceeds
from the preceding to the plate shape [4,6,34].
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Thermogravimetric analysis (TGA) is a commonly used technique for the rapid eval-
uation of the thermal stability of different materials, and it indicates the decomposition
of polymers at various temperatures. Figure 4a shows the TGA thermograms of the NF-
reinforced PLA composites with different NA contents from room temperature (28 ◦C) to
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800 ◦C in a nitrogen atmosphere. Figure 4b shows the derivative TG (DTG) curves of the
TGA curves, confirming the thermal decomposition of the NFRP over a certain temperature
range at various NA contents. In the case of P-L20-NA0, which did not contain NA, thermal
decomposition was initiated at 300 ◦C, and rapid decomposition occurred at 350 ◦C. In the
case of the NFRP composite materials containing NA, thermal stability improved upon
crystallization. NFRP containing NA underwent first pyrolysis at 320 ◦C, and the thermal
stability improved compared with that of P-L20-NA0. The second pyrolysis peak was
observed at 370 ◦C. In addition, the primary pyrolysis peak at 320 ◦C was considered to
correspond to the decomposition of the unstable crystals of PLA.
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As an NA is added, the unstable polymer in which radicals are formed is initially
thermally decomposed. However, more stable pyrolysis is observed at higher temperatures,
and the final yield also increases.

In an in-depth analysis, the integral procedure decomposition temperature (IPDT)
proposed by Doyle [35] has been correlated with the volatile parts of polymeric materials
and used to estimate the inherent thermal stability of polymeric materials [36]. The IPDT
was calculated as follows:

IPDT(◦C) = A∗·K∗
(

Tf − Ti

)
+ Ti (2)

A∗ =
S1 + S2

S1 + S2 + S3
(3)

K∗ =
S1 + S2

S1
(4)

Here, A* is the area ratio of the total experimental curve and the total TGA thermo-
gram; Ti is the initial experimental temperature. Tf is the final experimental temperature.
Figure S1 shows a representation of S1, S2, and S3 for calculating A* and K*. The ther-
mal stability results calculated according to the above method are presented in Table 3,
where IDT is the initial polymer decomposition temperature, and Tmax is the maximum
pyrolysis temperature.

Table 3. Thermal stability parameters of the NF-reinforced PLA composites with different NA contents.

Sample Name IDT (◦C) Tmax (◦C) A*·K* IPDT (◦C)

P-NA0-NF 414.48 351 0.581 374.20
P- NA2-NF 494.88 369 0.603 380.86
P- NA4-NF 561.54 370 0.622 386.69
P- NA6-NF 626.92 372 0.635 390.45

The IPDT of the P-L20-NA0 sample was 374.20 ◦C, and the IPDTs of the composites
with added NA were higher than that of pure composite. The thermal stability of NF-based
PLA composites increased with the increasing content of NA. These results indicate that
NA can increase the thermal stability of NF-based PLA composites, which is due to the
increase in PLA crystallinity.

3.2. Modulus of Elasticity after the Addition of NA

Figure 5 shows the mechanical properties of PLA composites according to the amount
of NA. The NAs were added to improve the physical properties of the PLA composites. By
optimizing the ratio, the effect of the NA on the tensile modulus was determined. The P-
NA2-NF sample with 2 phr of added NA showed a higher tensile modulus than P-NA0-NF,
and as the NA content increased, it had no significant effect on the tensile modulus [37,38].

Additionally, as shown in Figure 6, when different amounts of NAs were added, the
crystallinity and crystallization rate increased, and the mechanical properties changed.
Consequently, in a crystalline resin such as PLA, the degree of crystallinity increases in
the process of forming a solid from the molten state through cooling. The tensile modulus
is improved by adding the NA, and the crystallinity is improved by refining the crystal
size. As the crystallization temperature of PLA increases, the overall crystallization rate
increases, making it possible to reduce the cooling time when molding the PLA composites.
NAs have a critical minimum concentration, depending on the type of NA, above which no
significant effect on the crystallization rate is observed due to the addition of NA [33,36–38].
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After the tensile modulus test, the fractured section of each sample was observed by
scanning electron microscopy, and the results are shown in Figure 7.
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Figure 7. Scanning electron microscopy images of the fractured surfaces of NF-reinforced PLA
composites with different NA contents.

The morphology of the fractured surfaces of the specimens differs from each other.
The fractured surface of P-NA0-NF differs from that of samples with NA added because of
the higher tensile modulus of PLA composites in the NA2, NA4, and NA6 systems. The
sample with added NA is clearly broken, whereas the sample with no added NA breaks
in lumps.

4. Conclusions

Through thermal analysis, this study demonstrates that the crystallinity of PLA, a
biodegradable polymer, can be improved with the addition of an NA (LAK-301). Although
pure PLA is biodegradable and eco-friendly, its crystallinity, as well as the rate of crystalliza-
tion, are low. The proportion of the cooling process increases during the actual composite
material molding or injection molding, because of which the overall cycle time increases.
Therefore, we added NA, which was expected to improve the crystallinity. The overall
shorter cycle time and an improved degree of crystallinity, as demonstrated in this study,
render this material a strong competitor against general-purpose resins. The effect of NA
content on the thermal and mechanical properties of the NF-reinforced PLA composites
was investigated. NAs can create nucleation sites and promote the crystallization of PLA.
The thermal analysis confirmed that crystallization was accelerated upon adding NA. In
the case of P-NA4-NF containing 4 phr of NA, the Xc value was the highest (44.31). There
was no significant effect on crystallization rate above a certain amount of NA. A critical
minimum concentration was considered to exist due to the motion of the NA, and the
most economical amount of NA for endowing good mechanical properties to the material
was determined to be 2 phr. The degree of crystallinity is increased due to the presence
of a NA during the transformation from the molten state to the solid state after cooling so
superior thermal stability and mechanical properties compared with those of raw PLA can
be achieved.
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