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Abstract: In the present work, parameters for adapting the behavior of the uniaxial three-element
viscoelastic constitutive model with integer and fractional index derivatives to the mechanical
evolution of an epoxy-composite material reinforced with long random henequen fibers, were
determined. Cyclic loading–unloading with 0.1%, 0.2%, 0.3%, . . ., 1.0% controlled strain and staggered
fluency experiments at 5 MPa, 10 MPa, and 15 MPa constant tension were performed in stages, and
the obtained data were used to determine and validate the model’s parameter values. The Inverse
Method of Identification was used to calculate the parameters, and the Particle Swarm Optimization
(PSO) method was employed to achieve minimization of the error function. A comparison between
the simulated uniaxial results and the experimental data is demonstrated graphically. There exists a
strong dependence between properties of the composite and the fiber content (0 wt%, 9 wt%, 14 wt%,
22 wt%, and 28 wt% weight percentage fiber/matrix), and therefore also of the model parameter
values. Both uniaxial models follow the viscoelastic behavior of the material and the fractional index
version presents the best accuracy. The latter method was noted to be adequate for determination
of the aforementioned constants using non-large experimental data and procedures that are easy
to implement.

Keywords: vegetable fiber-reinforced composite; viscoelasticity model; numerical method; material
parameter determination

1. Introduction

In recent times, there has been a significant increase in the use of composite materials
reinforced with vegetable fibers. Among these stand out the polymer matrix composites,
with both biodegradable [1–3] and non-degradable polymers representing the most di-
versified among thermoset-based polymer composites [4–6]. The use of these fibers as
reinforcement owe mainly to their lower cost, non-toxicity, low weight, and renewable
nature [7,8]. One such composite material is an epoxy-matrix-composite reinforced with
long randomly oriented Cuban henequen (sisal or agave fourcroydes) fibers, which presents
the focus of this study.

For the design of parts and pieces composed of these materials, it is desirable to have
digital models that can simulate their behavior over time under the action of external
loads. These models, adjusted to the real behavior of the composites and having the ability
to consider their “strain history”, can be implemented, for example, in Finite Element
Method (FEM) analysis programs. As a basic first step, the unidimensional models can
be generalized to two-dimensional and three-dimensional simulations. Therefore, it is
necessary to determine the constants which adapt these models to the composite material
behavior, achievable only through experimental data analysis.
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Several authors have used fractional-order derivative index models to describe the
mechanical behavior of viscoelastic materials, and experimental data to calculate the
model constants. S. Müller [9] used experimental data to determine and validate the
parameters of a fractional index model to characterize the mechanical behavior of thermo-
plastic polypropylene, performing one-dimensional and multi-dimensional simulations.
H. Xu [10] defined the time-dependent creep behavior of several polymer materials and
rock samples. This author uses the fractional Maxwell model, the fractional Kelvin–Voigt
model, and the Poynting–Thomson model, and determined the model parameters by an
interior-point method. When more factors need to be considered, such as temperature and
the multi-shape memory effect of polymers, the multi-branch thermoviscoelastic fractional
model, which uses fewer parameters, can achieve a more accurate approach to experi-
mental data [11]. O. Martin [12] presented the quasi-static analysis of a simply supported
viscoelastic beam subjected to uniformly distributed load, using the classical and the frac-
tional Zener model. Abouelregal [13] describes the thermoviscoelastic behavior of rotating
microbeams using the fractional Kelvin–Voigt model. Using fewer parameters to represent
the experimental data and incorporating the Moore–Gibson–Thompson (MGT) equation of
heat transfer, validation of the results was conducted through comparison with previous
models and experimental values. This author observed that the fractional viscoelastic
model better describes the damping properties than the classical integer differential-order
model. A. Muliana [14] applied a numerical method to solve the nonlinear fractional vis-
coelastic constitutive model to simulate a time-dependent response of an isotropic polymer
undergoing small deformation gradients. In this work, the Riemann–Liouville fractional
integral for the time-dependent kernel function was considered and the material param-
eters were presented using experimental data. In this study, the proposed viscoelastic
fractional model demonstrates the capability of describing multiaxial polymer responses
under various loading histories with significantly fewer material parameters.

Diverse methods and strategies have been used for the calculation of the parameters.
For example, Ruhani [15] used the statistical study of experimental data to infer a rheolog-
ical model of a nanofluid with dynamic viscosity component. L. Cappelli [16] proposed
a methodology based on the dynamic composite response to identify the viscoelastic be-
havior at the macroscopic and microscopic levels. These calculations take into account
the minimum error between the numerical model and the experimental response of the
material, using a general hybrid optimization tool that includes a genetic algorithm plus a
gradient-based optimization approach. Z. Xiao [17] developed a numerical methodology
to identify the constitutive parameters of the fractional Kelvin–Voigt model using an ACO
(Ant Colony Optimization) algorithm to solve the inverse problem. W. Fan [18] estimated
the parameters of the fractional element networks using the Bayesian statistical method,
treating them as random variables with a distribution obtained from the experimental data.
H. Xu [10] solved the nonlinear optimization problem through an interior-point algorithm,
and determined the parameters of several fractional models. M. Shabani [19] recorded the
viscoelastic deformation histories of silicon gel specimens through dynamic tests, and devel-
oped an identification strategy in the frequency domain, separating the real and imaginary
parts of the frequency response function for error minimization. L. Viviani [20] modeled a
laminated glass sandwich using a fractional approach, demonstrating the model’s effective-
ness under blast loads, more convenient than the traditional Prony series approach. The
fractional viscoelastic parameters were obtained via interpolation of the raw data.

The analytical resolution of differential equations with fractional index is difficult, and
sometimes not possible. As seen in some of the works mentioned above, numerical methods
are used to treat the reverse method of identification. Some of these methods are complex to
implement and require the inclusion of several strategies and modifications to supply their
deficiencies. Furthermore, for the calculation of parameters large amounts of data must be
used, usually provided from complex experiments which incur high processing costs.

Nowadays, there are no models adjusted to the mechanical behavior of thermosetting-
polymeric matrix composite materials reinforced with long random fibers of henequen, sisal,
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or similar materials. Motivated by the need to be able to simulate the temporal behavior
of these materials under the action of external loads, the main objective of this work is to
calculate the values of the parameters of the models that allow it. For this, we propose
an innovative approach, selecting a rheological model with fractional index derivatives
to address the viscoelastic behavior of these polymeric-matrix compounds reinforced
with vegetable fibers. Hence, a smaller amount of experimental data is necessary for the
adjustment of the model, compared to more complex models with integer index derivatives.
Furthermore, it is necessary to highlight that the present work proposes a methodology that
seeks to maintain simplicity and low computational cost while ensuring simulation capacity
of the used model. For this reason, we used the Particle Swarm Optimization (PSO) method
for the resolution of the Inverse Identification problem, through minimization of the error
between the experimental data and those obtained by the models. For the calculation
and validation of the parameters, we employed experimental data from simple cyclic-
incrementing loading–unloading tests and stepped fluency tests of brief time duration.

2. Material Model

Some authors have used rheological models that can simulate behavior of the material
on one axis. After calculating the constants and validating them through comparisons
with experimental data, this type of model can be taken to more complex levels. The
mathematical representation of these materials includes the constitutive constants, stress,
and deformation variables. Viscoelastic materials are strongly conditioned by the “strain
history” and their performance depends on their rate. To produce more adequate models,
capable of emulating realistic behavior, one of the researcher’s tendencies has been to
increase its complexity and size via adding more elements. The connections, in series
and/or in parallel, include elements that represent the elastic part and the viscose part of
the model, elements that simulate non-linearities and equilibrium conditions [21]. This
results in an increase in the number of the model parameters and therefore the need for
a greater amount of experimental data. These are more difficult to analyze, incur high
computational cost, greater processing time, and increase the risk of obtaining combinations
of values that satisfy the imposed criteria but that are not correct.

To justify the use of fractional operators in viscoelastic material models, the approach
was verified to be coherent with molecular theories [22] and are thermodynamically con-
sistent [23]. These types of models require fewer constants for their adaptation to the real
behavior of the material, comparing them with more complex models with entire differen-
tial indices [24]. It has been demonstrated that these models naturally include “memory
effects”, allowing time-dependent models to be obtained [25]. To mention a few examples,
A. Mohamed [26] simulated the mechanical performance CNTs/PES and graphene/PES
membranes with different concentrations of nanofillers using a nonlinear uniaxial model
based on the generalized Maxwell model. N. Vaiana [27] proposed uniaxial asymmetric
models for simulating the mechanical hysteresis phenomena. K.F. Li [28] studied the behav-
ior of PVA-ECC composites using long-term compressive creep experimental data and the
Maxwell uniaxial model with fractional and integer order. U. Hofer [29] used the fractional
Zener model and the extended Lomnitz model as a base to produce multiscale modeling of
braid-reinforced polymers, which were subsequently validated through experimental data.

The linear standard one-dimensional viscoelastic model with three elements is one
of the most commonly used approaches. Replacing the viscous element with a fractional
index element can be achieved in the fractional Zener model [30], Figure 1, the stress–strain
relation between these two models is shown in Equations (1) and (2). In addition, it was
shown that this model is “quantitatively equivalent, under various loading conditions, to
the generalized Maxwell model” [31].
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Figure 1. (a) Standard model or Linear Viscoelastic Solid. (b) The fractional version or fractional
Zener Model.
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where the constants of the modulus of elasticity and viscosity, and the index of the deriva-
tive, E, E1, η and α, are intrinsic to the material, and dα()/dtα is the left-side Riemann–
Loiuville differential operator of index (0 < α < 1), defined on the time interval, starting
from zero, [0; b] similar to 0Dα

t () [32].
Furthermore, the effective global properties of the composite were used as an equiv-

alent homogeneous material [33], and assumed a uniform distribution and a random
orientation of the reinforcing fibers. In addition, possible agglomerations of the reinforce-
ments are not considered, allowing for assuming global isotropic properties in the plane of
the loads.

3. Numerical Methodology

The present work used the methodology proposed by I. Podlubny [32], which uses
triangular-strip matrices for discretization of the differential equation with an arbitrary
real index, Equation (5). This methodology allows a simple implementation in specialized
software. For this study, we used MatLab and a toolbox published by Podlubny [34].

In summary, the left-sided Riemann–Liouville derivative dα()/dtα or 0Dα
t (), Equation (3),

using the backward fractional difference approximation can be represented in matrix form,
Equation (4), using the triangular-strip matrix, Equation (5), where Bα

N is the analogue of
the fractional derivative operator. For the study case, the time domain is discretized in
N + 1 equidistant points, with t0 = 0 and tN = b and 0 < α < 1.

0Dα
t f (t) =

1
Γ(m− α)

dm

dtm

∫ t

0

f (τ)dτ

(t− τ)α+1−m (3)



h−α∇α f (t0)
h−α∇α f (t1)
h−α∇α f (t2)

on
...

h−α∇α f (tN−1)
h−α∇α f (tN)


= Bα

N
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fN


(4)
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0 0 . . . 0 0 w(α)
0


(5)

The Inverse Method of Identification was followed, where it is known that the effects
(experimental data) can be determined by the causes (the material constants that adjust the
model to the real behavior) [35]. For that reason, an iterative search of the model parameters
was carried out that minimizes the differences (D) between the experimental data and the
model response, where Equation (6) is the objective equation.

D = ∑
√
[yexp

r − ymod
r ]2 (6)

where yexp
r was the r component of the experimental data vector and ymod

r was the r
component of the equivalent model response vector. These vectors alternate between stress
and strain data, depending on the entrance signal for the experiments.

In the iterative search process, the Particle Swarm Optimization (PSO) method was
used. Some of this method’s advantages are that it has fewer parameters to adjust, and
its simplicity makes it easy to implement and combine with other optimization strategies.
This stochastic method imitates the behavior of large populations of individuals, moving
through the “hyperspace of the possible solutions”, evaluating the input data as the coor-
dinates of their position in the objective Equation (fitness) and sharing information of the
best results with each other [36].

The n-dimensional search space of the possible solutions (S ⊂ Rn) are limited by
the vector of maximums (bsup) and the vector of minimums (bin f ) of the searched model
parameters. Similar to other population-based optimization algorithms, PSO stars with
random positions and velocities at the beginning of all particles, see Equation (7).

x0
i ∼ U(bin f , bsup); v0

1 ∼ U(|bsup − bin f |,−|bsup − bin f |) (7)

where x0
1 and v0

i are the position and velocity of the i-particle in the initial iteration, and
U(α, β) is a random function limited by the vectors α and β.

The “movement” or position update xk+1
i , see Equation (9), of each i-particle is gov-

erned by a velocity vector vk+1
i , see Equation (8). This vector takes into account the velocity

vk
i and the position xk

i of each particle in the previous k-iteration. Furthermore, taken into
account are the constants that govern the “iteration inertia” wk, the “weight” of the above
information C1 and C2 and random constants R1, R2 ∼ U[1; 0], generated new for each
iteration. The velocity vector of the particles that were out of the mentioned limits was
inverted and divided by two.

vk+1
i = wk · vk

i + C1 · R1 · (pk
i − xk

1) + C2 · R2 · (pk
glob − xk

i ) (8)

xk+1
i = xk

i + vk+1
i (9)

At the end of each iteration, the objective function, Equation (6), was evaluated as
f (), and the positions with the best global pk

glob and individual pk
i results are updated,

Equations (10) and (11).

i f f (xk+1
i ) < f (pk

i ) then pk
i = xk+1

i (10)
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i f min[ f (xk+1
i )] < f (pk

glob) then pk+1
glob = xk+1

i→(min) (11)

The balance between global and local searching throughout the process is critical to the
performance of the optimization algorithm. To obtain an equilibrium between “exploration”
and “exploitation”, the inertia weight coefficient was introduced w [37], a large value
increases the exploration and a small value the exploitation. The diminution of the inertia w
was defined in a homogeneous distribution across the iteration increase k, see Equation (12),
previously, the maximum and minimum of the values, wmax, wmin, were established.

wk =
(wmax − wmin) · (kmax − k)

kmax
+ wmin (12)

Two stop criteria, the maximum quantities of iteration kmax and the minimum rela-
tive error ea were introduced, Equation (13), ensuring that the iterations end and allow
comparison with a preset relative error.

ea =

∣∣∣∣∣∣
f
(

pk+1
glob

)
− f

(
pk

glob

)
f
(

pk
glob

)
∣∣∣∣∣∣ (13)

4. Materials and Methods

The general scheme of the work, shown in Figure 2, follows a similar strategy to some
of the aforementioned works. First, experimental samples of composite materials with dif-
ferent fiber proportions were obtained. Subsequently, the load–unload and staggered creep
experiments were performed. The viscoelastic models, of integer-order and fractional-order
derivative index, were implemented in a MatLab program. Through an iterative process of
searching for the minimum error between the experimental load–unload experimental data
and the response of the models, with the PSO method, the values of the model parameters
were determined. The responses of these adjusted models were compared with the experi-
mental data from the staggered creep experiments, the anomalous values and the different
behaviors were rejected, so their calculations were repeated. Finally, the models with the
values of the parameters that managed to adequately follow the experimental behavior
were accepted and their analysis proceeded.

Obtaining the
test samples

Staggered creep
experiments

Cyclic-load-unload
experiments

Adjusted model
and Conclusions

Comparison

Calculation of pa-
rameters (iterations,

numerical methods, PSO)
(bio-inspired method)

Viscoelastic models
Yes

No

Figure 2. General scheme of the work.

4.1. Testing Samples

The studied material is an epoxy-matrix composite with random long vegetable fibers,
see Figure 3a, described in [38]. The used polymer was PoliResinNovolac, provided by
Polinova Company, Rio de Janeiro, Brazil. This thermosetting possesses good mechanical
properties and resistance to soft acids, alkalis, and solar light. The novolac groups tend
to increase the coupling with vegetable fibers [39], and the triethylenediamine-based
curing agent allows the polymerization process at ambient temperature, avoiding fiber
degradation. As reinforcement, the Cuban henequen plant fiber with an average length



Polymers 2022, 14, 4634 7 of 16

of 87 mm, and an average length/diameter ratio of 289.4, was used without any surface
treatment. The experimental samples were cut from handmade plates, Figure 3b made in
cold-closed molds, by weight percentage fiber/matrix of 0 wt%, 9 wt%, 14 wt%, 22 wt%
and 28 wt%, see Figure 3c. All samples were tensile specimens from the ASTM D638-2014
norm type I.

(a) (b)

(c)

Figure 3. (a) Dry henequen fibers. (b) Composite plate. (c) Typical traction samples of fiber-reinforced
composites.

4.2. Experimental Procedure

The standard monotonic tensile tests do not allow the acquisition of sufficient data to
establish an accurate model parameter value. On the other hand, the process cost of the
information is directly proportional to the complexity and data quantity. The present work
intended to establish a balance between simplicity and quality in the obtained information.

All tests were conducted on a standard universal traction machine Instron 5567 with a
maximum force of 30 kN, at room temperature 25 ◦C and 60% humidity. The strain and
stress levels were selected to ensure non-breakage of the specimens, taking into account
the results of a previous work [38]. The strain and stress data values were taken from the
experimental points, that were measured every 0.5 s.

The cyclic load–unload tensile tests with 0.1%, 0.2%, 0.3% . . . 1.0% of controlled strain
levels (at 5 mm/min of strain rate), as a simple example see Figure 4, and the staggered
fluency tests with 5 MPa, 10 MPa and 15 MPa of constant tension by stage (each maintained
for 420 s), was made for five samples of each composite fiber/matrix percentage, as some
simple examples see Figures 5 and 6. It is necessary to point out in the loading–unloading
test, at the end of each stage and change of direction some points were below zero, possibly
caused by the machine inertia.
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Figure 4. Loading–unloading tensile tests with strain as entrance signal, one specimen with 9 wt%.

(a) (b)

Figure 5. Loading–unloading tensile tests with strain as entrance signal, five specimens, (a) with
22 wt%, and (b) with 28 wt%.

(a) (b)

(c)

Figure 6. Fluency staggered test, five specimens, (a) with 9 wt%, (b) with 14 wt%, and (c) with
28 wt%.
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For the cyclic loading–unloading traction tests, five additional tests were performed
and used for the validation stage and comparison between models, examples are provided
in Figures 7–9. Similarly, the objectives of the fluency test data were the comparison of
the adjusted model capacity to simulate the behavior of the studied material, validating
the calculated constants, and a comparison between the fractional and the integer index
models, Figures 11–13.

For each composite with different fiber/matrix percentages, initially making prelimi-
nary calculus using data only from the first cycles of the loading–unloading experimental
points as entrance, with method constants adjustment as the objective. After several repeti-
tions, these values were determined for each case, taking into account the resulting mode
and variance. Using these values for the fiber-inclusion percentage level and then repeating
the calculation process 12 times, the parameters of the integer and fractional index models
were calculated. Monitoring the evolution of the iterative calculation process, when a
process produced anomalous results it was interrupted and restarted, the most probable
cause being the premature convergence of the PSO method.

5. Results

The parameters of the studied composite materials were determined and are presented
in Tables 1 and 2, for the integer derivative index and fractional derivative index models.
The recorded values are similar to those found in [40,41], in addition, the Modulus of
Elasticity is close to those determined in [42,43] through experiments with similar materials.
In both cases, there is a tendency to increase the parameter values by increasing the quantity
of reinforcement. Some small decreases are observed for 9wt% and 28 wt%, similar to what
occurs under constant stress over time [38]. The first is due to insufficient reinforcing action
of the fibers and the second is due to the critical fiber/matrix ratio being exceeded. In the
case of the fractional index model, Table 2, the value of the derivative index tends to be one
due to the increased influence of the viscous aspect of the fiber behavior.

Table 1. Parameters of the integer model.

Fiber Percent in
Weight η (GPa· s) E1 (GPa) E (GPa) α

0 wt% 10.4429 1.8643 0.3007 1
9 wt% 15.0150 2.3142 0.6222 1

14 wt% 15.6175 2.3624 0.6427 1
22 wt% 16.3209 2.5003 0.6512 1
28 wt% 14.9841 2.2026 0.5986 1

Table 2. Parameters of the Zener fractional index model.

Fiber Percent in
Weight η (GPa· s) E1 (GPa) E (GPa) α

0 wt% 9.9695 0.5874 0.9964 0.2155
9 wt% 8.1984 1.6223 0.5998 0.4993

14 wt% 10.0255 2.1003 0.6069 0.7996
22 wt% 12.0033 2.3232 1.1035 0.8101
28 wt% 16.0550 2.1599 1.8237 0.6713

The calculated parameters were validated through comparison with the experimental
data. As examples, with fewer represented experimental points Figures 7–9 show that the
fractional index model can more accurately follow the behavior of the composite materials
under loading–unloading cyclic tests. The error in both models concerning the experimental
values increases as the deformation increases, reaching a maximum in the changes from
load to unload. This is because as the stress (and strain) increases, the viscous component
becomes more evident, and also the fact that the fractional index model better incorporates
the influence of “strain history” or “memory effect”.
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(a) (b)

Figure 7. Tensile strain for loading–unloading test, one specimen with 0 wt%, experimental data in
dots and model response in continuous line, (a) integer index model, (b) fractional index model.

(a) (b)

Figure 8. Tensile strain for loading–unloading test, one specimen with 9 wt%, experimental data in
dots and model response in continuous line, (a) integer index model, (b) fractional index model.

(a) (b)

Figure 9. Tensile strain for loading–unloading test, one specimen with 14 wt%, experimental data in
dots and model response in continuous line, (a) integer index model, (b) fractional index model.

Taking the maximum values of each cycle, it can be observed in Figure 10 the percent-
age relative error between the responses of the integer index and fractional index models
concerning the experimental data. From this, for the 9 wt%, 14 wt%, and 22 wt% of fiber
inclusion, a decrease in the dispersion of the results. For all the reinforcement proportions
studied, except for 28 wt%, a smaller error occurs fundamentally for the higher cycles in
the response of the fractional index model. This anomaly occurs, presumably, because the
critical volume of fiber addition was exceeded, so the matrix stops working cohesively,
causing the composite material to malfunction.
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Figure 10. Percentage relative error between the maximum values of each cycle, experimental data
and response of both models.

Several comparisons were made between the integer index model and fractional index
model with the staggered fluency test data, Figures 11–13. In the first part of each stage,
elastic deformation, both models and the experimental data behave in the same way, but
this is not the case when the applied force is established as constant. It can be observed
that the integer index model is incapable of changing the curve form on the second and
third steps of the stress change, and therefore cannot follow the behavior of the studied
material. On the other hand, the fractional index model changes the shape of the curve
and improves the precision concerning the experimental data through the evolution of
time, so that, with more information (experimental data) this model increases its capacity
to simulate the behavior of the studied materials. The shape of the curves is conditioned, in
materials by their “strain history” [44] and in models by the index of their derivatives [34].

The influence of the fiber/matrix ratio should be noted, mainly in the third stage, over
the values (slight increase) and the curve form (slightly flatter for intermediate amounts of
reinforcement inclusion). Two possible reasons are the restriction of fluency of the matrix
and the increase in the viscous component provided by the vegetable-reinforcing fibers.
Another fact is that the integer order model cannot handle a creep strain that is not zero at
the beginning of the second and third stages, while the fractional index model can. This is
due to the flexible change granted by the constitutive parameter α.
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(a) (b)

Figure 11. Tensile strain for staggered fluency test, five specimens with 9 wt%, experimental data
in dotted lines and model response in continuous line, (a) integer index model, (b) fractional in-
dex model.

(a) (b)

Figure 12. Tensile strain for staggered fluency test, five specimens with 14 wt%, experimental
data in dotted lines and model response in continuous line, (a) integer index model, (b) fractional
index model.

(a) (b)

Figure 13. Tensile strain for staggered fluency test, five specimens with 28 wt%, experimental
data in dotted lines and model response in continuous line, (a) integer index model, (b) fractional
index model.

In Figure 14, the percentage error between the mean of the experimental values and
the response of both models can be observed. The biggest errors occur in the first stage or
stress level for both models, measuring the largest in materials with 14 wt% and 28 wt%,
but in all cases, the values improve in the two following stages. In general, a decrease
in the dispersion of the results occurs as the experiments progress. Excluding 0 wt%, in
the second stage, the fractional index model presents predominantly lower error values
concerning the experimental data. This greater accuracy is accentuated in the third stage
across all cases, since the greater amount of information (experimental points) has more
influence on the fractional index model than on the integer index model.
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Figure 14. Percentage relative error between the means of the experimental data and the response of
both models, integer index model in a continuous line and gray fill, and fractional index model in
dashed line and white fill.

In future works, it would be advisable to extend the study to two-dimensional and
three-dimensional configurations, as well as to investigate composite materials with other
matrices and other reinforcing vegetable fibers. If greater precision of the results and
a study of more complex materials with greater complexity regarding composition and
behavior are necessary, more sophisticated experiments could be employed (with more
stages, changes, and the combination of different forms of charge), including fractional
index models with more elements and the use of more versatile numerical optimization
methods (such as hybrids between several strategies).
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6. Conclusions

The present work is mainly motivated by the need to acquire parameter values that
adapt the behavior of the selected integer index and fractional index models to the evolution
of study composites. Employing this study as a basic foundation, a one-dimensional model
can be developed and generalized to a two-dimensional and three-dimensional version.

The experimental data and the model results indicate a strong dependence between
the material properties and the percentage of the reinforcement-fibers included, resulting
in significant value differences.

Both models demonstrated the capability of simulating long-term material behavior
under cyclic loading–unloading and staggered fluency conditions. However, on the other
hand, the fractional index model was shown to follow the form of the experimental curves
with greater accuracy in both tests.

Regarding the staggered fluency test graphs, the fractional index model adjustment is
shown to produce better results in the third step than in the first experimental step. This
model can modify the shape of the curve for different load conditions and their changes
over time. Its accuracy in modeling material mechanical behavior improves as the amount
of experimental data increases.
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