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Abstract: In this work, we convert a plastic waste, i.e., polystyrene (PS), into a sorbent by a sim-
ple sulfonation process. The sulfonation time was optimized and the structures of the resulting
sulfonated polystyrene (SPS) was characterized by field emission scanning electron microscopy,
energy-dispersive X-ray and contact angle tests. The results showed that the sulfonation time of 7 h
can introduce abundant sulfonic groups and preserve the self-standing structure. Additionally, the
SPS has a three-dimensional porous structure and hydrophilic surface because of the presence of
numerous sulfonic groups, which could serve as effective binding sites for immobilizing varying
pollutants. Furthermore, as a proof-of-concept, the adsorption performance of the SPS foams was eval-
uated using three pollutants, namely Pb2+, lysozyme and methylene blue. The adsorption isotherms
were fitted by the Langmuir and Freundlich models, while the kinetics of the adsorption processes
were analyzed using the pseudo-first-order, pseudo-second-order and intraparticle diffusion equa-
tions. It was found that the adsorption isotherms of Pb2+ and lysozyme can be better described by the
Langmuir model, leading to maximum equilibrium adsorption uptakes of 10.5 and 15.7 mg g−1 for
the adsorption of Pb2+ and lysozyme, respectively. Importantly, the pollutant-saturated SPS is readily
regenerated by acid washing, and the recovered sorbents exhibit outstanding cyclic performance.
The abundant availability of feedstock, facile preparation and regeneration processes render the SPS
foams a promising sorbent for practical applications.

Keywords: sulfonated polystyrene; water treatment; Pb2+; lysozyme and methylene blue

1. Introduction

With the growth of the global population and the aggravation of environmental
pollution, an ever-increasing demand for clean water will be witnessed in the coming
decades. Effective removal of pollutants from water is of paramount importance for water
security [1–3]. In this context, many water treatment technologies, such as coagulation–
flocculation, advanced oxidation, membrane filtration and sorption, have been extensively
explored to remove pollutants from water sources [4–7]. Of these techniques, sorption is
considered to be one of the most promising approaches because of its simplicity and low
cost [8–13]. Since the sorbent plays a key role in the sorption process, developing high-
performance sorbents is crucial for the feasibility of applying sorption in water cleanup.
Thus far, numerous sorbents, such as carbons [14–18], oxides [19–25], nitrides [26–29]
and polymers [30–35], have been reported. For example, Deng et al. prepared thio-
functionalized polyacrylonitrile fiber for the selective and enhanced adsorption of mercury
and cadmium from water [30]. Moreover, Sapurina et al. expounded the sorbents used
for water purification based on conjugated polymers [34]. Unfortunately, most of these
reported sorbents suffer a common drawback, i.e., high costs. In particular, the complicated
fabrication process of these materials poses a great obstacle for large-scale application. As a
result, high-performance and cost-effective sorbents are highly desirable, but unfortunately
still lacking.
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Our has group devoted many efforts to searching for sorbents for water clean-up [36–39].
We fabricated three-dimensional hierarchical architectures by integrating carbon nanofibers
and graphene nanosheets into macroscopic graphite felt supports [36,37]. The resulting
composite monoliths showed excellent adsorption performance for the removal of heavy
metal ions, dyes and organic solvents from aqueous solutions. In addition, we prepared
hierarchical magnetic carbon nanosheet assemblies, which showed remarkable adsorption
uptakes of 453 and 724 mg g−1 for the adsorption of Pb2+ and Congo red, respectively [38].

Recently, we fabricated mono-dispersed sulfonated polystyrene (SPS) nanospheres for
water treatment, which could effectively reduce the concentration of heavy metal ions in the
solution to ppb levels in several minutes [39]. However, the widespread application of SPS
nanospheres is limited because of their cost and the tedious multi-step preparation process.
Moreover, SPS nanospheres are always used in powder form and must be collected from
aqueous solutions by filtration after the adsorption process, which consumes additional
time and manpower, further increasing the overall operating cost of the sorption process.

Polystyrene (PS), a polymer synthesized by the free radical polymerization of a styrene
monomer, is extensively employed in plates, utensils (single-use), packing, toys, DVD cases
and foam coffee cups [40]. However, the disposal of these products creates environmental
pollution because of their nondegradable nature [41]. Additionally, the recycling of PS is
currently costly and quite limited, particularly in some developing countries, which leads
to serious “white pollution”. The growing scientific research elucidates the consequences
of PS for wildlife animals and their habitats [42]. Given the concept of changing waste into
treasure, it is of great significance to develop valuable products from PS waste [43–45].

Motivated by these critical issues, in this work, we utilized PS waste as a feedstock
to fabricate a cost-effective sorbent via a simple sulfonation process. PS foams are widely
used in the packaging industry. To this end, herein, we convert spent PS foams into a
cost-effective sorbent via a simple sulfonation process. The preparation process is simple
and does not involve any sophisticated instruments or complicated fabrication process.
The resulting SPS sorbent exhibits a self-standing porous structure, greatly facilitating the
separation and regeneration processes, which is highly favorable for practical applications.

2. Materials and Methods
2.1. Materials

Sodium hydroxide (≥96.0%) and anhydrous ethanol (≥99.7%) were purchased from
the Nanjing Chemical Reagent Co. Ltd., Nanjing, China. Sulfuric acid (98.0%) and lead
nitrate (≥99.0%) were purchased from the Damao Chemical Reagent Co. Ltd., Tianjin,
China. Hydrochloric acid (1%) was purchased from the Guangdong Minggu Chemical
Technology Co. Ltd., Shanghai, China. Lysozyme and methylene blue (MB) were purchased
from the Shanghai Boao Biotechnology Co. Ltd., Shanghai, China. Spent PS foams were
collected, rinsed with ethanol and dried at 60 ◦C in a vacuum overnight.

2.2. Synthesis of SPS Foams

Expanded PS foams were cut into pieces with dimensions of 5 × 5 × 2 cm and
immersed in concentrated H2SO4. The sulfonation process was conducted at 60 ◦C with
varying reaction times of 3, 4, 5, 6, 7 and 8 h. Subsequently, the resulting SPS foams were
taken out from the H2SO4 solution, thoroughly washed with deionized water and then
dried at 50 ◦C using a vacuum oven overnight. It is noteworthy that the concentrated
H2SO4 can be reused in the preparation process, which greatly reduces the consumption
of H2SO4.

2.3. Determination of Degree of Sulfonation (DoS)

The DoS of the resulting SPS foams was determined by titration. The details of the
experimental procedures are presented as follows. A piece of SPS foam was immersed in
80 mL of NaOH solution for 2 days. Afterwards, 20 mL of NaOH solution was withdrawn
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and titrated using HCl solution. The consumed volume of HCl solution (VHCl) was
recorded. The DoS was calculated by following Equation (1):

DoS =
80 × 10−3 × CNaOH − VHCl × 4 × 10−3 × CHCl

M
(1)

where CNaOH is the concentration of NaOH and M is the mass of the SPS foam.

2.4. Structural Characterization

The morphology of the PS and SPS foams was observed by field emission scanning
electron microscopy (FESEM) (JSM-7600F, JEOL, Tokyo, Japan). The elemental composition
of the samples was determined by energy-dispersive X-ray (EDX) analyses. The wetting
property of the samples was analyzed by contact angle (CA) tests (JGW-360C, Chenghui
Testing Machine Co. Ltd., Chengde, China). Distilled water droplets were used as a probe
to study the surface properties of the foams.

2.5. Batch Adsorption Tests

In a typical batch adsorption test, a piece of SPS foam was immersed in a pollutant
solution and then agitated at 180 rpm using a mechanical shaker at 25 ◦C. At given time
intervals, a certain volume of aliquot was sampled and filtered through a membrane filter
to remove any impurities. The concentration of Pb2+ was monitored using an atomic
absorption spectrometer (AAS) (Z-2000 Hitachi, Hitachi, Tokyo, Japan), while those of
lysozyme and MB were determined by a UV–visible spectrophotometer (North Point
Rayleigh UV-1801, Beijing, China). The adsorption uptake of the adsorbent qt (mg g−1) at
time t (min) was calculated by Equation (2):

qt =
(C0 − Ct)× V

W
(2)

where C0 (mg L−1) is the initial pollutant concentration and Ct (mg L−1) is the concentration
at time t (min) in the liquid phase, V (L) is the volume of the solution and W (g) is the
weight of the sorbent. To determine the equilibrium adsorption capacity qe (mg g−1), the
sorbent was immersed in the pollution solution for at least 12 h to achieve the equilibrium
state of adsorption.

2.6. Filtration Adsorption Tests

To study the filtration performance, the SPS foams with a diameter of 1.6 cm and
a thickness of 1 cm were fitted into a funnel. MB (initial concentration = 50 mg L−1),
lysozyme (initial concentration = 150 mg L−1) and Pb2+ (initial concentration = 50 mg L−1)
solutions were separately filtered through the foams. The concentrations of the pollutants
in the effluents were analyzed.

2.7. Cyclic Adsorption Tests

To evaluate the cyclic adsorption performance, SPS foams were immersed in 50 mg L−1

pollutant (MB or Pb2+) solutions. The adsorption process was conducted at 25 ◦C for at least
12 h. Subsequently, the pollutant-saturated SPS foams were taken out from the solution and
rinsed with 100 mL of 1 M HCl solution three times. The adsorption–desorption process
was repeated five times. The adsorption uptakes of the SPS foams were recorded as a
function of the cycle number.

3. Results and Discussion
3.1. Structural Characterization

Since the number of sulfonic groups in the SPS foams plays a decisive role in the ad-
sorption performance, the sulfonation time was optimized during the preparation process.
Figure 1a shows the degree of sulfonation (DoS) of the foams as a function of reaction time.
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The DoS values increase with increasing reaction time. Notably, the DoS of the SPS foam
reached 0.52 µmol g−1 when the sulfonation process was conducted for 7 h. Figure 1b
shows the corresponding digital photos of the foams. It reveals that the resulting SPS
foams have an intact self-standing structure when the sulfonation time is less than 8 h.
When the sulfonation time is over 8 h, the SPS foams start to collapse, leading to many
isolated particles with sizes of several millimeters. Although these particles possess large
DoS values, they are quite difficult to separate from the solutions, which greatly limits their
practical applications. In contrast, the bulky free-standing SPS foams afford a significant
advantage during separation. Under this circumstance, the sulfonation time is optimized
to be 7 h in this work.
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The morphology of the foams was observed by FESEM, as shown in Figure 2. The
pristine PS foam possesses a macroporous structure, as shown in Figure 2a. The EDX
results indicate that the pristine PS foam contains carbon and oxygen elements, as shown
in Figure 2b. Figure 2c shows the morphology of the resulting SPS foams. It clearly reveals
that the porous structure is well preserved in the SPS foams. Apart from carbon and oxygen,
sulfur is also detected by the EDX analyses, as shown in Figure 2d. The insets shown in
Figure 2a,c are the digital photos of the PS and SPS foams, respectively. The pristine PS
foam has dimensions of ca. 5 × 5 × 2 cm. After the sulfonation and drying processes,
the contraction of the foam is noted, resulting in a smaller size of the SPS foam. A close
inspection could reveal that the surface of the SPS foams is much rougher than that of the
pristine PS foams. This could also be related to the sulfonation process.

The wettability of the foams was investigated by the CA tests, as shown in Figure 3.
The CA of the pristine PS foam is determined to be 116◦ (see Figure 3a), indicating the
hydrophobic properties of the PS foam. In contrast, the water droplet readily penetrates
the SPS foam (see Figure 3b and the Video S1 in the Supporting Information), reflecting the
hydrophilic surface of the SPS foam. The variations in surface properties are attributed to
the introduction of hydrophilic sulfonic groups and the increased surface roughness arising
from the sulfonation process [46].

3.2. Adsorption Performance

The adsorption performance of the resulting SPS foams was evaluated using three
typical substrates, including a heavy metal pollutant (i.e., Pb2+), a protein (i.e., lysozyme)
and a dye (i.e., MB). The adsorption characteristics of the SPS foams toward these three sub-
strates were extensively investigated. A piece of SPS foam was immersed in the pollutant
solution with different initial concentrations. After reaching adsorption equilibrium, the
concentration of Pb2+ was analyzed by an inductive plasma emission spectroscope, while
those of lysozyme and MB were determined by a UV–visible spectrophotometer. Figure S1
(from the Supplementary Materials) shows the UV spectra of MB. It is noteworthy that
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several peaks are seen in the UV spectra of MB. The strongest peak, located at ca. 664 nm,
was employed to determine the concentration of MB. A broad peak located at ca. 280 nm
was observed from the UV spectra of lysozyme, as shown in Figure S2. In the testing
concentration range, the peak absorbance is well correlated with the concentration, as
shown in Figures S1b and S2b.
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The adsorption isotherms were first recorded by plotting the equilibrium adsorp-
tion uptake (qe (mg g−1)) against the equilibrium substrate concentration (Ce (mg L−1)).
Figure 4a,d,g display the adsorption isotherms of Pb2+, lysozyme and MB, respectively. To
determine the adsorption constant and maximum adsorption capacity, the isotherms were
further analyzed by the Langmuir and Freundlich models, as expressed by Equations (3)
and (4), respectively.

qe =
qmaxbCe

1 + bCe
(3)

qe = kC1/n
e (4)

where qmax (mg g−1) is the maximum adsorption capacity, b (L mg−1) is the Langmuir ad-
sorption constant, and k (mg1 − 1/n·L1/n·g−1) and n are the Freundlich constants associated
with adsorption capacity and adsorption intensity, respectively.
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The resulting curves fitted by the Langmuir model are displayed in Figure 4b,e,h, while
those obtained by the Freundlich model are displayed in Figure 4c,f,i. The corresponding
fitting parameters and coefficients of determination (R2) are listed in Table 1. Modeling
results reveal that the adsorption isotherms of Pb2+ and lysozyme can be better described
by the Langmuir model, while that of MB is better described by the Freundlich model. The
SPS foams possess theoretical maximum adsorption capacities of 10.5 and 15.7 mg g−1

for the adsorption of Pb2+ and lysozyme, respectively. Since the adsorption of MB cannot
be fitted by the Langmuir model, its theoretical maximum adsorption capacity cannot
be determined. Notably, the three pollutants used in this work are positively charged
at the experimental conditions, while the surface of SPS is negatively charged owing to
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the sulfonic groups. Under this circumstance, the binding of the pollutants to the SPS
foams is mainly attributed to the electrostatic interaction. However, since the DoS value of
the SPS foam is low in this study, the π–π stacking interaction could also possibly occur
in immobilizing MB to SPS foams. This could be the reason for the different adsorption
isotherm of MB as compared with those of Pb2+ and lysozyme. It should be pointed out
that although the resulting maximum adsorption capacities of the SPS foams are smaller
than those of PS-based sorbents reported in the literature [47,48], the prominent advantage
of the SPS foams lies in the bulky self-standing morphology, which is highly beneficial for
separation but compromises their adsorption capacities.

Table 1. Fitting the equilibrium data using the Langmuir and Freundlich models.

Sorbates
Langmuir Model Freundlich Model

R2 qmax b R2 k

Lysozyme 0.9981 15.7 0.48 0.8079 5.42
MB −0.3031 −146.8 −0.011 0.8608 1.50

Pb2+ 0.9633 10.5 0.071 0.9311 1.11

The adsorption kinetics of the SPS foams were also studied. The instant concentrations
and adsorption uptakes of the pollutants were recorded as a function of contact time, as
shown in Figure 5. The concentrations of the pollutants (the red lines) rapidly decrease
while the adsorption uptakes (the blue lines) increase during the initial period of contact
time and then reach an equilibrium state. To study the kinetics of the adsorption of metal
ions, three kinetic models, including the pseudo-first-order, pseudo-second-order and
intraparticle diffusion models, were applied to fit the experimental data. The pseudo-first-
order kinetic model can be expressed by Equation (5).

log(qe − qt) = log qe −
k1

2.303
t (5)

where k1 (min−1) is the adsorption rate constant of the first-order kinetic model. The
pseudo-second-order kinetic model is expressed by Equation (6).

t
qt

=
1

k2q2
e
+

1
qe

t (6)

where k2 (g (mg·min)−1) is the adsorption rate constant of the second order kinetic model.
The intraparticle diffusion model is expressed by Equation (7).

qt = kpt1/2 + C (7)

where kp (mg (g h1/2)−1) is the intraparticle diffusion rate constant and C (mg g−1) is a
constant related to the thickness of the boundary layer.

The fitting curves obtained by the pseudo-first-order equation are shown in Figure 5b,d,f,
while those by the pseudo-second-order and intraparticle diffusion equations are displayed
in Figures S3 and S4, respectively. The resulting fitting parameters are summarized in
Table 2. It reveals that among the three equations, the pseudo-second-order best describes
the kinetic data. Based on the pseudo-second-order equation, the equilibrium adsorption
uptakes are 33, 26.4 and 2.4 mg g−1, while the adsorption constants are 0.021, 0.078 and
0.0043 g (mg·min)−1 for the lysozyme, MB and Pb2+, respectively. The equilibrium adsorp-
tion uptake could be related to the molar mass and charge of the pollutants. Pb2+ ions
have a smaller molar mass than those of lysozyme and MB. In addition, a Pb2+ ion has two
positive charges. In contrast, only one positive charge could be found for the lysozyme and
MB molecules. Thus, the binding of Pb2+ ions to the SPS foam could involve more SO3

−
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groups as compared with those of lysozyme and MB. These two aspects could result in the
lowest equilibrium adsorption uptake of Pb2+.
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Table 2. Kinetic fitting results of the adsorption processes.

Sorbates
Pseudo-First-Order Pseudo-Second-Order Intraparticle Diffusion

R2 qe k1 R2 qe k2 R2 k

Lysozyme 0.8747 21.29 0.01 0.9937 33.0 0.021 0.9003 1.55
MB 0.9745 18.42 0.025 0.9992 26.4 0.078 0.7243 1.22

Pb2+ 0.8967 1.74 0.002 0.9930 2.4 0.0043 0.9126 0.057

One prominent feature of the resulting SPS foam lies in its three-dimensional self-
standing structure, which affords a significant advantage for fix-bed filtration adsorption.
The filtration adsorption performance of the SPS foams was evaluated. Figure 6a shows the
breakthrough curves for the filtration of the pollutants. The concentrations of the pollutants
in the effluents present a clear step profile, indicating that the major pollutant molecules
were immobilized in the sorbents in the initial filtration stage, but directly penetrated
through the foams when they were saturated by the pollutants. At the breakthrough point,
5.2 mL of MB, 3.7 mL of lysozyme and 3.0 mL of Pb2+ solution were filtrated through the
foams. Figure 6b shows the concentration profiles of MB in the effluents with different
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initial pollutant concentrations. With an increasing initial concentration, the volume of the
effluent decreases at the breakthrough point. For instance, at the breakthrough points, the
effluent volumes are determined to be 5.2, 6.3 and 12.5 mL at initial concentrations of 50, 25
and 10 mg L−1, respectively.
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For practical applications, the cyclic performance of the sorbents is also critical. To this
end, the desorption of the Pb2+- and MB-saturated SPS foams was conducted by immersing
them in 1 M HCl. The regenerated SPS forms were re-utilized to remove the pollutants from
aqueous solutions. This adsorption–desorption process was repeated five times and the
adsorption uptakes were recorded. Figure 7a,b show the adsorption uptakes of Pb2+ and
MB, respectively, as a function of cyclic number. It reveals that the adsorption uptakes are
quite stable, indicating the outstanding cyclic performance of the SPS foams. Figure 6c–e
show the digital photos of SPS before and after the adsorption of MB and after desorption,
respectively, which vividly reveal the adsorption and desorption processes. It is noteworthy
that the regeneration process is quite easy and does not involve any separation process
because of the bulky three-dimensional structure of the SPS foams.
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4. Conclusions

In summary, we employed PS waste as a feedstock and converted it into bulky SPS
sorbents via a facile sulfonation process. Using Pb2+, lysozyme and MB as representative
substrates, the characteristics of the adsorption processes were studied. The adsorption
isotherms of Pb2+ and lysozyme can be better described by the Langmuir model, leading
to maximum equilibrium adsorption uptakes of 10.5 and 15.7 mg g−1 for the adsorption
of Pb2+ and lysozyme, respectively. In contrast, the isotherm of MB is better described
by the Freundlich model. For all three substrates, the kinetics of the adsorption processes
were best described by the pseudo-second-order equation. The electrostatic interaction was
identified as the main mechanism of the adsorption process. The Pb2+- and MB-saturated
SPS foams can be readily regenerated by immersing them in HCl solution and the recovered
sorbents show excellent cyclic adsorption performance. The most prominent features of
the SPS sorbent reported in this work lie in the bulky three-dimensional structure, which
avoids the tedious separation process. Additionally, the simple preparation process and
abundant availability of PS waste as a feedstock indicate SPS foams to be a promising
sorbent for practical applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14214477/s1, Video S1 showing the penetration of water
droplets into SPS foams. UV spectra of methylene blue and lysozyme and resulting calibrated curves
are shown in Figures S1 and S2. Adsorption fitting curves of Pb2+, lysozyme and methylene blue by
the pseudo-first-order equation and intraparticle diffusion equation are shown in Figures S3 and S4.
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