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Abstract: In recent years, functional ceramic devices have become smaller, thinner, more refined, and
highly integrated, which makes it difficult to realize their rapid prototyping and low-cost manufac-
turing using traditional processing. As an emerging technology, multi-material 3D printing offers
increased complexity and greater freedom in the design of functional ceramic devices because of its
unique ability to directly construct arbitrary 3D parts that incorporate multiple material constituents
without an intricate process or expensive tools. Here, the latest advances in multi-material 3D print-
ing methods are reviewed, providing a comprehensive study on 3D-printable functional ceramic
materials and processes for various functional ceramic devices, including capacitors, multilayer
substrates, and microstrip antennas. Furthermore, the key challenges and prospects of multi-material
3D-printed functional ceramic devices are identified, and future directions are discussed.

Keywords: multi-material; 3D printing; functional ceramic devices; capacitors; multilayer substrates;
microstrip antennas

1. Introduction

Compared with structural ceramics, functional ceramic devices are characterized by
their detection, transformation, coupling, transmission, processing, and storage of infor-
mation (i.e., electrical, magnetic, optical, acoustic, thermal, force, and biological [1]), and
they have been used in numerous fields (i.e., aviation, automobile, integrated circuit, com-
munication, medical, and energy) [2]. Most functional ceramic devices, such as multilayer
ceramic capacitors, multilayer ceramic substrates, filters, chip antennas, power dividers,
and duplexers, can be fabricated by a high-temperature cofired ceramic (HTCC) process or
low-temperature cofired ceramic (LTCC) process [3–8]. These processes require multiple
steps: (1) material preparation for ceramic tapes and functional pastes, (2) punching of the
green tapes for via formation, (3) filling and metalizing for vertical conductors and horizon
circuitries formation, (4) stacking and laminating for 3D ceramic green body formation that
can be maintained as an array or cut into individual products, (5) cofiring, and (6) post
processing including nickel plating, brazing, and gold plating (Figure 1) [9]. As a result,
the metal pastes (e.g., silver, gold, tungsten, and molybdenum) and resistor pastes can be
cofired with the ceramic body to fabricate multilayer ceramic components. With the contin-
uous development of electronic science and technology, the HTCC and LTCC processes are
poorly suited to the rapid prototyping and low-cost manufacturing of miniaturized, thin,
refined, and highly integrated functional ceramic devices.
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Figure 1. Cofired ceramic process. 

Three-dimensional printing is a breakthrough manufacturing method that can build 
3D objects layer-by-layer from digital models and has developed rapidly since the 1980s. 
Three-dimensional printing is commonly known as additive manufacturing (AM), and 
the ASTM/ISO standard for AM classifies the different technologies into seven subcatego-
ries: material extrusion, material jetting, binder jetting, vat photopolymerization, powder 
bed fusion, direct energy deposition, and sheet object lamination [10]. According to this 
classification, HTCC and LTCC based on green tape lamination can also be considered an 
AM process, though different from 3D printing; therefore, to distinguish this concept, we 
use the term “3D printing” rather than “AM”. 

In recent years, 3D printing has become a research focus in fine ceramic manufactur-
ing, and it can be used to construct most structural ceramics [11–14]. However, functional 
ceramic devices with a composite structure comprising two or more materials usually 
contain strip lines, microstrip lines, and vias; as a result, in addition to enhancing the spa-
tial resolution and printing speed, several problems in terms of the raw materials, printing 
strategies, and sintering process still need to be solved. Multi-material 3D printing of func-
tional ceramic devices is in early development and has great research motivation and ap-
plication potential [15–19]. Figure 2 shows several major 3D printing techniques, includ-
ing material jetting (MJ), direct ink writing (DIW), fused deposition modeling (FDM), ste-
reolithography (SLA), and digital light processing (DLP) [20]. Among them, MJ, DIW, and 
FDM can independently accomplish a multi-material 3D printing task by simply equip-
ping the same number of nozzles or jetting heads as the material being processed because 
these techniques deposit materials directly to the desired voxel. However, SLA and DLP 
generally need to be combined with MJ, DIW, or other special techniques (e.g., sputtering 
and plating) to integrate multiple materials together into one object [21]. We review the 
latest progress in multi-material 3D printing for functional ceramic devices, including ca-
pacitors, multilayer substrates, and microstrip antennas, based on MJ, DIW, FDM, SLA, 
DLP, and a hybrid process simultaneously employing multiple techniques, and identify 
existing problems and future development directions for multi-material 3D printing of 
functional ceramic devices, which is expected to support future research. 

Figure 1. Cofired ceramic process.

Three-dimensional printing is a breakthrough manufacturing method that can build
3D objects layer-by-layer from digital models and has developed rapidly since the 1980s.
Three-dimensional printing is commonly known as additive manufacturing (AM), and the
ASTM/ISO standard for AM classifies the different technologies into seven subcategories:
material extrusion, material jetting, binder jetting, vat photopolymerization, powder bed
fusion, direct energy deposition, and sheet object lamination [10]. According to this classifi-
cation, HTCC and LTCC based on green tape lamination can also be considered an AM
process, though different from 3D printing; therefore, to distinguish this concept, we use
the term “3D printing” rather than “AM”.

In recent years, 3D printing has become a research focus in fine ceramic manufacturing,
and it can be used to construct most structural ceramics [11–14]. However, functional
ceramic devices with a composite structure comprising two or more materials usually
contain strip lines, microstrip lines, and vias; as a result, in addition to enhancing the
spatial resolution and printing speed, several problems in terms of the raw materials,
printing strategies, and sintering process still need to be solved. Multi-material 3D printing
of functional ceramic devices is in early development and has great research motivation
and application potential [15–19]. Figure 2 shows several major 3D printing techniques,
including material jetting (MJ), direct ink writing (DIW), fused deposition modeling (FDM),
stereolithography (SLA), and digital light processing (DLP) [20]. Among them, MJ, DIW,
and FDM can independently accomplish a multi-material 3D printing task by simply
equipping the same number of nozzles or jetting heads as the material being processed
because these techniques deposit materials directly to the desired voxel. However, SLA
and DLP generally need to be combined with MJ, DIW, or other special techniques (e.g.,
sputtering and plating) to integrate multiple materials together into one object [21]. We
review the latest progress in multi-material 3D printing for functional ceramic devices,
including capacitors, multilayer substrates, and microstrip antennas, based on MJ, DIW,
FDM, SLA, DLP, and a hybrid process simultaneously employing multiple techniques,
and identify existing problems and future development directions for multi-material 3D
printing of functional ceramic devices, which is expected to support future research.



Polymers 2022, 14, 4635 3 of 32
Polymers 2022, 14, x FOR PEER REVIEW 3 of 33 
 

 

 
Figure 2. Schematics of five different 3D printing techniques, including material jetting (MJ), direct 
ink writing (DIW), fused deposition modeling (FDM), stereolithography (SLA), and digital light 
processing (DLP), and their applications in single material and multi-material ceramic 3D struc-
tures. Schematic images are adapted from [12–19,21–23]. 

2. Multi-Material 3D Printing Methods 
2.1. Material Jetting (MJ) 

MJ derives from conventional 2D ink jetting extensively used in graphic fields (e.g., 
office documents, digital photos, labels, tiles, and clothing) [24]. In MJ, droplets of the 
feedstock material are selectively deposited and solidified in successive layers [25]. Sev-
eral MJ techniques are recognized by the mechanism of droplet generation, in which the 
most widely used are inkjet printing (IJP), aerosol jet printing (AJP), and electrohydrody-
namic inkjet printing (EHDP). Over the past few years, these MJ techniques have attracted 
interest in the on-demand fabrication of highly customizable electronics because of their 
abilities to precisely and smartly deliver high-resolution patterns with a diversified struc-
ture (<1 µm) from design files in a non-contact manner. Multi-material 3D printing of su-
percapacitors [26], filters [27], tapered optical waveguides [28], solar cells [29], microsen-
sors [30], flexible circuits [31], and high-density redistribution layers (RDLs) of silicon in-
terposers [32] has been easily implemented by following the same approach of conven-
tional 2D ink jetting by sequential deposition of functional inks via an MJ system equipped 
with multiple jetting heads. Table 1 lists several recently developed functional inks whose 
printing methods, applications, sintering or curing techniques, and electrical properties 
are summarized. 
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Sliver MNPs inks; 
IJP [33], EHD [31] Wearable electronics [31,33] 

0.08–4.74 Ω sq−1 after 1 h of thermal sin-
tering at 150 °C [33]; 0.4 Ω sq−1 after 30 
min of thermal sintering at 250 °C [31] 

Gold MNPs inks; IJP 
[34], AJP [35] 

Non-enzymatic electrochemi-
cal sensors [34]; micro-hot-

plates [35] 
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ing at 100 °C [34]; 8.7 ± 2.5 µΩ cm after 
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Figure 2. Schematics of five different 3D printing techniques, including material jetting (MJ), direct
ink writing (DIW), fused deposition modeling (FDM), stereolithography (SLA), and digital light
processing (DLP), and their applications in single material and multi-material ceramic 3D structures.
Schematic images are adapted from [12–19,21–23].

2. Multi-Material 3D Printing Methods
2.1. Material Jetting (MJ)

MJ derives from conventional 2D ink jetting extensively used in graphic fields (e.g.,
office documents, digital photos, labels, tiles, and clothing) [24]. In MJ, droplets of the
feedstock material are selectively deposited and solidified in successive layers [25]. Several
MJ techniques are recognized by the mechanism of droplet generation, in which the most
widely used are inkjet printing (IJP), aerosol jet printing (AJP), and electrohydrodynamic
inkjet printing (EHDP). Over the past few years, these MJ techniques have attracted interest
in the on-demand fabrication of highly customizable electronics because of their abilities to
precisely and smartly deliver high-resolution patterns with a diversified structure (<1 µm)
from design files in a non-contact manner. Multi-material 3D printing of supercapaci-
tors [26], filters [27], tapered optical waveguides [28], solar cells [29], microsensors [30],
flexible circuits [31], and high-density redistribution layers (RDLs) of silicon interposers [32]
has been easily implemented by following the same approach of conventional 2D ink jetting
by sequential deposition of functional inks via an MJ system equipped with multiple jetting
heads. Table 1 lists several recently developed functional inks whose printing methods,
applications, sintering or curing techniques, and electrical properties are summarized.
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Table 1. Summary of recently developed functional inks.

Types of Functional Inks Printing Methods Applications Electrical Properties

Metal nanoparticles
(MNPs) inks

Sliver MNPs inks; IJP [33],
EHD [31] Wearable electronics [31,33]

0.08–4.74 Ω sq−1 after 1 h of thermal
sintering at 150 ◦C [33]; 0.4 Ω sq−1

after 30 min of thermal sintering at
250 ◦C [31]

Gold MNPs inks; IJP [34],
AJP [35]

Non-enzymatic
electrochemical sensors [34];

micro-hotplates [35]

0.06 Ω cm−1 after 30 min thermal
sintering at 100 ◦C [34]; 8.7 ± 2.5 µΩ
cm after 1 h of thermal sintering at

120 ◦C followed by 250 ◦C for 4 h [35]

Copper MNPs inks; IJP
[36], EHD [37]

Conductive patterns and
tracks [36]; micro-electronic

devices [37]

6.18 Ω sq−1 after applying 5454 J
energy [36]; 9.20 µΩ cm after 1 h of
thermal sintering at 230 ◦C in inert

atmosphere [37]

Zinc MNPs inks; IJP [38],
AJP [39]

Flexible electronics [38];
bioresorbable electronics [39]

~102 S cm−1 [38]; 22.32 S cm−1 was
achieved after 2 ms of sintering by 1

flash with energy of 25.88 J/cm2, and
the final conductivity of 34.72 S cm−1

was achieved by an optimum laser
power [39]

Conductive polymer inks

PEDOT: PSS inks; IJP [40],
AJP [41]

Organic solar cells [40];
µ-needle electrode arrays [41]

0.02 S cm−1 after 20 min of thermal
annealing at 120 ◦C (120 nm thick)

[40]; 0.323 ± 0.075 S cm−1 [41]

BBL: PEI inks;
Spray-coating [42]

Organic electrochemical
transistors and bioelectronics

[42]

8 S cm−1 after 2 h of thermal
annealing at 140 ◦C inside a
nitrogen-filled glovebox [42]

Ceramic nanoparticle
(CNP) inks

Al2O3 CNPs inks; IJP [43] Thin film radio-frequency
capacitors [43]

The dielectric constant of the printed
alumina layer (~120 nm thick with

~0.5 nm RMS surface roughness after
the thermal annealing at 400 ◦C) was

6.2 [43]

BaTiO3 CNPs inks; IJP
[44], AJP [45]

Piezoelectric generators [44];
interdigitated capacitors [45]

The piezoelectric generator had an
open-circuit voltage of ~7 V, a current

density of 0.21 µA·cm−2, and a
power density of 0.42 µW·cm−2 [44];

the dielectric constant was 7 [45]

3Y-TZP CNPs inks; IJP
[46,47]

Dielectric films for
microelectronic devices [46,47] /

ZrO2 CNPs inks; IJP [48],
EHD [49]

Dielectric layers for flexible
electronics [48]; resistive

switches [49]

The ZrO2 dielectric film (dielectric
constant of 10) afforded a leakage

current density of 5.4 × 10−6 A/cm2

at 1 MV/cm [48]. The printed
resistive switch showed stable bipolar

memristive switching behavior
around ± 3 V [49]

TiO2 CNPs inks; IJP
[50,51]

Mesoporous TiO2 electron
transport layers for perovskite

solar cells [50]; dielectric
layers [51]

The perovskite solar cell had a power
conversion efficiency of 18.29% [50];
the current-voltage characteristics of
conducting oxide-TiO2-Ag devices

showed diode behavior [51]
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Table 1. Cont.

Types of Functional Inks Printing Methods Applications Electrical Properties

Ba0.6Sr0.4TiO3 CNPs inks;
IJP [52]

Dielectric layers for capacitors
[52]

The relative dielectric constant was
28 ± 1.7, and the dielectric loss was

0.043 ± 0.006 (at 10 kHz) [52]

Ca2Nb3O10 CNPs inks;
AJP [53] Thin-film transistors [53]

The films deposited by Ca2Nb3O10
ink with a mass fraction of 82 wt%
showed a dielectric constant of 8.5

and a dielectric loss of 0.058 (at
1 MHz) [53]

Glass silicate CNPs inks;
IJP [54] Multilayer hybrid circuits [54] /

Dielectric polymer inks

Polyimide (PI) inks; IJP
[55]

Capacitors for microelectronic
devices [55]

The printed capacitor with
25 ± 0.2 µm thick PI layer showed a

capacitance value of 103 pF [55]

Poly 4-vinylphenol (PVP)
inks; IJP [56]

Flexible capacitors for
wearable electronics [56]

The printed capacitor with 4.5 µm
thick PVP layer showed a capacitance

value of 163 pF [56]

Polyvinyl alcohol (PVA)
inks; EHD [57]

Gate insulators in organic
field-effect transistors [57]

The organic field-effect transistors
with PVA-based gate insulators show

stable operation with low gate
leakage currents [57]

2.1.1. Inkjet Printing (IJP)

The principles of IJP were first developed commercially during the 1970s and
1980s and applied practically to marking products with dates and codes and addressing
mail [58]. The IJP process involves the ejection and local deposition of a sequence of
droplets with fixed volume (typically from 10−12 L to 10−9 L) in either a continuous
inkjet (CIJ) or drop-on-demand (DOD) inkjet mode (Figure 3) [59]. In CIJ printing, ink
droplets are continuously ejected from the orifice and deflected afterward to write spots
on the substrate, recycling the droplets that are not selected in this way via a gutter [60].
In DOD inkjet printing, ink droplets are ejected from thousands of orifices, typically
arranged in each printhead as an array by inducing a transient pressure pulse within
the chamber only when printing is needed [60]. A DOD inkjet printer can adopt several
printheads with different driving mechanisms: piezoelectric (PTZ), thermal, acoustic,
and electrostatic (Figure 4a,b,d,e) [61,62], among which piezoelectric and thermal print-
heads are most widely used. Alternatively, a thermal printhead relies on a resistor to
heat the ink within the ink chamber until a bubble expands in it, forcing a droplet out of
the orifice [63]. In the PTZ printhead, a PTZ actuator located near the orifice deforms
under an applied voltage, leading to a sudden reduction in the ink chamber capacity,
which creates a shockwave in the ink and ejects the droplet. The deformation of the
PTZ element specifically determines the types of PTZ jetting, such as “squeeze”, “push”,
“shear”, or “bend” (Figure 4c) [64].
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Figure 4. Schematics of IJP. (a) Thermal ink jetting. (b) PTZ ink jetting. (c) “Squeeze”, “push”, “shear”,
and “bend” modes of PTZ ink jetting. (d) Acoustic ink jetting. (e) Electrostatic ink jetting [61,62,64].
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It is necessary to adequately understand the influence of various parameters on
the quality of the final printed objects (Figure 5) [65–67] and establish optimal process
conditions. A basic prerequisite of the IJP process reliability is the stability of functional
inks and their specifications in terms of viscosity and surface tension, which negatively
affect the shape and speed of ejected droplets as well as the spreadability on a substrate [54].
There are four major types of functional inks for IJP, namely phase change inks, solvent-
based inks, water-based inks, and UV curable inks, whose viscosity is typically required to
be less than 30 mPa·s to ensure fast refilling of the ink chamber (even under fast duty cycles)
and droplet ejection from orifices [68]. Notably, some printers equipped with industrial
PTZ printheads (i.e., Xaar1003, Xaar Nitrox, Konica KM1800i, and GALAXY series) and
advanced recirculation systems allow functional inks with viscosities up to 80 mPa·s. The
appropriate surface tension is in the range of 35–60 mN/m [69]. Unwanted dripping and
ink spreading over the orifice plate that affects the jettability occur when surface tension is
too low, whereas the jet stream may not split into individual droplets when surface tension
is too high. Moreover, a balance of viscosity and surface tension should be guaranteed to
prevent the formation of satellite droplets or ink mist. The dimensionless number Z = 1/Oh
(Oh is the Ohnesorge number, calculated by Equation (3)) first defined by Fromm [70] is
widely used to evaluate the printability of functional inks for IJP,

We =
v2ρd

γ
, (1)

Re =
vρd
η

, (2)

oh =

√
We

Re
=

η√
γρd

, (3)

where ρ is the density of the ink, η is the viscosity of the ink, γ is the surface tension of
the ink, d is the characteristic length (typically the diameter of the orifice), and v is the
velocity of the droplet in flight. Reis et al. [71] proposed that droplets are stably ejected
when 1 < Z < 10. At low values of Z, the viscous force will prevent droplet separation from
the orifice, resulting in long thin tails and an extended period of time for single droplet
ejection [72]. In turn, at high values of Z, the primary droplet would likely be accompanied
by several satellite droplets. Derby [73] suggested this criterion can be used as guidance in
the formulation of functional inks for IJP. Jang et al. [74] explored the piezoelectric inkjet
process with various fluid mixtures of ethanol, water, and ethylene glycol by monitoring
droplet formation dynamics and determined the reasonable range was 4 < Z < 14. However,
because the above boundaries are semi theoretical and can be affected, for instance, by the
printhead design or the use of a heated printhead, the formulated ink must be optimized
for the ejection tests [75].

The properties (e.g., size distribution, shape, and volume fraction) of the particles dis-
persed in the base fluid, as well as their agglomeration, contribute to printing unreliability.
On the one hand, dispersed particles smaller than ≈1/50 of the orifice diameter (typically
10–100 µm) can largely reduce the occurrence of clogging [76]. On the other hand, the size
of dispersed particles is also strongly associated with the sedimentation velocity, as shown
in Stokes law (Equation (4)) derived considering the movement of spherical particles in a
base fluid,

Vs =

(
ρp − ρ f

)
gd2

18η0
(1− φ)n, (4)

where Vs is the sedimentation velocity, ρp and ρ f are the densities of the particle and base
fluid, respectively, g is the gravitational constant, d is the particle diameter, η0 is the base
fluid viscosity, φ is the solid (particle) volume fraction, and n is 4.75 when the particle
diameter is greater than 2 µm and 5.25 for submicron [77,78]. Reducing the size of dispersed
particles can reduce their sedimentation velocity and enhance the characteristics of the final
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printed targets in terms of density, strength, and dielectric properties after sintering [79–84].
However, the contact area and surface interaction between these dispersed particles would
increase concomitantly (under the condition of the same solid volume fraction), resulting
in high suspension viscosity; as a result, the particle size distribution is important. In
addition, the solid volume fraction is within 20 vol.% in most cases [54,85]. There are
some exceptions; for example, Wätjen et al. [86] reported an alumina ink with a solid
volume fraction of 31.1 vol.%. It is desirable to obtain a functional ink with the highest
possible solid loading (φ) and lowest possible viscosity (η) for printing uniform, dense, low
shrinkage, and defect-free bodies. Various models have been proposed to determine the
φ− η relationship [87–95]. Among them, the Krieger–Dougherty model (Equation (5)) is
the most extensively used,

η = η0

(
1− φ

φm

)−Bφm

, (5)

where η is the viscosity of the ink, η0 is the viscosity of the vehicle, φ is the solid volume
fraction, φm is the maximum solid volume fraction, and B is the “Einstein coefficient” or
“intrinsic viscosity” with a value of 2.5. Therefore, the size distribution and solid volume
fraction of dispersed particles should be considered on the basis of the above factors.
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2.1.2. Aerosol Jet Printing (AJP)

Aerosol jet printing (AJP), formerly referred to as maskless mesoscale material deposi-
tion (M3D), was first developed under the Defense Advanced Research Projects Agency
(DARPA) Mesoscopic Integrated Conformal Electronics (MICE) program to identify a man-
ufacturing process capable of depositing a wide range of materials on any substrate [96].
Five core stages (atomization, aerosol transport, collimation, focusing, and impaction)
are involved when an AJP system is working. Initially, fine mists of numerous aerosol
droplets are generated by atomizers with pneumatic or ultrasonic approaches. Afterward,
the carrier gas flow applied to the ink reservoir drives the aerosol droplets through a virtual
impactor, where the aerosol droplets are filtered for more uniform size distribution and
ultimately directed to the printhead. At the printhead, the coaxial sheath gas flow plays
an important role, which collimates the aerosol droplets into a tight beam and forms an
interlayer between the aerosol stream and physical components to reduce nozzle clogging.
Finally, a high-velocity stream of collimated aerosol droplets, together with the sheath gas,
exits from the printhead and is directed towards the substrate with a standoff distance of
1–5 mm (Figure 6).



Polymers 2022, 14, 4635 9 of 32

Employing an ultrasonic transducer immersed in the water bath, the ultrasonic ap-
proach produces droplets smaller than 100 nm with a well-defined size distribution from
small volumes (~2 mL) of relatively low viscosity (1–500 cp) inks [97] and diffuses these
droplets into the gas phase. However, the underlying mechanism of liquid disintegration
is not yet fully understood. There are two major hypotheses proposed to explain this
phenomenon: cavitation and capillary wave [98]. The cavitation hypothesis considers that
the cavitation activity, referred to as the nucleation, growth, and subsequent explosion
of numerous microbubbles in the liquid layer caused by ultrasonic energy contributes to
droplet generation [99]. In contrast, the capillary wave hypothesis based on the Taylor in-
stability criteria states that droplet generation occurs when unstable oscillations (formed by
high-frequency ultrasound) on the surface of the liquid column tear the crests of capillary
waves away from the liquid layer [100]. In the pneumatic approach, during atomization,
a compressed gas (carrier gas) flows across the top of an ink supply channel, creating a
region of negative pressure that draws the bulk ink upward, where the bulk ink is impacted
and sheared by the high-velocity carrier gas to generate aerosol droplets. The pneumatic
approach is able to atomize inks with viscosities in the range of 1–1000 cp [101].
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Human, material, apparatus, method, and medium factors affecting the AJP process
are shown in Figure 5. As with IJP, the formulation of suitable ink is essential and is
arguably the biggest challenge. However, a summary equation of parameters similar to
the “Z number” has not been established, and initial formulation and optimization are
achieved through large, isolated bodies of empirical work [97]. One of the requirements
for ink formulation is that the solid particles do not clog the atomizer nozzle, which is
usually achieved using submicron solid particles capable of deformation whose fragments
or fines that become amorphized upon impact may facilitate consolidation [102]. Because
the atomization process selectively introduces smaller particles into the aerosol stream,
controlling a narrow particle size distribution is essential; otherwise, the particles in the ink
available for printing will change as a function of printing time [103]. To prevent aerosol
droplets from drying completely before delivery to the substrate, the solvent vapor pressure
must be tuned; in many cases, the addition of a low volatility cosolvent (~10 vol.%) is
necessary and empirical studies highlight its use in suppressing overspray [104].

Adjustable process parameters associated with the final quality of printed targets, such
as sheath gas flow rate (SHGFR), carrier gas flow rate (CGFR), focusing ratio (FR, the ratio of
sheath gas flow rate to carrier gas flow rate), standoff distance, stage speed, and substrate
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temperature have been extensively investigated [105–109]. Both the morphology and
electrical performance of printed lines can be greatly affected by the poor optimization of
these process parameters. Akhatov et al. [110] conducted the first systematic theoretical and
experimental study about the effect of the Saffman force on aerosol flows through a micro-
capillary, revealing complicated interactions between droplets and the carrier gas, which
allowed for the optimization of focused aerosol beams. Later, many researchers explored
the underlying causal aerodynamic interactions that led to trends in line morphology
using computational fluid dynamic models and achieved a better understanding of aerosol
droplet generation, transportation, and impaction [104,111–116]. Additionally, data-driven
process modeling can eliminate the drifting and stochastic nature of the print system
and efficiently determine the optimal operating process window, which is attractive for
controlling the line morphology [117–119].

2.2. Direct Ink Writing (DIW)

DIW originated from robocasting technology, which was initially established by Ce-
sarani et al. at Sandia National Laboratories in 1997. As an extrusion-based versatile 3D
printing method, DIW provides a powerful route for fabricating complex 3D structures
with high aspect ratio walls or spanning elements at the meso- and microscale from poly-
mers (conductive or insulating) [120,121], ceramic particles [22,122], metal particles [123],
graphene nanosheets [124], carbon nanotubes (CNTs) [125], and composites [126]. Dur-
ing printing, the ink (also called a suspension or paste) with shear thinning behavior is
pneumatically or screw extruded through a motion-controlled nozzle (typical diameter 100–
500 µm, Figure 7a) and then deposited on the platform to form precise patterns. To steadily
stack multiple layers and guarantee fidelity and structural integrity, the extruded ink must
fully solidify instantaneously, which is assisted by an optional post-curing process (solvent
evaporation, gelation, solvent-driven reactions, thermal treatment, and photoirradiation)
to allow for crosslinking [127]. Figure 7b shows a modified UV-assisted DIW setup [128].

Various material and process parameters, for instance, the rheological properties of
the ink (e.g., viscosity and surface tension), the geometric features of the nozzle, extrusion
pressure, standoff distance, printing speed, strip spacing, and curing technique, signifi-
cantly dictate the quality (e.g., dimensional error, surface roughness, layer flatness, and
interfacial strength) of the printed 3D parts [129,130]. Several essential criteria of qualified
inks for DIW include the ability to flow easily through the nozzle when subjected to a
shear force, sufficient yield strength after extrusion, and self-supportability. The feature
resolution is positively correlated with the size of the nozzle. Although smaller nozzles
provide higher feature resolution, they sacrifice build efficiency, and a greater extrusion
pressure is required to enable smooth flow of the viscoelastic ink at the risk of nozzle
damage. Notably, DIW with a nozzle diameter ranging from 0.5 µm to 5 µm has been used
to create structures with feature sizes ranging from 100 nm to 10 µm [131].

There are three different strategies enabling multi-material 3D printing with DIW
(multi-material DIW) according to the nozzle design and ink extrusion mode. The first
is that multiple inks stored separately in their individual syringes are extruded through
multiple nozzles to construct multi-material structures layer-by-layer (Figure 7c) [132,133].
This strategy is the most commonly used and involves switching between multiple nozzles
for sequential printing, which requires accurate coordination of each nozzle and careful
flow control of viscoelastic inks, especially when the printed inks have different rheological
properties [21]. The second uses a single nozzle with the capability of switching between
inks or in situ mixing of multiple inks via a mixing impeller driven by rotary motor during
the printing process while simultaneously controlling the printed geometry (Figure 7d–
e) [134–136]. This strategy makes it possible to fabricate functionally graded patterns
with tunable properties (e.g., strength, coefficient of thermal expansion, and permittivity).
The third strategy uses a multicore-shell nozzle with several specific inputs connected to
corresponding syringes, which enables the coextrusion of multiple inks to form a core-shell
filament (Figure 7f–g) [137,138].
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Recently, multi-material DIW has been increasingly adopted to manufacture function-
ally graded structures (e.g., triboelectric nanogenerators [139], sensors [140], supercapaci-
tors [141,142], photodetectors [143], batteries [132], circuit board [144], and scaffolds [145])
because of its unique ability to separately or simultaneously extrude different functional
inks. For example, Sears et al. [145] used a multi-material DIW printer to fabricate a scaf-
fold with a poly(ε-caprolactone) (PCL) or poly(lactic acid) (PLA) shell and a propylene
fumarate dimethacrylate (PFDMA) hierarchical architecture. The addition of the PCL or
PLA shell resulted in a significant increase in the compressive modulus and yield strength.
Natural bone tissue comprises hierarchical porous structures that support cell growth,
provide space for nutrient transport, and withstand different types of ambient loads [146].
Critical size or non-union bone defects can be treated by surgically implanting biocom-
patible bone graft substitutes [147]. However, there are many problems in the long-term
use of biocompatible bone graft substitutes, such as displacement, allergic reaction, and
the need for secondary surgery [148]. Another permanent solution is to facilitate bone
tissue regeneration via a scaffold. Multi-material DIW has garnered considerable attention
because of its potential in constructing the heterogeneous and anisotropic structure that
can enable scaffolds to mimic the properties of natural bone tissue [123,149]. In addition,
triply periodic minimal surface (TPMS) scaffolds allow for precise geometric modification;
as a result, many physical characteristics (e.g., surface-to-volume ratio, pore size, elastic
properties, and fluid behaviors) can be controlled [150].
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Figure 7. (a) Schematics of plunger-based extrusion, pneumatic-based extrusion, and screw-based
extrusion of DIW. (b) Cross sectional view of the UV-assisted DIW process [128]. (c) Multi-material
3D printing with a dual nozzle DIW system [133]. (d) Optical image and schematic illustration of
the impeller-based active mixer for multi-material DIW, and (e) cross sectional images of the printed
3D rectangular lattice structure showing continuous change in the fluorescent pigment concentra-
tion [134]. (f) Optical image and schematic illustration of the multicore-shell nozzle connected to the
core, interface, and shell ink syringes for multi-material DIW, and (g) cross sectional images of the
printed rectangular lattice structure [138].
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2.3. Fused Deposition Modeling (FDM)

FDM is one of the most extensively used 3D printing techniques for polymer struc-
tures (e.g., polylactic acid, butadiene styrene, polycarbonate, polyamide, polystyrene, and
polyethylene [151]) because of its inexpensive apparatus cost and easy implementation.
FDM is also known as fused filament fabrication (FFF); in this process, the thermoplastic
polymer filament is melted or softened in a liquefier head, and then the polymer is selec-
tively extruded by the action of two counter rotating elements on the platform to build
the 3D objects in a layer-on-layer manner. Over the past few years, thermoplastic polymer
filaments reinforced by a variety of fillers, such as metals [152,153], ceramics [154–157],
fibers [158,159], and bioactive glass [160], have been developed. With enhanced properties
(e.g., mechanical strength, thermal conductivity, permittivity, dielectric loss, and biocom-
patibility) of these composite filaments, FDM greatly expands its application scope into
electronic, automotive, aerospace, biomedical, and sports industries.

The critical parameters of FDM are filament-specific (e.g., thermal, mechanical, and
rheological properties and diameter), operation-specific (e.g., temperature, speed, and
structure of 3D-printed object), and apparatus-specific (e.g., number of extrusion heads,
nozzle diameter, and gear force) [161,162]. Multi-material 3D printing with FDM (multi-
material FDM) can be easily implemented using multiple extrusion nozzles, and the method
has drawn increasing interest. However, some inherent disadvantages still exist when multi-
material FDM is used to construct complex structures, such as low resolution accompanied
by poor surface finish, insufficient bonding between adjacent sections, and slow build
velocity [21]. Additionally, thermoplastic polymer filaments with high solid content are
necessary for the fabrication of metal and ceramic parts because of the low shrinkage after
sintering; However, the dramatic increase in stiffness and brittleness adversely affects the
production and printing process [163]. Therefore, significant efforts should be devoted to
overcoming these challenges.

2.4. Vat Photopolymerization (VP)

In the vat photopolymerization (VP) process, a liquid-state photopolymer material
housed in a vat is selectively cured and patterned by light-initiated polymerization [10].
This class of technologies includes stereolithography (SLA), two-photon lithography (2PL)
or two-photon polymerization (2PP), digital light processing (DLP), and continuous liquid
interface production (CLIP).

As one of the oldest VP technologies established by Hull in 1984, SLA uses a UV
laser beam scanning quickly along a controlled path to cure the irradiated photopolymer
material within a vat from point to point. After one slice is printed, the build platform
moves downward or lifts (depending on if the machine is a top-down or bottom-up
structure) with a constant amount equaling exactly one-slice thickness in the z-direction for
the next slice printing until the 3D part is finished [164]. Another important laser scanning
technology, 2PL, differs from conventional (single-photon) SLA by exploiting the two-
photon absorption (2PA) process to induce polymerization of the photopolymer material
within the focal region of an ultrafast (femtosecond or picosecond) pulsed laser. Therefore,
2PL can be used to fabricate 3D microstructures with feature resolutions beyond the
diffraction limit and free from the staircase effect caused by fluctuations of photopolymer
materials [165]. However, 2PL shares the same common time-consuming issue as SLA
and requires careful design of the highly transparent feedstock, especially when involving
light-scattering additives such as ceramic particles [166].

In contrast to the aforementioned laser scanning technologies, DLP employs a digital
light projector rather than a laser as the light source; as a result, a UV image corresponding
to each layer shape can be projected over the surface of the photopolymer material within a
vat. DLP considerably improves building efficiency because any design can be printed layer-
by-layer instead of individually addressing one voxel. Projection micro stereolithography
(PµSL) is a development from DLP using a liquid crystal display, a digital micromirror
device, or liquid crystals on the silicon device as a dynamic mask and featuring superior
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resolution (up to 0.6 µm) [167]. CLIP is another development from DLP enabling continuous
growth of a 3D part using an oxygen-permeable and UV-transparent window at the bottom
of the photopolymer material vat [168]. Oxygen can travel through the window and mix
into the liquid photopolymer material, forming a persistent liquid interface (oxygen dead
zone) capable of inhibiting free radical photopolymerization. As a result, the build platform
no longer needs to move up and down for each layer [169].

These VP-based 3D printing technologies have shown great potential in sensors, actua-
tors, robots, microfluidic devices, and scaffolds because of their ability to construct 3D parts
with high resolution, high accuracy, high throughput, and a good surface finish, which is
not the case for MJ, DIW, and FDM [170]. However, most studies simply focus on single-
material fabrication, and multi-material 3D printing with VP-based technologies remains
challenging and limited because of difficulties in exchanging liquid-state photopolymer ma-
terials within a vat. In general, three different strategies have been developed: (1) a hybrid
process via the combination with DIW, AJP, or other special techniques, (2) vat switching,
and (3) dynamic fluidic control. Among a few recently reported applications, the first
strategy may be the most straightforward and widely adopted. Lopes et al. [171] presented
a hybrid multi-material 3D printing system that integrated SLA and DIW to fabricate
monolithic structures with embedded circuits. SLA was used to build substrate structures,
reserving the required receptacles into which electronic components were subsequently
inserted, and channels and vertical vias were created, while DIW provided a precisely
dispensing conductive material in the channels and vertical vias to realize interconnection
(Figure 8a). Similarly, Peng et al. [172] presented a hybrid multi-material 3D printing
system that integrated DLP and DIW to fabricate active soft robots, circuit-embedding
architectures, and strain sensors (Figure 8b–d). This strategy requires an effective cleaning
tool (e.g., air jet, vacuum, brush, and ultrasonic) to remove the uncured photopolymer ma-
terial from reserved receptacles, channels, and vertical vias, as any material contamination
leads to dimensional inaccuracies. With the second strategy, the simplest approach is to
manually or automatically exchange the photopolymer material within a vat [173] or switch
between multiple vats containing different photopolymer materials [174,175]; however, the
printing process has to be interrupted, significantly increasing its time consumption. To
overcome this issue, researchers have proposed multi-material stereolithography without
vats that can deliver multiple photopolymer materials on a moving glass plate or silicone
sled using aerosol jet systems [176] or pump-based syringes [177–179] (Figure 8e). In
this distinctive process, a bottom-up projection method is mostly adopted, which greatly
reduces the amount of residue to be cleaned because the printed part is immersed in the
liquid-state photopolymer material at a limited depth [180]. Notably, in combination with
an in situ microfuidic system (Figure 8f), Chen et al. [181] achieved 3D microlattices with
dissimilar constituent materials (Figure 8g), which is attractive for manufacturing various
structures with tailorable properties such as a negative Poisson’s ratio. Miri et al. [182]
demonstrated an in situ microfuidic system with several on/off pneumatic valves for fast
switching between different photopolymer materials and accomplished the multi-material
stereolithography of heterogeneous hydrogel constructs. With the third strategy, recently,
Han et al. [183] developed a multi-material PµSL system using dynamic fluidic control
to realize rapid filling and exchange of multiple photopolymer materials within an inte-
grated pressure-tight fluidic cell (Figure 8h) that is capable of fabricating highly complex
heterogeneous 3D microstructures (Figure 8i).
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Figure 8. Multi-material 3D printing with VP-based technologies. (a) Schematic illustration of
the multi-material 3D printing system integrating SLA and DIW. (b) Photographs of the printed
electronic structure with an embedded 3D helix, (c) photographs of the printed cylindrical lattice
with three rings embedded, and (d) photographs of the printed light tower [172]. (e) Schematic
illustration of the multi-material stereolithography without vats [179]. (f) Schematic illustration of
the multi-material stereolithography using an in situ microfuidic system, and (g) photographs of
the printed 3D microlattice with dissimilar constituent materials [181]. (h) Schematic illustration of
the multi-material PµSL system using dynamic fluidic control to rapidly fill and exchange multiple
photopolymer materials, and (i) photographs of the printed micro 3D structures [183].

3. Applications of Multi-Material 3D Printing in Functional Ceramic Devices

In most cases, functional ceramic devices with multiple material constituents have
tiny structural features such as strip lines, microstrip lines, and vias. These structural
features present a challenge for multi-material 3D printing processes because micro-defects
will degrade the electrical and mechanical properties. In addition, the materials (ceramics,
polymers, and metals) and their compatibility with 3D printing techniques must be further
investigated. Table 2 lists several composition examples of multi-material 3D printing in
functional ceramic devices.
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Table 2. Several composition examples of multi-material 3D printing in functional ceramic devices.

Compositions Multi-Material 3D
Printing Techniques Applications Properties Ref.

Dielectric material (ink):
Ca2NaNb4O13 + Isopropanol +

2-butyl alcohol
Electrode material (ink): Ag

IJP Capacitors
The capacitor showed a

capacitance density of ≈210
pF/mm2

[184]

Dielectric material (ink):
Ba0.6Sr0.4TiO3-ZnO-B2O3 +
Butyl diglycol + isopropyl
alcohol + ethyl cellulose

Electrode material (ink): Ag

IJP Varactors

The varactors showed a
tunability between 14.4% and

16.4% under a tuning field of 5
V/µm

[185]

Dielectric material (ink): MgTiO3
Electrode material (ink): Ag IJP Capacitors / [186]

Dielectric material (ink):
Pb0.97La0.02Zr0.53Ti0.47O3 +

ethylene glycol + ethanolamine
Electrode material (ink): Ag

IJP Capacitors / [187]

Dielectric material (ink):
Ba0.6Sr0.4TiO3 + Poly (ethylene

glycol) diacrylate
Electrode material (ink): Ag

IJP Multilayer ceramic
capacitors

The multilayer ceramic
capacitors showed a

capacitance density of ≈ 500
pF/mm2

[188]

Dielectric material (ink):
BaO-Al2O3-SiO2-MnO-TiO2
Electrode material (ink): Cu

IJP Multilayer ceramic
substrates

The multilayer ceramic
substrate showed a shrinkage

ratio of ≈15%
[189]

Dielectric material (ink): BaTiO3
Electrode material (/): Cu

AJP + etching +
sputtering + plating

Multilayer ceramic
substrates

The multilayer ceramic substrate
showed a permittivity of ≈ 3000
and a dielectric loss of ≈ 7% at

1 MHz

[190]

Dielectric material (slurry): Al2O3
Electrode material (slurry):

tungsten
SLA + DIW Multilayer ceramic

substrates

The multilayer ceramic
substrates showed a Young

modulus E of ≈ 280 ± 11 GPa
[191]

Dielectric material (ink): ZrO2
Electrode material (ink): Ag IJP + AJP Microstrip antennas

The bulk ZrO2 showed a
relative permittivity of 23 and

a loss tangent of 0.0013 at
microwave frequencies

[23]

Dielectric material (ink): SiO2 +
hexanediol diacrylate (HDDA) +
alkyl-diphenyl oxide disulfonate

Electrode material (ink): Cu

IJP Microstrip antennas
The resistance was 2.43 × 1013

Ω·cm (174.3 µm thick
dielectric layer)

[192]

Dielectric material (filament):
TiO2 + cyclo-olefin polymer

(COP)
Electrode material (slurry): Ag

FDM + DIW Microstrip antennas

The 30% loaded COP-TiO2
showed a relative permittivity

of 4.56 and a loss tangent of
0.0016 after sintering at 1100

◦C

[193]

Dielectric material (filament):
NdTi03 + polydimethylsiloxane

(PDMS)
Electrode material (slurry): Ag

FDM + DIW Microstrip antennas

The 25% loaded
PDMS-NdTiO3 showed a

permittivity of 9.22 and a loss
tangent of 0.025 at frequencies

up to 17 GHz

[194]

Dielectric material (filament):
MgCaTi02 + PDMS

Electrode material (slurry): Ag
FDM + DIW Microstrip antennas

The 19.6 GHz microstrip
antenna showed a return loss

of 20 dB along with a 10%
bandwidth

[195]
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3.1. Capacitors

As the most widely used passive components in electronic equipment (i.e., smart-
phones, computers, and electric vehicles), ceramic capacitors can distribute and control
the amount of current flowing through a circuit, eliminate noise, store energy, and prevent
malfunction. Multi-material 3D printing enables ceramic capacitors to be fabricated di-
rectly from digital models, which provides an effective tool to enhance the flexibility of the
substrate, material, and design, as well as reduce consumption and turnaround time [196].
Reviewing the recent research on multi-material 3D printing of ceramic capacitors, two
major dielectric materials have been developed: pure ceramics [184–187,197–199] and ce-
ramic/polymer composites [200–207]. For example, Rammal et al. [197] presented a fully
inkjet-printed metal-insulator-metal (MIM) capacitor formed by layer-on-layer deposition
of silver nanoparticle and ceramic nanoparticle (a low-temperature cofired ceramic material
from Heraeus) based inks. The resulting 0.9 mm × 0.9 mm capacitor with a total thickness
of 30 µm contained a 20 µm dielectric layer whose relative permittivity εr and dielectric
loss tan δ were 67.5 ± 1 and 0.00128 ± 0.00006, respectively, leading to an approximate
capacitance of 2 pF at 20 GHz. Fu et al. [184] fabricated a capacitor array comprising ten
fully inkjet-printed MIM (Ag/Ca2NaNb4O13/Ag, where Ag terminal electrodes are on
the top and bottom of the Ca2NaNb4O13 dielectric layer) capacitors on a glass substrate
(Figure 9a), indicating that large area ceramic capacitors can be achieved at low cost using
multi-material 3D printing. A capacitance density of ≈210 pF/mm2, with a low current
density (<10−7 A cm−2) and low dielectric loss (≈0.02), was obtained for a capacitor with
a ≈2 µm dielectric layer. Multi-material 3D printing has dramatically transformed the
design and fabrication of tunable microwave devices such as varactors [185,208], phase
shifters [209,210], and phased array antennas [211,212]. Friederich et al. [185] demonstrated
a fully inkjet-printed MIM (Ag/Ba0.6Sr0.4TiO3-ZnO-B2O3/Ag) varactor, characterized by
tunability between 14.4% and 16.4% under a tuning field of 5 V/µm (Figure 9b).

To achieve a higher capacitance density, parallel-plate capacitors are stacked to create
multilayer components that have also been demonstrated via multi-material 3D printing.
Jeschke et al. [198] proposed a fully inkjet-printed multilayer ceramic capacitor (MLCC)
stacked by 5 Ag/barium titanate (BaTiO3)/Ag parallel-plate capacitors. The resulting
MLCC component had a capacitance density of 1600 pF/mm2, nearly four times greater
than that of a parallel plate capacitor. Dossou-Yovo et al. [186] investigated the method-
ology of MLCC component manufacturing by employing a CeraDrop multi-material 3D
inkjet printer to alternately print Ag electrodes and MgTiO3 dielectric layers on a polymer
substrate (to facilitate subsequent separation of the printed MLCC component from the
platform), and obtained 784 MLCC components (each MLCC component incorporated
15 internal Ag electrodes and consequently 14 MgTiO3 dielectric layers) over a large area
(Figure 9c). Folgar et al. [199] used the combination of AJP and selective laser sintering
to synthesize MLCC structures (comprising 0.5–1.0 µm thick Ag electrodes and 0.5–2 µm
thick BaTiO3 dielectric films) on a silicon substrate. Anti-diffusion layers of polymethyl
methacrylate (PMMA) were used to prevent the nano silver ink from diffusing into the
BaTiO3 layer. Matavž et al. [187] developed a highly efficient process to conformal stack
ferroelectric oxide layers on silicon oxide substrates via inkjet printing. MLCC components
comprising alternate layers of lanthanum nickelate (LNO) electrode and lanthanum-doped
lead zirconate titanate (Pb0.97La0.02Zr0.53Ti0.47O3) dielectric film were demonstrated us-
ing this process (Figure 9d). For controlling the wetting behavior of functional inks on
the previously formed layer, PMMA/polystyrene layers were used as temporary surface
modification layers.
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Over the past few decades, the demand for flexible electronics that require stretchable
circuits to connect individual working units throughout the system has grown rapidly.
Although these capacitors with pure ceramics as dielectric layers exhibit excellent per-
mittivity and low dielectric loss, they are not suitable for flexible substrates because of
their high annealing temperature (>850 ◦C) and poor bendability. Ceramic/polymer
composites are promising candidate materials for capacitors embedded in stretchable cir-
cuits, and they have attracted attention because of their advantages of being synthesized
from two original materials (high permittivity of the ceramics and mechanical properties
and processability of the polymers). Mikolajek et al. [52] demonstrated 12 fully inkjet-
printed MIM (Ag/Ba0.6Sr0.4TiO3/PMMA/Ag) capacitors on an alumina substrate. The
Ba0.6Sr0.4TiO3/PMMA composite dielectric layer (about 7.2 µm) showed a relative permit-
tivity εr of 28 ± 1.7 (approximately nine times greater than that of pure PMMA) and a
dielectric loss tan δ of 0.043 ± 0.0006 at 10 kHz. The same authors subsequently demon-
strated a fully inkjet-printed, flexible capacitor array on a polyethylene terephthalate (PET)
substrate (Figure 9e) [202]. Lim et al. [203] presented a MIM capacitor on an alumina
oxide/polymer composite substrate. The dielectric layer (with a relative permittivity εr =
70 and dielectric loss tan δ = 0.011 at 1 MHz) of this MIM capacitor was formed by resin
infiltration into the micro-voids inside the inkjet-printed BaTiO3 film, and its thickness and
roughness were 20 mm and 0.35 mm, respectively.

However, it is still a challenge to print very thin (<1 µm) and uniform dielectric layers
that do not achieve the undesirable phenomenon known as the coffee stain effect dur-
ing the drying stage [204]. To overcome this intrinsic problem, Reinheimer et al. [188]
developed an innovative polymer/ceramic ink system comprising surface-modified (3-
(trimethoxysilyl)propyl methacrylate) Ba0.6Sr0.4TiO3 particles, a cross-linking agent
(poly(ethylene glycol) diacrylate), and a thermal radical initiator (dimethyl 2,2′-azobis(2-
methylpropionate)), which allows immediate solidification of the ink. The fully inkjet-
printed capacitor with a 700 nm dielectric layer showed a capacitance density of ≈500
pF/mm2. The same authors subsequently proposed a straightforward method to print
MLCC components containing three dielectric layers on a PET substrate [205]. The obtained
MLCC component, with three dielectric layers of 1.3 µm, 1.5 µm, and 1.2 µm, showed a
capacitance up to 3420 pF, nearly three times greater than that of one parallel-plate capacitor
(Figure 9f).

Various passive devices, such as capacitors, resistors, and inductors, are incorporated
into chip packages or circuit boards to realize 3D system integration [213]. There have
been significant efforts to build chip-first packages and interconnects using multi-material
3D printing [214–218]. For example, using a multi-material aerosol jet printer (Optomec
Aerosol Jet 5X), Craton et al. [206] fabricated BaTiO3/polyimide composite films whose
mixing ratios were dynamically adjusted during printing via an in situ mixing strategy,
leading to tunable dielectric and mechanical properties (e.g., permittivity and coefficient of
thermal expansion). Ring resonator circuits and MIM capacitors were printed on a molyb-
denum copper alloy (85% Mo and 15% Cu) carrier to characterize the BaTiO3/polyimide
composite films. The same authors also demonstrated two chip-first microwave packages
with integrated bypass capacitors on the same molybdenum copper alloy carrier [207],
characterized by a maximum packaged gain of 21.7 dB and saturated output power of
21.9 dBm.
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printed Ag/Ba0.6Sr0.4TiO3-ZnO-B2O3/Ag varactor (right) [185]. (c) Photographs of fabricated 784 
MLCCs with 15 internal electrodes and, consequently, 14 dielectric layers using a multi-material 3D 
inkjet printer [186]. (d) Photograph of sequentially inkjet-printed LNO and PZT layers to form 
MLCC components (left), and SEM image of the fully inkjet-printed MLCC components on SiO2 
substrate (right) [187]. (e) Schematic illustration of the design concept for the 
Ag/Ba0.6Sr0.4TiO3/PMMA/Ag capacitor (left) and a photograph of the fully inkjet-printed flexible ca-
pacitor array on PET substrate (right) [202]. (f) SEM image of the fully inkjet-printed MLCC com-
ponent with three dielectric layers on a PET substrate (left) and increasing capacitances of the MLCC 
component with every additional layer (right) [205]. 
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3.2. Multilayer Substrates

Multilayer ceramic substrates, also known as ceramic packages or shells, can satisfy
the demand for 3D integration with active and passive components and high-reliability
packaging. Multilayer ceramic substrates act as the medium for signal transmission and
heat dissipation while also protecting chips from mechanical and chemical hazards, and
they are widely used in the field of microelectronic packaging [219,220], sensors [221–223],
electromagnetic (EM) absorbers [224,225], frequency selective surfaces (FSS) [226–228], and
wideband near-field correcting [229].

Multilayer ceramic substrates are mainly manufactured by HTCC or LTCC technol-
ogy, which was originally derived from developments at RCA Corporation in the late
1950s [230]. To meet specific requirements, such as geometric complexity, microscale, mul-
tifunction, turnaround time, and cost-effectiveness, significant efforts have been devoted
to realizing the multi-material 3D printing of multilayer ceramic substrates in the past
few decades [22,189–191,231–234]. For example, Imanaka et al. [190] proposed a hybrid
multi-material integration process using the combination of established AJP, chemical
etching, sputtering, and plating techniques to fabricate the mesoscale multilayer ceramic
structure with fine copper electrodes and vias (Figure 10a): employing AJP to deposit high-
permittivity BaTiO3 films, chemical etching to selectively remove materials for shaping the
via holes on the as-deposited BaTiO3 films and internal electrodes on the Cu sputter films,
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and plating to realize the metallization of via holes. Finally, to complete the multilayer
ceramic structure (Figure 10b), a post-process annealing treatment was performed at 900–
1000 ◦C in a nitrogen atmosphere. A permittivity of approximately 3000 and a dielectric
loss of ≈7% at 1 MHz were demonstrated for the BaTiO3 film after annealing at 1000 ◦C.
This multi-material integration process, with the help of multiple techniques, provides a
direction for the manufacturing of a multilayer ceramic substrate.

Schulz et al. [232] developed alumina/glass composites with an optimized mixing
ratio and particle size distribution and explored the multi-material 3D printing of LTCC
substrates using a binder jetting printer. The internal conductors in X–Y and vertical
directions were formed by depositing silver nanoparticles after the binder solidification
of an aluminum oxide/glass dielectric layer. Despite the good permittivity (8.5) and
dielectric loss (0.002) at 1 GHz, great improvements are needed because of the unsatisfactory
shrinkage rate (X, Y ≈ 20%, Z ≈ 25%) and surface roughness (6.7–17.5) after cofiring.
Compared with BJT, direct IJP is more suitable for fabricating multilayer ceramic substrates
for higher resolution and better surface finish. Hirao et al. [189] formulated ceramic (BaO-
Al2O3-SiO2-MnO-TiO2) and copper nanoparticle-based inks and deposited them together
with a support material ink to construct multilayer ceramic structures, which were cofired
at 800–1000 ◦C in a N2/H2 atmosphere, resulting in a shrinkage ratio of approximately
15%.

Multilayer ceramic structures have also been fabricated by coupling SLA with DIW.
Raynaud et al. [233] developed a UV-curable ceramic slurry comprising alumina (d50 =
1.4 µm) and borosilicate glass (d50 = 1.6 µm) that was compatible with the SLA process
and demonstrated the possibility of manufacturing LTCC structures via a multi-material
3D printer (from 3DCeram-Sinto company) integrating the SLA module and DIW module.
The SLA module is used to form ceramic dielectric layers, where the channels and via
holes are engraved by a pneumatic graver, while the DIW module is used to precisely
deposit silver paste in these channels and via holes to form embedded metallic conductors
in the X–Y and vertical directions. After cofiring for 1 h at 850 ◦C in an air atmosphere, the
final dense multilayer ceramic structures showed a Young modulus of 83 ± 24 GPa and a
flexural strength of 84 ± 24 MPa. The same authors subsequently proposed that HTCC
structures (alumina) with tungsten electrodes can be manufactured through a similar multi-
material 3D printing process (Figure 10c) [191]. Significant mismatching of the coefficient of
thermal expansion (CET) between alumina (CET = 7.1 × 10−6/◦C) dielectric and tungsten
(CET = 4.10 × 10−6/◦C) conductors would cause delamination at the ceramic/metal
interfaces during co-firing. To reduce such delamination risk, Bernard et al. [234] replaced
the tungsten paste used in experiments outlined by Raynaud et al. with molybdenum
(CET = 5.35 × 10−6/◦C) paste and demonstrated molybdenum conductors in the HTCC
structures perfectly followed the profile of the alumina dielectric after cofiring. Indeed,
such a solution coupling SLA with DIW is an advancement for multi-material 3D printing
of multilayer ceramic structures (e.g., substrates, solid oxide fuel cells, and customized
ceramic electronics); however, it requires an expensive apparatus. Recently, Wang et al. [22]
demonstrated a simpler process employing multi-material DIW to fabricate multilayer
ceramic structures for a LED substrate (Figure 10d) and thermometer (Figure 10e). During
printing, two independent pneumatic dispensing devices alternatively extruded LTCC
slurry and silver paste; once a ceramic layer with reserved trenches and hole vias was
finished, the silver paste was filled in the trenches and hole vias to achieve coplanar circuitry
and vertical interconnection.
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Figure 10. Multi-material 3D-printed multilayer ceramic substrates. (a) Schematic illustration of the
hybrid multi-material integration process combining aerosol jet printing, chemical etching, sputtering,
and plating techniques [190]. (b) SEM image of the fabricated mesoscale multilayer ceramic structure
with fine copper electrodes and vias [190]. (c) Schematic illustration of the design concept for the
HTCC structures (left) and photograph of the multi-material 3D-printed HTCC structure (middle)
and its SEM image (right) [191]. (d) Schematic illustration of the design concept of the multilayer
ceramic substrate for a LED (left) and photograph of the multi-material 3D-printed multilayer ceramic
substrate in a working condition (middle) and its micro-CT image (right) [22]. (e) Photograph of a
multi-material 3D-printed ceramic thermometer [22].

3.3. Microstrip Antennas

Microwave (MW) dielectric ceramics are a research focus in the field of functional
ceramics and have been widely used in numerous dielectric devices (i.e., filters [235],
resonators [236], diplexers [237], power dividers [238], and antennas [239]) for modern
wireless communication systems. The demand for simple, durable, cost-effective, low-
profile ceramic microstrip (patch) antennas in the microwave frequency region has grown
with recent advances in wireless communication [240]. Whether as standalone compo-
nents or as components of arrays, multi-material 3D printing enables rapid prototyping
manufacture of ceramic microstrip antennas with various sizes, complex structures, and
material configurations. Many studies have been conducted to fabricate ceramic microstrip
antennas through multi-material 3D printing. For example, Oh et al. [23] used the XJet
Carmel 1400 printer to preliminarily print a zirconia dielectric substrate that was subse-
quently aerosol deposited with silver nanoparticle ink to form double spiral arms and
finally produced a spiral microstrip antenna (Figure 11a). Similarly, Alhendi et al. [241]
used DLP to preliminarily fabricate an alumina dielectric substrate that was subsequently
aerosol deposited with gold nanoparticle ink to form metal patches and finally produced a
broadband microstrip antenna (Figure 11b,c). The printed broadband microstrip antenna
showed a gain of 8 dBi and a voltage standing wave ratio of 5 at 2 GHz. Although these
two cases involving multi-material 3D printing of microstrip antennas are not a single-



Polymers 2022, 14, 4635 21 of 32

step process, they indicate great research potential. Microstrip antennas are compatible
with printed-circuit technology; therefore, MJ techniques (IJP, AJP, and EHD) would be
an excellent method to realize their single-layer or multilayer single-step manufacturing
in a large area. Lee et al. [192] demonstrated antenna circuits through multi-material IJP
(Figure 11d). The authors deposited photo-curable SiO2 nanoparticle ink to preliminarily
fabricate a dielectric substrate and afterward deposited intense pulsed light sinterable Cu
nanoparticle ink on it to form microstrip transmission lines.

Recently, the fabrication method and dielectric characteristics of the ceramic/polymer
composite filaments for FDM of microwave devices (e.g., filters, antennas, and capacitors)
have been widely investigated [154–157,193]. Castro et al. [194] formulated two types
of ceramic/polymer composite filament using polydimethylsiloxane (PDMS, which is a
common substrate material for stretchable electronic devices [242], such as transparent an-
tennas [243], field-effect transistors [244], photodetectors [245], and energy harvesters [246],
because of its thermal stability, high optical transparency, and capability of attaining de-
signer functionalities via surface modification and bulk property tailoring) reinforced by
NdTi03 and MgCaTi02 fillers with volume loading up to 25%. After determining the mi-
crowave dielectric properties of the two types of ceramic/polymer composite filament, the
authors demonstrated flexible microstrip antennas via an nScrypt 3Dn Tabletop printer
coupling FDM and DIW. The multi-material 3D-printed 19.6 GHz microstrip antenna
showed a return loss of 20 dB along with a 10% bandwidth. The same authors subsequently
formulated several types of high-permittivity and low-loss ceramic/polymer composite
filament using cyclo-olefin polymer (COP) reinforced by MgCaTi02, Ba0.55Sr0.45TiO3, and
TiO2 fillers with different volume loading [195]. After determining the microwave dielectric
properties of these different types of ceramic/polymer composite filament in detail, the
authors demonstrated a multi-material 3D-printed Ku-band microstrip antenna with a
dielectric substrate fabricated by FDM of COP-MgCaTiO2 (25 vol.%) composite filament.
The antenna showed a peak realized gain of 6 dBi and patch area miniaturization of 50%
compared with a reference antenna whose peak realized gain was 6.27 dBi. To enhance the
microwave dielectric properties, the polymer is removed by sintering the ceramic/polymer
composites or is reserved for a specific function (e.g., flexibility). The aforementioned ex-
amples of multi-material 3D printing of microstrip antennas would likely have additional
applications in filters [247–249], resonators [234,250], and isolators [251].
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quency at room temperature [241]. (d) Photograph of the fully inkjet-printed antenna circuits [192]. 

Figure 11. Multi-material 3D-printed ceramic microstrip antennas. (a) Photograph of the spiral
microstrip antenna hybrid printed by NanoParticle Jetting™ and AJP [23]. (b) Photograph of the
broadband microstrip antenna hybrid printed by DLP and AJP, and (c) measured gain versus fre-
quency at room temperature [241]. (d) Photograph of the fully inkjet-printed antenna circuits [192].
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4. Conclusions and Outlook

Multi-material 3D printing offers an excellent tool to directly fabricate 3D parts with
material diversity that satisfy specific requirements, such as geometric complexity, mi-
croscale, multifunction, turnaround time, and cost-effectiveness, as well as make it possible
to create gradient structures with tunable dielectric or mechanical properties. Despite ad-
vances in multi-material 3D printing over the past few years, there are still many challenges
to be addressed. Among these multi-material 3D printing technologies, FDM is the easiest
to implement with the lowest cost; however, poor surface finish and printing resolution
can hardly expand its applicability in various fields in which structural conformability
and dynamic configuration are required. In addition, materials need to be made into
thermoplastic rod-like filaments, which greatly reduces the variety of materials that are
available for printing. DIW has the strongest material adaptability, and it performs better
in surface finish and printing resolution than FDM, particularly when using micro nozzles;
however, the throughput is thus affected. MJ is more appropriate for fabricating miniature
parts, and its non-contact property is beneficial to create submicro fine features; however,
formulating functional inks with distinguished properties (e.g., rheology and electrical and
mechanical characteristics) is important, and this remains a challenge with MJ. VP-based
techniques offer the best solution that does not require support materials considering its
outstanding surface finish, printing resolution, and throughput; however, it is generally
not appropriate for multi-material 3D printing because of the difficulties of exchanging
liquid-state photopolymer materials within a vat. In addition to technical breakthroughs
considering the above factors, a deeper understanding of the fundamental materials and
building process is needed to push the boundary of multi-material 3D printing.

Customized electronics have been a key driver for the development of multi-material
3D printing technology and may continue to be a commercial motivation. In the majority
of cases using multi-material 3D printing technology to fabricate 3D complete circuitry,
resin materials are more commonly used and perform better than ceramic materials. The
key reason is that multi-material 3D-printed green bodies need to be debinded and cofired
at different temperature stages when using ceramic materials. Significant mismatching of
CET between xenogeneic materials (ceramics and metals) is likely to cause micro cracks
and overall deformation, which affects the ultimate dimensional accuracy, flatness, and
performance of ceramic devices. Therefore, xenogeneic materials should be compatible with
multi-material 3D printing technologies and also establish their own property matching.
Continuous efforts are needed to develop novel, advanced, and diverse raw materials
to sustain the growth and adoption of multi-material 3D printing of functional ceramic
devices. In addition, embedded vias, especially those with micron size, are themselves
obstacles and challenges for multi-material 3D printing. It is necessary to exploit innovative
and versatile multi-material 3D printing approaches with high resolution, high precision,
and cost-effectiveness.
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