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Abstract: Bacterial cellulose (BC) is currently one of the most popular environmentally friendly
materials with unique structural and physicochemical properties for obtaining various functional
materials for a wide range of applications. In this regard, the literature reporting on bacterial
nanocellulose has increased exponentially in the past decade. Currently, extensive investigations
aim at promoting the manufacturing of BC-based nanocomposites with other components such
as nanoparticles, polymers, and biomolecules, and that will enable to develop of a wide range of
materials with advanced and novel functionalities. However, the commercial production of such
materials is limited by the high cost and low yield of BC, and the lack of highly efficient industrial
production technologies as well. Therefore, the present review aimed at studying the current literature
data in the field of highly efficient BC production for the purpose of its further usage to obtain polymer
nanocomposites. The review highlights the progress in synthesizing BC-based nanocomposites and
their applications in biomedical fields, such as wound healing, drug delivery, tissue engineering.
Bacterial nanocellulose-based biosensors and adsorbents were introduced herein.

Keywords: bacterial cellulose; nanocomposites; biopolymers; functional materials; biomedical
applications

1. Introduction

Cellulose is a biopolymer primarily of plant origin that is the most abundant on
the earth. Chemically, it is a linear homopolysaccharide consisting of D-glucose residues
interconnected by β-1,4-glycosidic bonds. The cellulose macromolecule is composed of
thousands of glucose residues. The order in the arrangement of cellulose macromolecules is
maintained due to the forces of intermolecular interaction (van der Waals forces) and mainly
intramolecular and intermolecular hydrogen bonds. In the structure of cellulose, where each
glucose unit has three hydroxyl groups, hydrogen bonds are very important. They affect
the physical, physicochemical and chemical properties of the polymer. The bonds give the
fibers high strength and insolubility in most solvents. Cellulose macromolecules located in
parallel have many intra- and intermolecular bonds leading to the formation of fibrillar-type
structures: elementary fibrils, microfibrils, and other larger supramolecular formations [1].
Cellulose macromolecules in fibrils form homogeneous highly ordered crystalline zones
(crystallites), which alternate with inhomogeneous, less ordered amorphous zones [2].

Different forms of cellulose (C) are available, such as nano crystals (CNCs), nano
fibers (CNFs), nano whiskers (CNWs), microcrystalline cellulose (MCC), and bacterial
cellulose (BC) or bacterial nanocellulose (BNC) [3–5]. All these forms have been successfully
employed in various fields, and can be easily functionalized due to the presence of bulk–OH
groups on cellulose backbone to obtain the materials of desired properties [6–8]. Despite
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the same chemical composition, the structure and properties of BC differ significantly from
those of plant cellulose. Microorganisms produce extracellular cellulose with high purity,
which does not contain lignin, hemicellulose, and pectin; thus, it can reduce the cost of
downstream processing. BC does not pollute the environment, since it is biodegradable and
completely non-toxic [9]. BNC molecules are arranged strictly parallel to each other forming
crystalline microfibrils 100 times thinner than plant cellulose microfibrils. BNC microfibrils
combine into nanofibrils, 25–100 nm in diameter, and several micrometers long [10]. The
interweaving of fibers forms a porous sponge that absorbing and retaining a great amount
of water for a long time. The specific surface area of BC is 200 times greater than that of
plant cellulose fibers [11,12]. The moisture content of undried BNC films is about 99% [13].
At the same time, most water is molecularly bound; its molecules are directly bound to
the hydroxyl groups of cellulose (only 0.3% of 98% water is in the form of free water) [13].
The BC microfibrillar structure is responsible for most of its properties such as high tensile
strength, high degree of polymerization and crystallinity. Due to the correct arrangement
of fibers, the BC crystallinity degree can reach 84–90% [14–16]. In addition, BC is produced
by microorganisms having a short growth cycle, fast metabolism, and high reproduction
rate. Therefore, the efficiency of cellulose synthesis is high, and the relative pathway of
microbial metabolism is relatively clear, which is more conducive to the cellulose synthesis
regulation. An indisputable advantage of BNC is its good formability and the capability of
purposeful modification, which offers new opportunities for BNC usage [7,8,17].

Due to its unique properties, BC is a promising material for industry and technol-
ogy [18]. It has great potential to be used in medicine [4,19–22] as a biomaterial for tissue
engineering [20,23,24], wound dressing [25–28] and drug delivery systems [5,29–32], it
can be applied in electronics (sensors, energy storage devices, speakers, acoustic mem-
branes) [33], the environmental industry (water purification, filtration and adsorption
techniques) [34,35], and the food industry (artificial food, additives, food packaging [36].
The relatively large diversity of cellulose-producing microorganisms, as well as a wide
variety of cultivation methods, creates an excellent opportunity to modify and adjust the
properties of the material and find new areas of its application.

In contrast to the previously published reviews, this article offers an updated assess-
ment of the latest research findings in the field of highly efficient production of BNC to ob-
tain new nanocomposites with a focus on their biomedical and environmental applications
including wound dressings, tissue engineering, drug delivery systems, biosensors, and ad-
sorbents. The review discusses different combinations of BNC with other biopolymers and
several biologically active agents (metals, inorganic substances, drugs) to develop novel
materials and composites with wide applications in biomedical and biotechnological fields.

2. BC Producers

BC is produced by Gram-negative bacteria of the genera Komagataeibacter (Gluconace-
tobacter), Agrobacterium, Achromobacter, Enterobacter, Rhizobium, Pseudomonas, Salmonella,
Azotobacter, and Alcaligenes, as well as Gram-positive bacteria Sarcina ventriculi and Rhodococ-
cus [37–39]. The best-known producer of BC is the acetic acid bacterium Komagataeibacter
xylinus (Gluconacetobacter xylinus, Acetobacter xylinum, A. aceti ssp. xylinum, A. xylinus).
The genus Komagataeibacter belongs to the family Acetobacteraceae, class Alphaproteobacteria,
phylum Proteobacteria. The genus Komagataeibacter is named after the famous Japanese mi-
crobiologist Dr. Kazuo Komagata, Professor at the University of Tokyo, who made a great
contribution to the taxonomy of bacteria, especially acetic bacteria. Cellulose-producing
bacterial cells are Gram-negative, rod-shaped, and single or pair, some in short chains,
their size about 0.4–1.2 µm in width and 1.0–3.0 µm in length (Figure 1A) [39,40]. The
colonies of cellulose-synthesizing strains are jelly-like, rounded, and uplift in the center
(Figure 1B) [39,41,42].
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Figure 1. Cell morphology (A) (×1500) and colonies (B) (×100) K. sucrofermentans H-110.

Numerous recently isolated BC producers belong to the genus Komagataeibacter (Table 1).
A number of strains were isolated from the Kombucha community: K. hansenii GH-1/2008
(VKPM B-10547) [43], K. xylinus B-12068 [44], K. rhaeticus P 1463 [45]; K. intermedius AF2 [46].
The producers Komagatabacter (Gluconacetobacter) sp. RKY5 [47] and K. medellinensis [48]
were isolated from vinegar. K. intermedius [49]; G. swingsii, G. rhaeticus [50], Komagatabacter
(Gluconacetobacter) sp. gel_SEA623-2 [51] were isolated from fruit juices; and Komagatabacter
(Gluconacetobacter) sp. F6 [52] was isolated from fruits.

Table 1. Sources of isolation BC-producing strains.

Source of Isolation Strain Reference

Kombucha

K. xylinus B-12068 [44]

G. hansenii GH-1/2008
(B-10547) [45]

K. hansenii JR-02 [53]

K. hansenii SI1 [54]

K. hansenii LMG 23726 [55]

K. rhaeticus P 1463 [45]

K. intermedius AF2 [46]

K. rhaeticus K3 [56]

K. sucrofermentans B-11267 [39]

Vinegar
K. hansenii DSM 5602T [55]

K. medellinensis LMG 1693T [47]

Apple cider vinegar

K. europaeus LMG 20956
K. melaceti AV382T

K. melomenusus AV436T

K. melomenusus SI3083
K. nataicola LMG 1536T

K. oboediens AV371
K. oboediens BJK_8C
K. oboediens SI3053
K. pomaceti T5K1T

K. pomaceti AV445
K. pomaceti AV446
K. pomaceti SI3133

K. saccharivorans AV378
K. saccharivorans JK_3A
K. swingsii LMG 22125T

G. entanii SI2035
G. entanii AV429

[55]
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Table 1. Cont.

Source of Isolation Strain Reference

Red wine vinegar K. europaeus LMG 18494 [55]

Fruit
K. maltaceti SKU 1109 [55]

Gluconacetobacter sp. F6 [52]

Rotten fruits G. xylinus BCZM sp. [57]

Rotten banana
Kombucha

Komagataeibacter sp.
CCUG73629

Komagataeibacter sp.
CCUG73630

[58]

Fruit juice

K. intermedius [49]

G. swingsii, G. rhaeticus [50]

Gluconacetobacter sp.
gel_SEA623-2 [51]

Organic apple juice K. rhaeticus DSM 16663T

K. swingsii LMG 22125T [55]

Beet juice K. saccharivorans LMG 1582T [55]

Nata de coco K. nataicola LMG 1536T [55]

Honey wine K. maltaceti P285 [59]

Coconut milk K. cocois sp. nov. [60]

Tibicos symbiotic community K. hansenii B-12950 [39]

Complete sequences were obtained for the genomes of the following strains: K. medelli-
nensis NBRC 3288 [61], K. nataicola RZS0111 [62], K. hansenii ATCC 53582 [63], K. xyli-
nus E25 [64], K. xylinus E259, K. xylinus CGMCC 2955 [65], K. xylinus E26, and K. xyli-
nus BCRC 12334 [66]. The DNA G + C content in Komagataeibacter varies from 55.8 to
63.4 mol % [67]. Japanese scientists obtained the recombinant E. coli bacteria capable of
forming BC resulting from the transfer of G. xylinus genes [68]. A new stable efficient
plasmid-based expression system of recombinant BC in E. coli DH5α platform has currently
been developed [69].

BC plays an important role for the bacteria themselves [70]. For example, for most
aerobes, the maintenance of aerobic conditions can be the reason for its formation. The
water-holding capacity of vegetable cellulose reaches 60%, while the water-holding capacity
of BC is 100% of its dry weight. Thus, it protects the cells from drying out. It is assumed
that BC forms a kind of “framework” protecting cells from foreign substances, heavy
metal ions, and from UV radiation effects. In addition, BC is involved in the adhesion
of bacterial cells of the genus Rhizobium during symbiosis with leguminous plants and
Agrobacterium during infection, promotes the colonization of plants providing protection
from competitors. Cellulose and its derivatives are important components of biofilms and
play a significant role in regulating the virulence of plant and human pathogens [70,71].

Inspite of the numerous advantages of BC over plant cellulose, its production is quite
expensive. This is chiefly due to the low productivity of bacterial strains, which, as a rule,
does not exceed 5 g/L of BC. According to a review by Li et al. [38] the maximum yield
of BC did not exceed 20 g/L, which has not yet reached the level of industrial application.
Therefore, the screening for bacterial cellulose producing strains is a fundamental strategy
for enriching bacterial cellulose producing strain types and highly efficient production
of BC. In addition, the BC production can be increased through the development and
improvement of technological processes, such as optimization of the culture medium,
culture regimes and optimization of cell-free culture systems.
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3. Cost-Effective Production of Bacterial Cellulose

Although BC is a promising material for biomedicine, industry, and technology, there
are unsolved problems of large-scale production of BC and its commercial use related
to the high manufacturing cost and low productivity of the producer strains. Therefore,
further research is needed to set up a highly efficient production of BC. Recently, many
studies have focused on cheap nutrient sources, diverse strains of cellulose-producing
microorganisms, and the optimization of their culture conditions and the techniques to
produce cost-effective BC [72,73]. The alteration of growth conditions (temperature, pH,
oxygen amount, sources of carbon, nitrogen, and their concentrations), different cultivation
methods influenced both the quality and quantity of BC yielded [74].

BC production comprises fermentation in static or agitated conditions. The macrostruc-
ture morphology of BC varies depending on different culture methods. Under static cul-
tivation, bacteria form cellulose in the form of a film on the medium surface (Figure 2A).
Under agitated conditions most strains form cellulose in the form of agglomerates of
various shapes and depending on the composition of the medium and mixing modes
(Figure 2B,C) [39,75–77]. Although dynamic fermentation can improve dissolved oxy-
gen content by shaking or agitation compared to static fermentation, cells are prone to
mutation during mechanical agitation of the culture making them lose their ability to
produce BC. Cell-free culture, a synthesis without living cells, shows great development
prospects [78,79].
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An important problem in obtaining BC is the use of expensive nutrient media. About
30% of the total cost of the process is known to be the cost of the nutrient medium [80].
Among the cultivation media, the most frequently used one is a chemically defined medium
known as the Hestrin–Schramm (HS) medium. This medium involves some expensive
components, such as glucose, peptone, yeast extract, citric acid, and disodium phos-
phate, resulting in costly production. BC can be produced involving various sugars as
a carbon source using both synthetic and non-synthetic media. As a rule, glucose and
sucrose are used as carbon sources, although other carbohydrates (fructose, maltose, xylose,
glycerol, etc.) can be applied [81]. The efficiency of using a certain carbon source for BC
biosynthesis depends primarily on a producer strain [81,82]. Different strains are able to
synthesize from 0.5–1.2 to 10–15 g/L of BC from various carbon sources [83–87].

Since cost is a significant limitation in BC production, current efforts are focused
on using industrial waste and byproduct streams as a cost-effective substrate for BC
production [73,87]. In a review by Kadier et al. industrial wastes are divided into six groups:
(1) brewery and beverages industries wastes; (2) agro-industrial wastes; (3) lignocellulosic
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biorefineries, pulp mills, and sugar industries wastes; (4) textile mills; (5) micro-algae
industry wastes; (6) biodiesel industry wastes [73]. Figure 3 shows schematic overview of
BC production from different industrial wastes.
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Figure 3. Schematic overview of bacterial cellulose production from different industrial wastes.

There were reported several studies on the feasibility of using different agro-industry
wastes in BC production including sisal juice [88], wastes of sugarcane and pineapple [89,90],
mango and guava purees [91], fruit [92], rotten fruit culture [80], fruit juices [92–94],
corn products [95]; sago byproduct [96], corncob and sugarcane bagasse [58], liquid tapi-
oca waste [97], coffee cherry husk [98], date syrup [99], dry olive mill residue [100,101],
coconut water [102], oat hull-derived enzymatic hydrolyzates [103,104], enzymatic hy-
drolysate of wheat straw [105], pineapple and water melon peels [106], citrus peel and
pomace [107–109], and banana peel [110]. Furthermore, pulp mills and lignocellulosic
wastes [111,112]; wastes of biodiesel industry [113]; acetone-butanol-ethanol (ABE) fermen-
tation wastewater [114], and micro-algae biomass industries waste [115] were used as a
growth medium for BC production.

Wastes from the alcohol, dairy and sugar industries such as stillage, whey and mo-
lasses have been examined by many scientists as alternative substrates for the enhanced
production of BC. Thin stillage (TS) contains organic and inorganic compounds, some of
which may be valuable fermentation coproducts. Ratanapariyanuch et al. used HPLC
to analyze the TS components [116]. They found the major components in wheat thin
stillage to be dextrin (8.47–11.65 g/L), glycerol (2.39–7.87 g/L), lactic acid (5.07–7.41 g/L),
acetic acid (0.56–2.72 g/L), succinic acid (0.63–0.93 g/L), ethanol (0.23–1.31 g/L), mal-
totriose (0.14–1.10 g/L), maltose monohydrate (0.03–1.05 g/L), glycerophosphorylcholine
(0.91–1.11 g/L) and betaine (0.8–1.03 g/L). The availability of stillage to increase the BC
yield was studied [117–119]. It is known from the literature that organic acids create a
positive effect on BC production. For example, rice wine stillage containing organic acids
was used as an additive to the HS medium to increase cellulose yield. The largest amount
of BC, 6.31 g/L, is obtained when the HS medium is diluted with stillage by 50%. In the
work by Revin et al. in order to reduce the BC cost used the by-products of the dairy
and alcohol industry as milk whey and wheat TS [119]. The maximum yield of BC was
observed on the TS (6.19 g/L) for 3 days of cultivation under agitated conditions, which is
almost 3 times higher than the yield of BC on the HS medium (2.14 g/L). The BC yield on
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whey was 5.45 g/L. The thinnest BC microfibrils with a higher crystallinity index (82.3 %)
were found to form on the stillage (Figure 4).
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Whey contains carbohydrates such as lactose (about 70% of dry matter), and small
amounts of glucose, galactose, arabinose, and lactulose, as well as proteins, amino acids,
vitamins, and organic acids (lactic, citric) [120]. According to literature sources, such
organic acids as acetic acid, succinic acid, gluconic acid, citric acid, and malic acid have
a positive effect on BC biosynthesis [121,122]. Some researchers have studied the effect
of whey on BC formation under static conditions. P. Carreira et al. observed a low level
of BC formation on cheese whey—0.08 g/L [123]. Suwanposri et al. obtained BC in the
amount of 4.10 g/L on the 7th day of cultivation of Komagataeibacter sp. PAP1 using soya
bean whey [124].
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Molasses is one of the most studied waste products of the sugar industry for BC
production [125–130]. Molasses is a by-product of the final stage of crystallization in
sugar production, and is one of the most economical carbon sources in the microbiological
industry. Molasses contains about 80% dry matter, and sucrose comprises about 48%. It is
also rich in proteins and organic nitrogen. Abol-Fotouh et al. suggested the preliminary
thermal acid treatment of molasses to breakdown the contained sucrose to glucose and
fructose [127]. BC is known to be obtained in an amount of 5.3 g/L on a medium with
molasses strain A. xylinum BPR2001 in a bioreactor after its thermal acid treatment [125].
Revin et al. studied the formation of BC using the K. sucrofermentans H-110 strain on a
medium with molasses at concentrations of 45 g/L, the sucrose content being 25 g/L under
static conditions [130]. The studies have shown the greatest accumulation of BC (2.9 g/L)
to occur on the medium with molasses during 5 days of cultivation, which is almost 2 times
higher than on the standard HS medium (1.6 g/L). The thickness of BC fibrils formed on a
standard HS medium and a medium with molasses is 60–90 nm. The crystallinity degree of
BC formed on the medium with molasses was higher than that on the HS medium, and
amounted to 83.02%.

4. BC-Based Nanocomposites

Recently, BNC has received remarkable attention and has been widely studied due
to its excellent structural and physical properties such as high surface area and special
surface chemistry, high crystallinity and mechanical strength, hydrophilicity, and excellent
biological features (biocompatibility, biodegradability, and non-toxicity). Although BNC
exhibits unique features, it lacks the ones like antimicrobial activity, antioxidant activity,
electromagnetic properties, and catalytic activity, which are required for its specialized
applications [3]. The problem can be solved by modifying the BC surface and creating
BNC-based biocomposite materials [3,7,8,131,132]. The cellulose surface modification
significantly increased its potential due to its OH group. There are various types of surface
modification described with detail in a recent review by Aziz et al. [7]. A recent review
by Aditya provides the information on BC functionalization via chemical and physical
means to yield nanocomposites and fabricate materials with improved functionalities for
the biomedical application, primarily, for vascular and neural applications, wound healing,
and bactericidal interfaces [8]. Generally, composites consist of two types of individual
materials, namely: the matrix and the reinforcement material, and have a defined interface
between them [131,132]. The matrix acts as a scaffold supporting the reinforcement material,
while the reinforcements impart the physico-chemical and biological properties to the
matrix (Figure 5).

BC composites have been synthesized using numerous materials ranging from natural
and synthetic polymers to inorganic nanoparticles and nanomaterials. Shah et al. classified
BC composites by the nature of the reinforcement material into organic materials and inor-
ganic materials [132]. These two main classes they further subdivided into BC composites
with polymers, NPs, metals, metal oxides, clays and macro-sized solid particles. Until now,
many nanomaterials, such as metal nanoparticles (Ag, Au, Pd, Pt, Ni) and metal oxides
nanoparticles (ZnO, CuO, MgO, FeO, TiO2, Al2O3, CeO), mineral nanomaterials (SiO2,
CaCO3, montmorillonite) and carbonaceous nanomaterials (grapheme, carbon nanotube)
have been placed into nanocellulose matrices to prepare BC nanocomposites (Figure 6).
There have also been obtained BC biocomposites with biopolymers such as chitosan (Ch),
alginate (ALG), hyaluronic acid (HA), starch, gelatin (GT), collagen, keratin, polylactic acid
(PLA), polyhydroxyalkanoate (PHA) and synthetic polymers such as polyvinyl alcohol
(PVA), polyaniline (PANI), poly-2-aminoethyl-methacrylate (PAEM) [133]. A series of novel
polysaccharide-based biocomposites was obtained by impregnation of BC produced by
K. rhaeticus with the solutions of negatively charged polysaccharides such as hyaluronan,
sodium alginate, or carrageenan, and subsequently with positively charged chitosan [134].
In addition, BC composites with biomolecules such as antibiotics, enzymes, hormones,
peptides, amino acids and cells were obtained [3–9].
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There are four main methods compounds can be loaded in the cellulose matrix, they
can be loaded during BC synthesis; in post-synthesis via saturation; chemical modifica-
tion once the cellulose has been processed and purified; and finally, through the genetic
manipulation of the cellulose-producing organism [21]. A review by Shah et al. and
Mbituyimana et al. summarized the strategies for BC-based composites with improved
properties [132,135]. The synthesis of BC-based composites has adopted different strategies
depending on application purposes. The most common methods used for BC composite
preparation are: in situ approach, ex situ approach, and the synthesis of a BC composite
from a BC solution [132]. The in situ approach involves reinforcement substances added
into the culture medium during BC synthesis, which finally becomes a part of the produced
BC hydrogel. In the ex-situ method, composites are produced by adding or impregnating
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reinforcement materials into a synthesized polymer. In the first case, a reinforcing element
is introduced into the cultivation medium of the producer, and the composite is obtained
in the process of BC biosynthesis. Thus, Saibuatong and Phisalaphong synthesized BC-
Aloe vera composites in the form of films under static conditions of producer cultivation
by adding different amounts of Aloe vera gel to the synthetic medium [136]. Park et al.
obtained a 3D BC-based scaffold by cultivating G. xylinus in a culture medium containing
carbon nanotubes [137]. The synthesized scaffolds were implanted into the mouse skull for
bone tissue regeneration. Gao et al. used 6-carboxyfluorescein-modified glucose (6CF-Glc)
as a carbon source to modify BC by fermentation of the bacterium K. sucrofermentans [138].
In another recent study, Wan et al. [139] prepared a composite of BC and silver nanowires
(AgNW) using in situ biosynthesis. The synthesized BC/AgNW dressings showed better
release of Ag+ and a high ability to improve cell proliferation, skin regeneration and the
formation of epithelial tissue according to the in vivo wound healing test. Thus, in situ
BC-based composites have significantly improved mechanical properties, crystallinity, and
thermal stability [140]. However, the use of static cultivation conditions is not always possi-
ble to obtain biocomposites using the in situ method, since the particles are in suspension
for a short period of time, and a film is formed on the medium surface. Therefore, the
cultivation of the producer under dynamic conditions is often used to obtain. The in situ
method limitation are also the toxicity and an antibacterial effect of some metals and metal
oxides, such as Ag, ZnO, TiO2, and antibiotics, which inhibit the growth of microorgan-
isms.When using the ex situ method, reinforcing materials are introduced into BC after its
biosynthesis. Soluble substances and solid nanoparticles easily penetrate a porous cellulose
matrix. The interaction can be physical as a result of absorption and due to the formation
of hydrogen bonds. A large number of composites with polymers, inorganic materials,
metals, and metal oxides have been obtained using this method [16–19]. The method is
often used for the production of medical biocomposites. Thus, Fatima et al. obtained an
ex situ BC-based composite with antimicrobial activity by introducing bactericidal plant
extracts into its three-dimensional matrix [141]. Ul-Islam et al. using an ex situ method
developed a high tensile strength BC-Aloe vera gel composite for potential environmental
and medical applications [142].

4.1. BC-Based Nanocomposites for Biomedical Applications

Recently, BC-based nanocomposites have greatly advanced in biomedical applications,
such as wound healing dressings, tissue engineering, drug delivery, and cancer treatment.
However, most of these materials have restrictions, for example, a lack of antibacterial
activity and low mechanical properties [135]. Recently, several reviews on BC materials for
biomedical applications have been reported [18–22,143–147], and a summary of various
biomedical applications of BC and BC-based composites developed through different
strategies is provided in Table 2.

Table 2. A summary of developing bacterial cellulose-based composites by different strategies for
diverse biomedical applications.

Applications Reinforcement Material Synthesis Approach Enhanced/Imparted Features Refs.

Tissue engineering

Poly(pyrrole) and carbon
nanotubes

Solvent dissolution and
regeneration

Thermal and mechanical stability,
recoverability, swelling behavior,

electrical conductivity,
biocompatibility

[148]

κ-carrageenan In situ impregnation

Mechanical strength, water holding
and controlled release, swelling

behavior, biocompatibility,
gene expression

[149]
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Table 2. Cont.

Applications Reinforcement Material Synthesis Approach Enhanced/Imparted Features Refs.

Tissue engineering

Sodium chloride crystals Solvent dissolution and
regeneration

Porosity, 3D morphology,
biocompatibility, 3D cell growth [150]

Graphene oxide/
reduced graphene oxide Ex situ addition

Mechanical strength, hydrophilicity,
biocompatibility,

electrical conductivity
[151,152]

Quaternized chitosan Ex situ addition

Porosity, water holding and control
release, thermal stability,

cytocompatibility,
antibacterial activity

[153]

ZnO nanoparticles
Solvent dissolution and

regeneration/Ex
situ addition

Thermal and mechanical strength,
antibacterial activity,

biocompatibility
[154,155]

Plant extract Ex situ addition
Mechanical strength, water uptake
and controlled release, antibacterial

activity, biocompatibility
[141]

Titanium dioxide
nanoparticles

In situ impregnation
and regeneration,
cell-free synthesis

Thermal and mechanical strength,
uniform distribution of

nanoparticles, antibacterial activity,
biocompatibility

[156,157]

Wound dressing,
healing, and
hemostasis

Collagen In situ impregnation Thermal and mechanical stability,
cytocompatibility, collagen synthesis [158]

Gelatin Ex situ addition and
physical stretching

Electric field stimulation, aligned
fibers, in vitro and in vivo

biocompatibility, wound closure,
formation of granulation tissues,
collagen synthesis, angiogenesis,

gene expression

[159]

Poly(vinyl alcohol), silk
sericin, azithromycin Ex situ addition

Mechanical strength, porosity,
anti-inflammation, antibacterial

activity, in vitro and in vivo
biocompatibility, successful

treatment of chronic wound biofilms

[160]

Chitosan and diamond
nanoparticles Ex situ addition

Thermal and mechanical stability,
electrical modulus, antibacterial

activity, biocompatibility
[161]

Gelatin and selenium
nanoparticles In situ impregnation

Mechanical and tensile strength,
antioxidant and anti-inflammatory

properties, antibacterial activity,
angiogenesis, collagen synthesis,

gene expression, granulation
tissue formation

[162]

Chitosan and collagen Ex situ addition

Mechanical stability,
biocompatibility, antimicrobial

activity, in vitro and in vivo
biodegradation, hemostasis

[163]

Poly (2-hydroxyethyl
methacrylate) and
silver nanoparticle

Ex situ addition
Thermal and mechanical stability,
optical transparency, antibacterial

activity, biocompatibility
[164]
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Table 2. Cont.

Applications Reinforcement Material Synthesis Approach Enhanced/Imparted Features Refs.

Wound dressing,
healing, and
hemostasis

Ag nanoparticles In situ impregnation

Mechanical strength, antibacterial
activity, biocompatibility, collagen

synthesis, in vivo burn wound
healing, re-epithelization, expression
of inflammatory, angiogenesis, and

growth factor genes, successful
third-degree burn wound healing

[165]

Montmorillonite Ex situ addition

Mechanical strength, antibacterial
activity, water holding and

controlled release rate,
biocompatibility

[166,167]

Curcumin Ex situ addition

Mechanical strength, antibacterial
activity, reepithelization,

vascularization, wound closure,
successful partial-thickness skin

burns in animal model

[168]

Bone tissue
engineering

Cellulose nanocrystals
and protein Chemical modification

Mechanical strength, thermal
stability, morphology,

biocompatibility
[169]

Otoliths and collagen Post-synthesis loading Osteoblast activity, regularity,
osteo-reabsorption activities [170]

Col1
Post-synthesis
cross-linking

Low tensile strength and elastic
modulus, high strain, regular cell

growth, biocompatibility,
non-toxicity

[171]

Hydroxyapatite and
carboxymethyl cellulose Ex situ addition Mechanical strength, thermal

stability, biocompatibility [172]

Drug delivery

Graphene oxide and
ibuprofen Ex situ addition

Controlled in vitro drug release,
biocompatibility, electrical

conductivity, tensile strength
[173]

Poly(ethylene imine) Ex situ addition
Improved morphology, adsorption,

controlled in vitro drug release,
biocompatibility

[174]

Polyaniline Ex situ addition
Electrical conductivity,

pH-responsiveness, sustained
in vitro drug release

[175]

— Freeze-drying pH-dependent drug release, 3D
morphology, porous structure [176]

Biosensors,
bioelectronics, and

diagnosis

Polyaniline and carbon
nanotubes Ex situ addition Porous morphology, thermal

stability, electrical conductivity [177]

Carbon nanotubes and
poly(ethylene imine) Ex situ addition

High density phage immobilization,
mechanical stability, surface charge,
electrical conductivity, antibacterial

activity, stability and reuse of
sensing interface, bacterial detection

with high specificity

[178]

Chitosan Ex situ addition

Mechanical stability, water uptake
and controlled release,

biocompatibility, 3D cell growth, use
for diagnosis of ovarian cancer

[179]
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Table 2. Cont.

Applications Reinforcement Material Synthesis Approach Enhanced/Imparted Features Refs.

Artificial blood
vessels Poly(dimethyl siloxane) Molding

Patterned morphology, mechanical
strength, tubular shape,

biocompatibility, non-toxicity
[180]

Heart valve Poly(vinyl alcohol) Ex situ addition
Tensile strength and elastic modulus,

anisotropy, optical transparency,
biocompatibility

[181]

Artificial cornea Poly(vinyl alcohol) Ex situ addition
Optical transparency, mechanical

strength, thermal stability,
biocompatibility

[182]

Artificial kidney
and liver — 3D printing Biocompatibility, mechanical

strength, porous morphology [183]

Neural tissue
regeneration Agarose Molding Aligned fibers, mechanical strength,

biocompatibility [184]

4.1.1. Wound Dressings

At present, there are various wound dressings that can protect a wound from further
injuries, or isolate the external environment in wound treatment [25–28,185–190]. An ideal
wound dressing should facilitate healing, maintain moist environment, absorb exudates,
support angiogenesis, allow gaseous exchange, prevent microbial infections, be comfortable,
and cost-effective. It should be non-toxic, non-allergenic, non-adherent, and should be easy
to remove without trauma [26,185]. BC has attractive features in wound healing, including
its good flexibility, strong water holding capacity, biocompatibility, vapor permeability,
elasticity, and non-toxicity [190–192]. The microfibrillar structure of BC serves as a flexible
3D scaffold that can serve as a physical barrier against pathogens contributing to cell
attachment and tissue granulation. In addition, BC can be modified to meet all the necessary
functional requirements as a wound dressing [187].

Recently, a series of commercial medical materials based on BC has been obtained such
as Biofill® (Curitiba, Brazil) and Bioprocess® (Curitiba, Brazil) for the therapy of burns and
ulcers, Gengiflex® (Curitiba, Brazil) to treat periodontal diseases, Dermafill® (Londrina,
Brazil) for effective wound-healing burns and ulcers, Membracel® (Curitiba, Brazil) for
venous leg ulcers and lacerations, xCell® (New York, NY, USA) to treat chronic wounds,
EpiProtect® (Royal Wootton Bassett, UK) for burn wounds, and Nanoskin® (São Carlos,
Brazil) (the antimicrobial BC product incorporated with silver ions) [20,193]. By the product
form and a method of administration, wound dressings are divided into: films, hydrogels,
sponges, foams, fiber scaffolds, bandages (Figure 7) [185].

BC has many excellent properties for wound healing, and acts as an effective physical
barrier for a bacterial infection, but the lack of antibacterial activity limits its application
in wound dressings. The BC functionalization by adding antimicrobial agents can solve
the problem. A review by Zheng et al. considered several wound dressings of nanocel-
lulose with inorganic nanomaterials (metal/metal oxides, carbon-based nanomaterials,
nanosilicates), organic antimicrobials (natural polymers, bioactive materials, synthetic
materials), and antibiotics [188]. The most acceptable form of new wound dressings is
BC nanomaterials with nanoscale inorganic particles. For this purpose, silver nanoparti-
cles are included [194–197], and they have antimicrobial, anti-inflammatory and healing.
Silver nanoparticles (AgNP) incorporated into the BC matrix imparts antibacterial prop-
erties to the composite through the release of silver ions affecting DNA replication, the
breakdown of the cell membrane, and the release of reactive oxygen species [197]. Pal
et al. developed the Ag/BC nanocomposite for wound healing with antibacterial activity
against E. coli using a UV photochemical reduction process [195]. Wan et al. developed a
novel composite for wound-dressing by dispersing silver nanowires in BC [139]. Metal
oxides such as TiO2, CuO, CeO2, ZnO, etc. also exhibit antibacterial activity and promote
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wound healing [154–157,198–201]. Therefore, the combination of BC composites with TiO2
and ZnO also displayed excellent antibacterial properties and had cellular adhesion and
proliferation of fibroblast cells, thereby improving the wound-healing capability [154,156].
Similarly, Khalid et al. developed a BC–ZnO nanocomposite for healing burn wounds. The
composite succeeded in killing about 90%, 87.4%, 94.3%, and 90.9% of E. coli, Pseudomonas
aeruginosa, Staphylococcus aureus, and Citrobacterfreundii, respectively [200]. A design of new
nanocomposites of BC and betulin diphosphate (BDP) pre-impregnated into the surface
of zinc oxide nanoparticles (ZnO NPs) to produce wound dressings was suggested [201].
The effective wound healing with BC-ZnO NPs-BDP nanocomposites can be explained
by the synergistic effect of all nanocomposite components, which regulate oxygenation
and microcirculation reducing hypoxia and an oxidative stress in a burn wound. Another
direction of BC functionalization is the creation of composites with other biopolymers,
such as chitosan, alginate, hyaluronic acid, collagen, etc. Chitosan (CS) is one of the most
important biopolymers for wound dressings [153,161,202–205]. CS in a biocomposite has
an antibacterial effect against E. coli and S. aureus, exhibits a wound healing effect and
accelerates epithelialization. CS molecules easily penetrate into the BC matrix resulting
in the formation of hydrogen bonds between the OH groups of BC and the NH groups
of CS. In this case, the mechanical strength of the composite increases. Cacicedo et al.
developed a ciprofloxacin-loaded CS-BC patch showing cytocompatibility with human
fibroblasts and high antibacterial activity against P. aeruginosa and S. aureus for potential
wound healing [204]. Cazón et al. developed BC films combined with CS and polyvinyl
alcohol [205]. Volova et al. developed a hybrid wound dressings using two biomaterials:
BC and copolymer of 3-hydroxybutyric and 4-hydroxybutyric acids—a biodegradable
polymer of microbial origin [206]. Mohamad et al. developed a hydrogel for burn wounds
based on BC and acrylic acid with fibroblasts and keratinocytes added [207].
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The antibacterial activity of BC-based wound dressings is often achieved by adding
antibiotics. The most commonly used antibiotics are tetracycline hydrochloride, amox-
icillin, ciprofloxacin, ceftriaxone, etc. [208–211]. Junka et al. have shown BC saturated
with gentamycin significantly to reduces the level of biofilm-forming bone pathogens,
namely S. aureus and P. aeruginosa [208]. BC composite materials containing amikacin and
ceftriaxone were prepared by immersing dried BC films in antibiotic solutions of vari-
ous concentrations. Moreover, the composites have obvious antibacterial activity against
E. coli, P. aeruginosa, S. pneumoniae and S. aureus, so they are supposed to be used as wound
dressings [196]. The composites of BC with tetracycline hydrochloride were obtained and
characterized by other authors [209]. The composites exhibited excellent antibacterial activ-
ity and good biocompatibility as well as controlled the antibiotic release. Vancomycin and
ciprofloxacin can be incorporated into BNC or modified BNC to confer biological activity in
wound dressings and tissue engineering scaffolds [211]. Volova et al. obtained BC compos-
ites with silver nanoparticles (BC/AgNPs) and antibacterial drugs (chlorhexidine, baneocin,
cefotaxime, and doripenem) with antibacterial activity against E. coli and S. aureus, and
investigated the structure, physicochemical, and mechanical properties of the compos-
ites [212]. Revin et al. developed the biocomposite materials for medical purposes with
antibacterial, regenerative, and hemostatic properties based on BC in the form of aerogels,
hydrogels, film forms, and fusidic acid (FA) [213,214]. FA is an antibiotic, with high an-
tibacterial activity against S. aureus, including the MRSA strains [215]. The inhibitory effect
of FA on the biofilm formation and the expression of α-toxin was reported [216,217]. BNC-
FA biocomposite films with excellent antibacterial activity against S. aureus were obtained
by immersing dried BNC films in a solution of the antibiotics of various concentrations for
1–24 h [213] (Figure 8).
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Figure 8. BC gel film (A); AFM image of the BNC (B); chemical structure of fusidic acid (C); antimicro-
bial activity of BNC/ FA composites (D) against S. aureus after 24 h of exposure: BNC0.1 (a); BNC0.2

(b); BNC0.3 (c); BNC0.4 (d); after 1 h of exposure BNC0.4 (e); after 2 h of exposure BNC0.4 (f); control
FA 0.4 (g). Adapted with permission from Ref. [213].
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The use of aerogels for the production of biomaterials has started relatively re-
cently [218]. In the past decade, aerogels have attracted great interest due to their spe-
cial properties (large porosity, high internal surface, controlled pore diameter, and three-
dimensional interconnected structure). Biopolymer-based aerogels additionally provide
excellent cytocompatibility, biocompatibility, and biodegradability, and can be successfully
used in biomedicine for targeted drug delivery, tissue engineering, and antibacterial mate-
rials [218,219]. Revin et al. for the first time obtained new biocomposites with antibacterial
properties based on native BC and sodium fusidate (NBC/SF) and TEMPO oxidized BC
and sodium fusidate (OBC/SF) in the form of aerogels by incorporating sodium fusidate
(SF) into hydrogel native BC and oxidized BC [214] (Figure 9). The antibacterial activity
of the resulting aerogels was studied by the disk diffusion method. The biocomposites
with sodium fusidate BC/SF and OBC/SF show high antibacterial activity, their S. aureus
inhibition zone diameters are 28 and 27 mm, respectively (Figure 9D). The present study
clearly illustrates that the resulting aerogels exhibit excellent antibacterial activity against
S. aureus. Despite the small difference in antibacterial activity, OBC/SF aerogels had greater
mechanical strength than BC/SF aerogels.
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Malheiros et al. immobilized antimicrobial peptides of Lactobacillus sakei on BC [220].
Bayazidi et al. obtained a material with antibacterial activity by immobilizing lysozyme on
BC [221]. Gupta et al. obtained BC nanocomposite wound dressings with curcumin, which
has antimicrobial, antioxidant, antitumor, and wound healing effects [222].

4.1.2. Tissue Engineering

Recently, BC has attracted much attention in tissue engineering due to their unique
properties for tissue regeneration as scaffolds [22,23]. 3D BC scaffolds provide an almost
ideal environment for cell growth and tissue development, unlike 2D materials, where
only superficial growth occurs. Therefore, BC 3D scaffolds become potential candidates for
being used in tissue engineering and regenerative medicine. The porous structure of BC
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enables massive transfer of nutrients and oxygen, supporting cell survival. It can support
the growth of endothelial, smooth muscle cells, chondrocytes, and cause no toxic effects.
From the cellular point of view, an important feature of BC is the structure of its nanofibrils,
which resembles the structure of extracellular matrix components, namely collagen [223].
BC and collagen have the same diameter (less than 0.1 µm), both are polymers functioning,
primarily, as mechanical support structures.

Cartilage Tissue Engineering

The regeneration problem of articular cartilage damage is important because of the
limited ability of self-repair. The cartilage repair requires biomaterials with good poros-
ity and a certain pore size, where chondrocytes can penetrate and proliferate to produce
their extracellular matrix. BC is a suitable scaffold for cartilage tissue engineering due
to mechanical strength and biocompatibility [224]. Svenson et al. reported BC potential
to proliferate cartilage chondrocyte cells [225]. However, native BC has a small pore size
(~0.02–10 µm) and therefore cannot provide the penetration of cartilage cells. Therefore,
the porosity of the BC scaffold requires improvement. Several methods were implemented
to enhance the pore size and interconnectivity of BC scaffolds. To increase the pore size of
BC scaffolds, some authors developed BC scaffolds based on agarose particles with a pore
size 300–500 µm [226,227] and 150–300 µm [224] followed by removal of progen particles
(agarose), for example, by autoclaving [226] or extrusion [224]. Xun et al. developed a
macroporous scaffold with a pore size of 200 µm by using the freeze-drying technique for
BC suspension followed by crosslinking [228]. Methacrylate gelatin–BC hydrogels with
the pores 200–10 µm in size were developed using photo polymerization [229]. Horbert
et al. developed a novel technique for 3D-laser perforation of BC seeded with chondro-
cyte cells [230]. Yang et al. suggested preparing 3D structures simulating intervertebral
discs [231]. In conclusion, the improvement of BC scaffold porosity makes it appropriate
for cartilage regeneration.

Bone Tissue Engineering

Attention to the creation of artificial composite materials similar to natural bone tissue
is growing rapidly, and a major problem is to obtain a composite that would be as close
as possible in structure and properties to its natural counterpart. It is known that bones
are composed of bone tissue cells such as osteoblasts, osteocytes, and osteoclasts. And the
matrix of bone tissue mainly consists of collagen and hydroxyapatite.

Recently, a number of BC-based composites have been developed for bone tissue
regeneration [22,232–235]. Due to its strength characteristics (the tensile strength of the BC
gel film is ~10 GPa), BC can serve as a promising basis for a bone precursor. BC can serve
as a scaffold for proliferation and potential differentiation of mesenchymal stem cells into
osteocytes and chondrocytes [236]. Sundberg et al. developed macroporous mineralized
BNC scaffolds coated with calcium phosphate. [237]. A number of scientists have also
used osteogenic growth peptide for bone tissue engineering [233,238,239]. A composite
based on BC and hydroxyapatite (HA) nanocrystals, biocompatible with living organisms,
is considered promising as a bone tissue precursor. The BC composite with hydroxyapatite
mimics the intercellular substance of normal bone tissue. It plays the role of a barrier
preventing loose connective tissue from replacing the lost or destroyed fragment of the
skeleton. At the same time, bone tissue cells—osteocytes—can be grafted on it, and they
will multiply there. Tazi et al. developed BC-HA scaffolds to improve osteoblast adhesion
and growth [232]. Ran et al. developed an organic–inorganic multicomponent composite
using BC, gelatin, and HA combination to provide better mechanical properties [240].

Moreover, 3D printing is a promising method for bone tissue engineering. It is used to
synthesize composite scaffolds with controlled porosity, mechanical strength, and shape to
facilitate cell growth and regeneration [241,242]. For example, Cakmak et al. developed
a 3D printed BC/polycaprolactone/gelatin/hydroxyapatite composite scaffold for bone
tissue engineering [243]. A review by Khan et al. demonstrated that nanocellulose does not
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only serve as the matrix for the deposition of different materials to develop bone substitutes
but also functions as a drug carrier to treat bone diseases [22]. Hernández et al. have
recently developed a BC-based composite scaffold with carbon nanotubes to improve its
mechanical properties [234].

Soft Tissue Engineering

According to the literature data, BC-based composites have great potential as bio-
materials for soft tissues, such as blood vessels, adipose tissue, nerves, the liver, and
skin [22,23,244–249]. Recent studies have shown BC to be a promising material for vascular
tissue engineering with attractive properties such as biocompatibility, high burst pressure,
and ultrafine fibrous collagen-like structure [145,249,250]. By taking the advantage of
producing BC of different shapes, Schumann et al. and Leitao et al. developed small-caliber
vascular grafts [245,251]. So, to replace small arterial, Schumann et al. developed a small-
caliber vascular graft, 1.0–3.7 mm in diameter, 5.0–10.0 mm long, and its wall-thickness
being 0.7 mm [245]. Leitao et al. developed a simple, cost-effective method for producing
small-caliber BC graft vascular prostheses using the capillary drying, shaping, and freeze-
drying [251]. Recently, BC-based composites have been shown to be promising scaffold
candidates with good biocompatibility and high transmission properties for the corneal
stroma [252–254]. Moreover, BC-based composites are considered an attractive material
for creating neuronal implants due to their high biocompatibility, flexibility, and ability
to register nerve signals [255]. So, Yang et al. developed Au–BC microarrays for neural
interfaces [256]. Hou et al. developed a biodegradable, biocompatible scaffold with good
mechanical properties based on oxidized BC [257]. The current preclinical and clinical
studies have confirmed the prospects for studying BNC in neurosurgery as implants for
closing the defects in the dura mater in the spinal cord and its meninges pathologies [258].

4.1.3. Drug Delivery System

Drug delivery systems refer to the advanced technologies used for targeted delivery
and/or controlled release of therapeutic drugs [31]. In the past few decades, drug delivery
systems received much attention, since they offer potential benefits, such as reducing side
effects, improving therapeutic effects, and possible reduction of drug doses [32,259]. There
are three key factors required in an effective drug delivery system, including drug carriers,
drug-loading ratio, and controlled release rate [260].

In recent years, natural polysaccharides have been considered as the ideal candidates
for novel drug delivery systems due to their good biocompatibility, biodegradation, low
immunogenicity, renewable source and easy modification [29]. These natural polymers
are widely used in designing nanocarriers, which find a wide application in therapeutics,
diagnostics, delivery and protection of bioactive compounds or drugs. Recently, interesting
reviews were published in the Journal ‘Polymers’ characterizing the composite materials
used in drug delivery systems [5,29,30]. The review by Qiu et al. introduced a series of
polysaccharide-based nanodrug delivery systems such as nanoparticles, nanoliposomes,
nanomicelles, nanoemulsions and nanohydrogels for diabetes treatment [29]. The review
Huo et al. represented the typical drug release behaviors and the drug release mechanisms
of nanocellulose-based composite materials, and considered the potential application of
these composites [30]. Due to its adaptable surface chemistry, high surface area, biocom-
patibility, and biodegradability, nanocellulose-based composite materials can be further
transformed into drug delivery carriers [30]. The review by Lunardi et al. reported various
methods for modifying and functionalizing nanocellulose to obtain nanocarriers in drug
delivery systems [5].

Generally, the most common method of loading drugs in BC membranes is via im-
mersion in a drug solution, usually following lyophilisation to provide maximum drug
absorption [21]. The most common drugs to be incorporated into BC are anti-inflammatory
drugs, such as ibuprofen and diclofenac [261], and antimicrobial drugs [209]. Due to its
unique characteristics, BC has been shown to be a promising biomaterial for cancer treat-
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ment [262–265]. For example, Cacicedo et al. combined a BC hydrogel and nanostructured
lipid carriers to use as an implant for local drug delivery in cancer therapy using doxoru-
bicin as a model drug [264]. Zhang et al. developed BC-based composites with Fe3O4
magnetic nanoparticles coated with doxorubicin and hematoporphyrin monomethyl ether,
and additionally conjugated with folic acid for breast cancer therapy [265]. Nanocellulose-
based scaffolds are also being used as useful tools for cancer diagnosis. BC can be used as a
drug delivery system to treat diseases. For example, it has been used to control curcumin
delivery to improve tissue granulation in addition to its antifungal, antitumor, antibacterial,
and antioxidant properties [168]. BC has been used to deliver lidocaine to promote tissue
repair in third-degree burns in rats [266]. Moreover, BC has been used to deliver antibac-
terial and antiseptic agents [267]. Luo et al. developed a BC composite with graphene
oxide with controlled release of ibuprofen [173]. Ahmad et al. developed a polyacrylic acid
hydrogel grafted with BC for oral protein delivery [268].

4.2. Biosensors

Biosensors are small devices with a biologically active element. They quantify (or semi-
quantify) a biological or chemical analyte by generating a measurable signal proportional
to its concentration [269]. Biosensors have provoked great interest in recent years. They are
considered as powerful emerging tools for detecting various biomarkers for both healthcare
and environmental monitoring [270,271]. Biosensors are generally applied in different
fields: biomedical, environmental, and allow to monitor specific disease biomarkers in
body fluids (blood, urine, saliva, and sweat) [272], and detect microorganisms [270] and
pollutants [273] in the environment.

A biosensor is mainly made up of three elements including a biologically active
element immobilized on a convenient substrate such as cellulose, a transducer, and a
signal processor (Figure 10). A biologically active element could be an enzyme, antibody,
protein, whole cell, or DNA. Biosensors can be classified based on a type of transducers
and operating principles into optical, acoustic, electrochemical, and piezoelectric. Optical
biosensors take the advantage of optical characteristics such as absorbance, fluorescence
and chemiluminescence. For instance, a fluorescence biosensor based on BC and nitrogen-
doped carbon quantum dots (N-CDs) was fabricated for the first time by Lv et al. to
determine Fe+3 ions in a liquid medium [274]. Acoustic biosensors based on piezoelectric
crystals operate by detecting the binding of the analyte (target) by its modulation of the
crystal oscillation frequency. In electrochemical biosensors, the changes in the electrical
properties are used as a measuring parameter. For instance, Zhang et al. prepared a BC
biosensor for H2O2 detection [275].

When developing biosensors, it is of primary importance to ensure high biocatalytic
activity, sensitivity, selectivity, environmental friendliness, and low cost. BC is a promising
material for creating biosensors, since it is an environmentally friendly natural three-
dimensional nanostructure and characterized by high absorption capacity, large surface
area, high crystallinity, mechanical strength, and can be easily modified and function-
alized with nanoparticles, carbon nanotubes, metal oxides, conductive materials, and
biomolecules [276]. BC has a great potential for developing cytosensors due to its various
unique properties including biocompatibility. The review by Kamel and Khattab presents
the current techniques for the preparation and modification of cellulose substrates as biosen-
sors [269] The review by Torres considered the recent advances regarding the development,
production and applications of new BC-based biosensors [276]. To increase the sensitivity
of the cellulose surface, novel modifications can be made using conductive materials such
as gold nanoparticles (AuNP), carbon nanotubes, graphene oxide (GO), and conductive
polymers. Different materials have been used to prepare BC-based biosensors. Gold (Au),
palladium (Pd) and platinum (Pt) nanoparticles, and titanium dioxide (TiO2), ferrous oxide
(FeO) and Zinc oxide (ZnO) have been used to increase the electric and magnetic conduc-
tivity of native BC [275,277–282]. Polystyrene sulphonate and polyaniline have also been
used to increase BC conductivity to fabricate biosensors [177,283–285]. Enzymes such as
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laccase and haem proteins including glucose oxidase and horseradish were immobilized in
BC-based networks to prepare electrochemical biosensors to detect H2O2, hydroquinone,
dopamine and glucose, among others [275,278,279,281,282]. BC-based biosensors are pre-
pared by adding a second phase into the BC network [277,286,287], either by modifying
the culture medium during cellulose synthesis [274,288] or by incorporating the second
phase after obtaining the BC network [289,290]. A different approach is used when the BC
network is first destroyed and then combined with another material to prepare BC-based
biosensors [275,291]. Future investigations should place special emphasis on overcoming
the current limitations related to the immobilization of enzymes on the BC surface in order
to expand the potential application of BC biosensors. The applications will include the
development of biosensors for detecting biomarkers produced from cells or tissues resulted
from diseases and disorders.
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Figure 10. Schematic diagram representing the different components of a biosensor. The interaction
between the sample analyte (biomolecules, inorganic substances, cells) and bioreceptor (the recog-
nition molecule) is captured as a signal by the transducer which is then used for detection through
signal transduction (optical, acoustic, electrochemical, piezoelectric).

4.3. Adsorbents

In recent years, adsorption has been used as an effective strategy for separating
contaminants due to the fact that an adsorbent can be recovered, reused and recycled,
and the method is considered the best, however, the high cost of sorbents limits their
use [292]. The use of adsorbates of natural origin is promising, since they are harmless to
the environment and human health. Among them, natural fibers such as cellulose have
been extensively studied. Shi et al. published a review article summarized the recent
progress of adsorbents produced by modification and functionalization of cellulose and
cellulose-based nanocomposites to remove heavy metals ions and organic pollutants [34].
An exciting review by Salama et al. presents the latest research results on nanocellulose-
based materials for wastewater treatment including adsorption, absorption, flocculation,
photocatalytic decomposition, disinfection, etc., and discusses various approaches to their
chemical modification [293].
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BNC attracts special attention due to the following characteristics: a large surface
area, high adsorption capacity, nanoscale structure, high reactivity due to the presence
of hydroxyl groups on the surface, which allows it to be chemically modified to interact
with various pollutants depending on its nature [294]. Other important BNC properties
are biodegradability, high mechanical properties, and low density [295]. BC has many ad-
vantages to be used as an adsorbent, including high surface area and density of functional
groups [296]. Numerous hydroxyl groups (or others if chemically modified) on nanocel-
lulose result in higher adsorption capacity [297–301]. In addition, nanocellulose-based
materials are completely biodegradable, which ensures their biological application without
side effects [302,303]. BC serves as a matrix for immobilizing catalysts, enzymes, and other
sensory materials, both to detect environmental pollutants, and also for the decomposition
of various wastes, for example, waste from the textile industry, which can later be used as a
carbon source and biotransformed into valuable products.

BC has the ability to function as a matrix for incorporating various molecules or
inorganic particles. Therefore, BC composites can be used for wastewater treatment from
heavy metals [304–307]. A number of BNC-based adsorbents have been obtained for
removing hazardous metals. For example, Shoukat et al. developed a nanocomposite based
on BC and titanium oxide (TiO2) [305]. The nanocomposite was evaluated as an adsorbent
to remove lead (Pb) from an aqueous solution. The TiO2-BC nanocomposite removes Pb at
a concentration of 100 mg/L with a removal efficiency of more than 90% in 120 min at pH 7
and at a room temperature. The adsorbent proved to be effective, stable and reusable for
removing lead from environmental water samples. Biocomposite aerogels based on BC and
polyaniline can be used to remove hexavalent chromium [306]. A comparative study on the
efficiency of mercury removal from wastewater using BC membranes and their oxidized
analogue was carried out [35]. The results obtained showed the modification of BC by
oxidation to improve the mercury removal capacity, making the modified membranes
an excellent material for mercury removal from wastewater. Mensah et al. developed a
composite based on BC and graphene oxide as an efficient and environmentally friendly
adsorbent for removing metal ions, especially Pb2+, from an aqueous system [307].

Another important problem is the purification of water from fluorine. The high
content of fluorine in water is an urgent issue all over the world. But despite the growing
concern about water pollution, effective technologies for removing fluoride have not yet
been developed. Among various physical and chemical methods for removing fluorine
from water, adsorption is a preferable one due to its simplicity, relatively low cost, and
industrial scalability. Recently, a number of inorganic [308–312] and organic [313–315]
adsorbents have been obtained to remove fluorine from water. Revin et al. developed a
new biocomposite material with a high sorption capacity for fluorine ions (80.1 mg/g)
based on BC and nanosized aluminum oxide films chemically immobilized on its surface
using ALD technology (Figure 11) [130].

Nanocellulose-based materials can also be used to treat wastewater contaminated with
hazardous organic pollutants, including dyes, pharmaceutical compounds, and petroleum
products [292,316–320]. For example, Wang et al. reported a new superabsorbent aerogel
based on BC and graphene oxide, which showed excellent absorption property of organic
liquids [316]. Cellulose composite aerogels can be used for oil sorption [318,319]. The
development and synthesis of new materials is vital to the removal of new contaminants,
such as pharmaceuticals, from polluted water. Ieamviteevanich et al. developed a magnetic
carbon nanofiber derived from BC to remove diclofenac from water [320]. Diclofenac is
one of the non-steroidal anti-inflammatory drugs widely used to treat acute and chronic
pain in humans and animals. Conventional processes used in wastewater treatment are
not sufficient to remove diclofenac from water. The efficiency of these processes is less
than 20%. Therefore, alternative methods for removing diclofenac from water have been
explored. The maximum adsorption capacity of magnetic carbon nanofiber is 67 mg/g.
The results of the study showed it can effectively adsorb diclofenac from water with further
removal by magnetic separation. Photocalysis can be considered as another promising
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method for the degradation of organic pollutants and dyes in wastewater [293]. Although
nanocellulose alone exhibits the limited photocatalytic activity in the visible and UV spectra,
photocatalysts such as metal oxides ZnO [321] and TiO2 [322] can be added to enhance the
photocatalytic activity. Nanocellulose can also be used for antimicrobial filtration. So BC
membranes were examined for removal of E. coli from a sanitary effluent [323].
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5. Conclusions and Future Trends

In summary, BNC is an important natural biopolymer for various applications due to
its unique ultrafine network nanostructure and the properties such as biological compati-
bility, high mechanical strength, high purity, and high sorption capacity. In recent years,
there has been a sharp increase in publications on BNC-based biocomposites obtained for
biomedicine, industry, and technology. New biocomposites for wound dressings, tissue
engineering and drug delivery systems have been obtained, including those used for vas-
cular tissue engineering and neural implant materials, for cancer and diabetes treatment.
Moreover, new methods for obtaining BNC-based biocomposites were developed to create
various biosensors and adsorbents, which enabled to solve a number of important medical
and environmental problems. However, the commercial production of such materials is
limited by high manufacturing cost and low yield. Therefore, further researches are needed
to obtain new highly productive strains of bacteria using genetic and metabolic engineering,
develop new cost-effective culture media with industrial waste and byproduct streams, as
well as the optimization of cells and cell-free culture systems and equipment improvement.
In addition, it is important to focus on the development of new approaches for the modi-
fication and functionalization of BNC-based materials.The possible combination of such
approaches in the future will provide an opportunity to obtain new unique materials able
to change life quality and the human environment.
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