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Abstract: Poly(lactic acid) (PLA) is a readily available, compostable biobased polyester with high
strength and toughness, and it is excellent for 3D printing applications. Polymer blending is an
economic and easy way to improve its properties, such as its slow degradation and crystallization rates
and its small elongation, and thus, make it more versatile. In this work, the effects of different 2,5-furan
dicarboxylic acid (FDCA)-based polyesters on the physicochemical and mechanical properties of PLA
were studied. Poly(butylene furan 2,5-dicarboxylate) (PBF) and its copolymers with poly(butylene
adipate) (PBAd) were synthesized in various comonomer ratios and were blended with 70 wt% PLA
using melt compounding. The thermal, morphological and mechanical properties of the blends are
investigated. All blends were immiscible, and the presence of the dispersed phases improved the
crystallization ability of PLA. Mechanical testing revealed the plasticization of PLA after blending,
and a small but measurable mass loss after burying in soil for 7 months. Reactive blending was
evaluated as a compatibilizer-free method to improve miscibility, and it was found that when the
thermal stability of the blend components allowed it, some transesterification reactions occurred
between the PLA matrix and the FDCA-based dispersed phase after 20 min at 250 ◦C.

Keywords: polymer blends; poly(lactic acid); aliphatic-aromatic copolyesters; 2,5-furan dicarboxylic
acid

1. Introduction

Poly(lactic acid) (PLA) is a biobased and compostable aliphatic polyester that has been
studied for use in many applications over the last decade. It is currently the most widely
used biobased polymer in the world, and due to its excellent printability in 3D printing,
its demand exceeds production. Many properties of PLA, such as strength, stiffness and
gas permeability, were found to be comparable to those of traditional petrochemical-based
polymers. However, PLA-based materials have a significant number of limitations for
specific applications, such as slow biodegradation, high cost and low hardness [1]. The
modification of PLA by blending it with other polymers to achieve suitable properties for
different applications has received considerable attention in recent years. When compared
with copolymerization, polymer blending is an easier and more cost-effective method of
fabricating polymer-based materials for a wide range of applications.

Polymer blends containing PLA are offered in the market by several companies,
including Bioflex® from FKuR Kunststoff GmbH (Willich, Germany) and Ecovio® from
BASF (Ludwigshafen, Germany) [2]. Ecovio® is a compostable, partially biobased blend of
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PLA with petroleum-based poly(butylene adipate-co-terephthalate) (PBAT) that is suitable
for the fabrication of bags and mulch films. The addition of PBAT improves the elongation
and toughness of PLA.

An integral part of the efforts to transition to a more sustainable society is the develop-
ment and scaling up of the production of new biobased polymers. 2,5-Furan dicarboxylic
acid (FDCA)-based polyesters and poly(ethylene 2,5-furan dicarboxylate) (PEF) in particu-
lar are expected to play a dominant role in the ever-growing biobased plastics market [3–7].
PEF is considered one of the most promising biobased polymers to replace the petroleum-
based poly(ethylene terephthalate), either fully or partially [3]. Avantium has already
started constructing a new plant with the capacity to produce 5 kilotonnes of FDCA per
year, which is expected to reduce the price of biomass-derived FDCA significantly and,
therefore, make the production of cost-competitive PEF possible as well. Besides PEF, a
plethora of polyesters of FDCA and their copolymers were reported, with a wide range of
properties that can be tuned by tuning their composition [6,8,9]. In the efforts to impart
biodegradability to FDCA homopolyesters, adipic acid was used. PBF-co-poly(butylene
adipate) (PBAd) copolymers are compostable and can behave either as thermoplastics or as
elastomers, depending on the comonomer composition [10–14].

Because of the sustainable character, as well as the good barrier and mechanical prop-
erties of FDCA-based polyesters, the number of reports in the literature concerning their
blends with PLA is increasing [15–23]. In our previous work, we prepared blends with
PLA and PEF, poly(propylene 2,5-furan dicarboxylate) (PPF), or poly(butylene 2,5-furan
dicarboxylate (PBF) using solution casting [20,23]. These blends were immiscible in all
compositions tested. Regardless of the immiscibility, Long et al. [22] found that uncom-
patibilized PBF/PLA blends with small PBF content showed that the elongation of the
blends was 17 times greater than PLA, while the measure of elasticity and the strength
at the breaking point remained the same. In addition, impact resistance was improved
compared with the two neat polymers. This peculiar behavior was attributed to the
glass–amorphous transition and stretch-induced crystallization in the PBF phase. Un-
compatibilized poly(alkylene 2,5-furan dicarboxylate) (PAF)/PLA, including PBF/PLA
blends prepared with solvent casting, had improved elongation in comparison with neat
PLA [15]. Blending poly(pentylene 2,5-furan dicarboxylate) (PPeF) with PLA improved
its UV-shielding properties, its barrier properties and its ductility despite their immiscibil-
ity [19]. Additionally, blends of PLA with PPeF, POF and PDoF are suitable for producing
textile fibers using wet-spinning [18,21].

The scope of this work was to prepare PLA/PBF and PLA/PBF-co-PBAd blends using
melt blending and evaluate their physicochemical properties. The miscibility was assessed
with SEM and DSC, while mechanical properties were tested with nanoindentation testing.
Nanoindentation tests were assisted by a finite element analysis (FEA) process to curve
fit the experimental load–depth curves and extract the materials’ stress–strain behavior.
Structural properties were characterized with FTIR and XRD and the effect of the blending
on the soil degradation of PLA was studied using mass loss quantification and surface
observation with microscopy. Finally, reactive blending was tested as a compatibilizer-free
approach to improve blend miscibility.

2. Materials and Methods
2.1. Materials

The PLA used was IngeoTM Biopolymer 3052D (NatureWorks, Plymouth, MN, USA),
which was designed for injection molding [24], and it was kindly donated by Plastika
Kritis S.A., Heraklion, Greece. It contains ~96% of L- and ~4% of D-lactide and has
Mn = 81,700 g/mol. Its intrinsic viscosity is [η] = 1.24 dL/g.

2.2. Synthesis of the Polyesters

For the synthesis of PBAd, the following protocol was used: First, for the esterification
step, adipic acid and 1,4-butanediol in a molar ratio 1:1.1 were charged into a three-necked
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round bottom flask equipped with a condenser, a mechanical stirrer and a nitrogen inlet.
The mixture was gradually heated until homogenization, and then the temperature was
increased to 190 ◦C for 4 h. Then, for the polycondensation step, 400 ppm TBT was added
to the reaction mixture, and a vacuum of 0.05 mbar was applied gradually over 30 min.
The reaction temperature was increased to 220 ◦C for an additional 3 h.

For the synthesis of PBF, the following protocol was used: First, for the transester-
ification step, 2,5-dimethyl furan dicarboxylate (DMFD) and 1,4-butanediol in a molar
ratio 1:2.2 were charged into the apparatus that was previously described. Furthermore,
400 ppm of TBT was added to act as a catalyst for transesterification. The mixture was
gradually heated until homogenization, and then the temperature was set at 160 ◦C for 1 h,
170 ◦C for 1 h, 180 ◦C for another hour and, finally, 190 ◦C for an additional hour. For the
polycondensation step, a vacuum of 0.05 mbar was applied over 30 min and the reaction
temperature was set to 210 ◦C for 1 h, 220 ◦C for 1 h and 230 ◦C for 1 h.

For the synthesis of the copolymers, the product from the esterification step of PBAd
synthesis, and the product from the transesterification step of PBF synthesis were used.
6-(4-Hydroxybutoxy)-6-oxohexanoic acid and bis(4-hydroxylbutyl) furan 2,5-dicarboxylate
at molar ratios of 3:1, 1:1 and 1:3 were charged into the previously described apparatus.
Then, 400 ppm of TBT was added to the flask, and the temperature was set at 160 ◦C for 1 h,
170 ◦C for 1 h, 180 ◦C for 1 h and 190 ◦C for an additional hour. For the polycondensation
step, a vacuum of 0.05 mbar was applied over 30 min and the reaction temperature was set
to 210 ◦C for 1 h, 220 ◦C for 1 h and 230 ◦C for 1 h. Through this protocol, the materials
PBF-PBAd 75-25, PBF-PBAd 50-50 and PBF-PBAd 25-75 were synthesized.

2.3. Blend Preparation

Blends containing 70 wt% PLA and 30 wt% of each FDCA-based polyester were
prepared via melt blending. Prior to this, the components were dried overnight under a
vacuum. To prepare the blends, the components were introduced in a twin screw co-rotating
extruder, operating at 190 ◦C and 35 rpm for 5 min.

2.4. Characterization

The intrinsic viscosity of the produced polyester was measured with an Ubbelo-
hde viscometer (Schott Gerate GMBH, Hofheim, Germany) at 25 ◦C using a phenol/
1,1,2,2-tetrachloroethane (60/40 w/w) solution. The sample was heated in the solvent mix-
ture at 80 ◦C for 20 min until complete dissolution. After cooling, the solution was filtered
through a disposable Teflon filter to remove possible solid residues. The calculation of the
intrinsic viscosity value of the polymer was performed by applying the Solomon–Cuita
Equation (1) of a single point measurement:

[η] =

[
2
{

t
t0
− ln

(
t
t0

)
− 1
}]1/2

c
, (1)

where c is the solution concentration, t is the flow time of the solution and t0 is the flow
time of the solvent. The experiment was performed three times and the average value
was estimated.

Molecular weight was measured with an Agilent Technologies 1260 Infinity II LC
Gel Permeation Chromatography (GPC) System consisting of an Isocratic Pump, a PL
gel MIXED Guard column and two PLgel 5 µm MIXED-C columns, and an Agilent RID
detector. For the calibration, 10 polystyrene (PS) standards of molecular weights between
600 and 1,000,000 g/mol were employed. The prepared solutions had a concentration of
1 mg/mL and the injection volume was 25 µL with a flow of 1 mL/min at a temperature of
40 ◦C.

Nuclear magnetic resonance (NMR) spectra were recorded in deuterated chloro-form
for the structural study of the synthesized polymers. An Agilent 500 spectrometer was
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utilized (Agilent Technologies, Santa Clara, CA, USA) at room temperature. Spectra were
calibrated using the residual solvent peaks.

The morphology of cryofractured cross-sections of the samples was studied with
a JEOL (Tokyo, Japan) JSM 7610F field emission scanning electron microscope (SEM)
operating at 5 kV.

ATR spectra of the samples were recorded using an IRTracer-100 (Shimadzu, Kyoto,
Japan) equipped with a QATR™ 10 Single-Reflection ATR Accessory with a Diamond
Crystal. The spectra were collected in the range from 450 to 4000 cm−1 at a resolution of
2 cm−1 (a total of 16 co-added scans), while the baseline was corrected and converted into
absorbance mode.

XRD diffractograms were recorded using a MiniFlex II XRD system (Rigaku, Co.,
Tokyo, Japan) with Cu Kα radiation (0.154 nm) over the 2θ range from 5◦ to 50◦ with a
scanning rate of 1◦/min. Melt-quenched films prepared with compression molding that
were first annealed at the peak of their Tcc for 1 h were used.

Differential scanning calorimetry (DSC) analysis was performed using a Perkin Elmer
Pyris Diamond DSC differential scanning calorimeter (Solingen, Germany) calibrated
with pure indium and zinc standards. The system included a PerkinElmer Intracooler
2 (Solingen, Germany) cooling accessory. Samples of 5 ± 0.1 mg sealed in aluminum pans
were used to test the thermal behavior of the polymers.

Thermogravimetric analysis (TGA) was carried out using a SETARAM (Caluire,
France) SETSYS TG-DTA 16/18 instrument. The samples (6 ± 0.5 mg) were placed in
alumina crucibles and heated from 25 ◦C to 600 ◦C in a 50 mL/min flow of N2 at heating
rates of 20 ◦C/min.

Mechanical properties measurements were performed at room temperature (25 ◦C).
The nanoindentation measurements were carried out on a DUH-211S Shimadzu (Kyoto,
Japan) device with a force resolution of 0.196 µN. A diamond triangular tip Berkovich
indenter (angle of 65◦, tip radius is 100 nm) was used and three points were selected
and measured using an optical microscope integrated into the device. The modulus and
hardness were determined based on the method of Oliver and Pharr [25] and previous
work [26–30]. The maximum load was 10 mN and was achieved at a rate of 1.66 mN/s.
Due to the material’s viscoelastic nature, a dwell time of 50 s was implemented to allow
for sufficient time at peak load for the creep effects to saturate. The additional depth
induced during the dwell time at constant load was recorded to provide insight into
the creep response of the material. In order to calculate the nanomechanical properties,
the average value of ten measurements taken at different locations was used. A finite
element analysis (FEA) process was developed in order to fit the nanoindentation test
curves and extract the stress–strain behavior of the specimens. The interface between the
indenter and the surface of the sample was simulated with contact elements and assumed
to be frictionless. The nanoindentation experiments were computationally generated by
considering the simulation of the loading stage of the indenter penetrating the surface.
Other works [26,27,31] showed that kinematic hardening leads to a rapid convergence in
the corresponding FEA calculations, and thus, this method was utilized in the developed
curve-fitting procedure.

The water contact angle was measured with an Ossila (Sheffield, United Kingdom)
contact angle goniometer L2004A1 at room temperature (25 ◦C). The contact angle was
measured by gently placing a water droplet (5 µL) on the surface of the films of the samples
prepared via compression molding. At least three measurements were performed and the
mean value is reported herein.

For the preliminary evaluation of degradability in soil, the samples were buried
in a pot containing a 1:1 by weight mixture of soil and digested sheep manure at an
outdoors temperature in Thessaloniki, Greece, during March to September 2021. The soil
was collected from a horticulture farm in the rural region of Thessaloniki (40◦40′35.3′′ N
23◦15′37.9′′ E). The climate of Thessaloniki is Mediterranean, with hot and dry summers
and warm and temperate springs. The average daily temperature exported from a local



Polymers 2022, 14, 4725 5 of 23

weather station is presented in Figure S1. Moisture in the soil was replenished at regular
intervals with tap water. After predetermined time intervals, the samples were removed
from the soil, dried under a vacuum for 3 days and weighed.

The mass loss percentage was calculated according to the following equation:

Mass loss % =
W0 −Wi

W0
, (2)

where w0 is the initial sample of the sample and wi is the final weight after a certain
time interval.

Each sample was buried in triplicate and the mean value was calculated. The surface of
the samples was examined using a Jenoptik (Jena, Germany) ProgRes GRYPHAX ARKTUR
camera attached to a ZEISS (Oberkochen, Germany) SteREO Discovery V20 microscope,
and Gryphax image capturing software and the scanning electron microscope described
above were also used.

3. Results
3.1. Synthesis of the FDCA-Based Polyesters

The synthetic procedure applied is presented in Scheme 1 and the obtained molecular
intrinsic viscosity, Mn and PDI are shown in Table 1. Butylene adipate (BAd) and butylene
furanoate (BF) oligomers were first prepared, and then each one was added in the proper
amounts to produce the copolymers in question through polycondensation. The use of
dihydroxybutylene furanoate and dihydroxybutylene adipate assured that the monomer
ratio was very close to the feed ratio, as only 1,4-butanediol molecules can be removed
during the polycondensation step. Furthermore, materials of high molecular weight up to
23,000 g/mol were obtained, confirming that the protocol followed was suitable for the
synthesis of copolyesters. Three materials with different compositions were prepared to
examine the effect of each comonomer on the properties of the resulting material.
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Table 1. Intrinsic viscosity values of the synthesized oligomers and polymers.

Sample [η] (dL/g) Mn (g/mol) PDI

PBAd oligo 0.26 3600 2.18
PBAd 0.47 15,400 2.28

PBF oligo 0.06 N.D. N.D.
PBF 0.6 N.D. N.D.

PBF-PBAd 75 25 0.54 23,600 2.59
PBF-PBAd 50 50 0.41 9900 2.25
PBF-PBAd 25 75 0.63 15,790 2.25

N.D.: not determined.

The NMR spectra of the copolymers are presented in Figure S2. For the PBF-PBAd
copolymers, resonance signals corresponding to the BF segments were observed at 7.28 ppm
CH C, 4.44 ppm CH2 D and 1.92 ppm CH2 E. The BAd peaks were observed at 4.15 ppm
OCH2 4, 2.41 ppm CH2C(O) 2, 1.73 ppm CH2 5 and 1.65 ppm CH2 3. Additionally, signals
corresponding to butanol units linked to both FDCA and adipic acids were also observable:
4.41 ppm OCH2 D′, 4.15 ppm OCH2 4′, 1.85 ppm E′ and 1.80 ppm 5′ (Figure S2c). The 13C
spectra (Figure S2b) confirmed the 1H NMR spectra. Two ester peaks were observed at
174.5 (C=O 1) and 158.3 (C=O A) ppm, along with all the other expected signals: 146.5 and
118.8 ppm CH B and C, 65.1 ppm OCH2 D, 64.3 ppm OCH2 4, 33.8 ppm CH2C(O) 2,
25.01 ppm CH2 E, 24.98 ppm CH2 5 and 24.2 ppm CH2 3.

The composition of the copolymers was calculated using the integrations of the peaks
at 7.28 ppm and 2.41 ppm (Table 2). The microstructure of the copolymers was deduced
from peaks at 4.44 to 4.15 ppm corresponding to the butanol methylene groups adjacent to
the ester linkages. As depicted in Figure S3, there were three possible structures according to
the acid that is linked to each side of butanol: FBF, FBAd (equivalent to AdBF) and AdBAd.
The corresponding resonance signals (Figure S2c) were used to calculate the average
sequence length of the butylene furanoate (LBF) and butylene adipate (LBAd) segments in
the copolymers and the degree of randomness (R) according to Equations (3)–(5). The
degree of randomness was slightly over 1 for all copolymers (Table 2), suggesting not only
a completely random structure but even alternating sequences.

LBF = 1 +
2× IFBF

IFBAd + IAdBF
, (3)

LBAd = 1 +
2× IAdBAd

IFBAd + IAdBF
, (4)

R =
1

LBF
+

1
LBAd

, (5)

where IBF is the integration of the butylene furanoate peak, IFBF is the integration of the
peak of the FBF segments, IAdBAd is the integration of the peak of the AdBAd segments and
IAdBF is the integration of the peak of the AdBF segments in the 1H NMR spectrum.

Table 2. Comonomer ratio in the feed calculated with NMR, as well as the block length and degree of
randomness of the PBF-co-PBAd copolyesters.

PBF-PBAd Feed
Ratio (mol%)

Ratio Calculated
with NMR (mol%) LBF LBAd R

PBF-PBAd 75 25 74–26 2.0 1.1 1.41

PBF-PBAd 50 50 60–40 1.7 1.4 1.31

PBF-PBAd 25 75 31–69 1.4 3.7 1.00



Polymers 2022, 14, 4725 7 of 23

3.2. Characterization of the FDCA-Based Polyesters

Poly(butylene adipate-co-butylene 2,5-furandicarboxylate)s in several comonomer
ratios were reported in the literature [6,10,13,14,32]. PBF-co-PBAd with low FDCA content
(≤60 mol%) are degradable via hydrolysis and composting and are remarkably elastic.
The DSC thermograms of PBF, PBAd and their copolymers are shown in Figure S4. PBAd
is a fast-crystallizing polyester with a glass transition Tg = −57.3 ◦C, a double melting
peak at 55 and 60 ◦C, and a melt crystallization Tc = 31.4 ◦C. PBF melts at 170 ◦C and has
Tg = 37.7 ◦C and Tcc = 103.4 ◦C, in agreement with previous reports [33–36]. The copoly-
mers PBF-PBAd 75 25 and PBF-PBAd 50 50 show weak cold crystallization and melting
during heating after quenching (Figure S4d), and PBF-PBAd 25 75 does not crystallize
during heating. The effect of the composition (calculated using NMR) on the thermal
transitions of the copolymers is shown in Figure S5. As expected, when increasing the
butylene adipate content, the Tm, Tcc and Tg are reduced because the incorporation of the
flexible BAd segments increases the chain mobility [6]. The presence of a single Tg for all
copolymers complies with a random sequence structure, in agreement with the calculations
from the NMR (Table 2).

The XRD patterns of PBF, PBAd and their copolymers are presented in Figure S6. PBF
has a triclinic unit cell, and the diffraction peaks of the planes (010) and (100) appear at
17.5◦ and 24.5◦ [37]. PBAd has diffractions peaks at 2θ = 17.9◦ (002), 19.7◦, 20.3◦, 21.8◦ (110),
22.5◦ (020) and 24.2◦ (021) [38]. PBAd can crystallize in different crystal forms depending
on the crystallization conditions, namely, α- and β-form crystals [39]. Herein, PBAd was
melt-quenched at room temperature and shows peaks from both α- and β-form crystals.
While the α-form has a monoclinic unit cell, the β-form has an orthorhombic one [39].
The copolymer PBF-PBAd 25 75 has diffraction peaks of both PBF and PBAd, indicating
both units can crystallize. Increasing the BF content to 50 and 75% turns the copolymers
amorphous, showing weak diffraction peaks of the PBF moiety; therefore, the crystallization
of both comonomers is suppressed due to incompatibility of the crystal lattices of PBF and
PBAd. This observation supports the findings of the DSC data.

3.3. Microstructural Features and Spectroscopic Analysis of the Blends

The miscibility of polymer blends is controlled by many factors: viscosity ratio, com-
position, shear forces, elasticity, the characteristics of the interface, molecular weight and
crystallinity are among them. Blends of PLA/PBAd with PBAd content ≥30 wt% are
immiscible, which was attributed to the crystallization of PBAd in the PLA matrix [40].
Blends of PLA/PBF prepared using melt blending were reported in the literature, with PBF
content ranging from 5 to 75 wt% [16,22,23]. All of them were immiscible, as the typical
sea-island morphology was observed with SEM.

The miscibility of the blends was first evaluated using SEM observations of cryofrac-
tured surfaces. The microphotographs are shown in Figure 1 at two different magnifications:
×1000 and×5000. All blends show the sea-island morphology, which is typical for immisci-
ble blends. The blends PBF PLA, PBF-PBAd 75 25 PLA and PBF-PBAd 50 50 PLA had small
spherical particles of the second component with diameters from approximately 0.3 to 6 µm.
On the blend PBF-PBAd 25 75 PLA, which contained the largest amount of PBAd among
all the blends, the droplets had an irregular platelet-like shape rather than a spherical
shape. All samples had empty cavities on their surfaces and evidence of debonding of the
dispersed phase, but numerous domains remained attached, especially smaller ones, which
can be attributed to transesterification reactions during melt blending [41]. The domain
sizes were measured and fitted with a lognormal distribution. The lognormal distribution
curves and the histograms, along with the lognormal mean domain sizes, are presented
in Figure 2. The mean domain size varied between the blends; however, the standard
deviation is quite large, suggesting that there were no significant variations between the
samples. While there was a trend that showed an increase in the PBAd content in the
dispersed phase also increased the mean domain size, the blend PBF-PBAd 50 50 PLA
did not follow this trend, as a large number of smaller spherical droplets (≤0.5 µm) ex-
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isted on its cryofractured surface. This smaller domain size hinted at slightly improved
compatibility and could be attributed to the smaller intrinsic viscosity of the copolymer
PBF-PBAd 50 50. The viscosity ratio of the dispersed phase to the matrix influences the
blend miscibility and combining a high-viscosity matrix, such as PLA, with a low-viscosity
dispersed phase yields a homogeneous and fine dispersion [42].
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visibly stronger than in PLA. The asymmetric and symmetric stretching of the furan ring 
can be seen at 3150 cm−1 and 3120 cm−1, respectively [10,15,43]. The bands in the range of 
2900–2800 cm−1 corresponded to the vibrations of the methyl groups of butanediol, and 
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The FTIR spectra of the homopolymers, the copolymers and their blends are shown in
Figure 3. PLA, due to its high molecular weight, had weak absorption bands of terminal
hydroxyls at 3500 cm−1. The C-H stretching appeared at ~2900 cm−1 and ~2945 cm−1, the
C=O stretching at 1752 cm−1, the -CH3 asymmetric stretching at 1453 cm−1 and the C-O-C
stretching at 1185–1080 cm−1. The spectra of PBF and its blend with PLA are presented
in Figure 3a. In the spectrum of PBF, the terminal -OH peak at ~3600 cm−1 was visibly
stronger than in PLA. The asymmetric and symmetric stretching of the furan ring can
be seen at 3150 cm−1 and 3120 cm−1, respectively [10,15,43]. The bands in the range of
2900–2800 cm−1 corresponded to the vibrations of the methyl groups of butanediol, and
the band at 1732 cm−1 to the C=O stretching. The bands of the C-H and C=H vibrations
of the furan ring were visible at 1580 and 1530 cm−1, respectively [10,36]. After blending
PLA with the FDCA-based polyesters, a combination of the bands of the two components
appeared on the spectra (Figure 3, middle spectra). It is noteworthy that the band of the
terminal -OH groups was weaker, and the position of the C=O band of the FDCA-based
component shifted to smaller wavenumbers, indicating that some limited transesterification
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reactions might have taken place during the melt blending. In contrast, no such reactions
could be hypothesized when blends of PLA and FDCA-based polyesters were prepared via
solvent casting [15]. The C=O absorption band did not shift in the spectrum of the blend
PBF-PBAd 25 75 PLA (Figure 3d middle spectrum), which could have been due to the
higher viscosity of the copolymer PBF-PBAd 25 75 in comparison with PBF-PBAd 50 50 and
PBF-PBAd 75 25.
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3.4. Thermal Properties and Crystallization of the Blends

The most common method used to assess whether two polymers are miscible is
measuring the changes in their glass transition temperature (Tg) via DSC. That is feasible
only when the two Tg values differ significantly such that they can be detected. When
a blend exhibits a single Tg, miscibility is assumed, while two Tg values indicate partial
miscibility or immiscibility [44].

The DSC traces of the prepared blends during heating after quenching are shown
in Figure 4a. PLA has a Tg = 62.6 ◦C and very weak cold crystallization at Tcc = 126.5 ◦C.
The formed crystals melted at Tm = 153.3 ◦C. The two components of the blends had
significantly different Tg values, with ∆Tg ranging from ~25 to 100 ◦C (Figure 4b, gray
columns). After mixing, the two Tg values were still present, confirming the immiscibility of
the blends, and the ∆Tg reduced after blending. All blends crystallized during heating, and
the crystallization of PLA in the blends was a lot more pronounced than in neat PLA as the
∆Hcc increased, suggesting the dispersed phases facilitated the cold crystallization of PLA.
The blending of a polymer with an incompatible component can improve its nucleation
rate, and therefore its crystallization [45]. This improvement in crystallization could be the
result of heterogeneous nucleation occurring along the interface of the two phase-separated
domains [46]. It was previously concluded that blending PBF with PLA led to increased
PLA crystallinity [23]. Both PBF and PLA crystallized in the PBF PLA blend since two
distinct cold crystallization peaks were detected at 97.4 ◦C and 136.2 ◦C, as well as two
melting peaks at 170.8 ◦C and 157.5 ◦C corresponding to PBF and PLA, respectively. The
Tcc and the Tm of PLA shifted to higher temperatures, but the Tcc of PBF shifted slightly
toward lower temperatures in comparison with the neat polyesters. The blends with the
PBF-PBAd copolymers did not show detectable cold crystallization of the dispersed phase,
as the copolymers alone did not crystallize significantly.
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Figure 4. (a) DSC scans of the blends during heating after quenching at a rate of 20 ◦C/min and
(b) ∆Tg values of the blend’s components before and after the melt blending.

The XRD patterns of PLA, the FDCA-based polyesters and their blends are presented
in Figure 5. The unit cell of PLA is orthorhombic, with the main diffraction peaks at 2θ = 15,
16.5 and 19◦, which correspond to the (010), (200/110) and (203) crystal planes, respectively.
The small peak at 22.3◦ is attributed to the (210) plane [47]. After annealing at the Tcc for
1 h, all the prepared blends showed the diffraction peaks of PLA, and some smaller peaks
of the dispersed phases, suggesting that both components crystallized during isothermal
cold crystallization (annealing). The peaks of the dispersed phase were clearly visible for
the blends PBF PLA and PBF-PBAd 25 75, as those polymers had strong diffraction peaks.
In the blends PBF-PBAd 75 25 and PBF-PBAd 50 50, no safe conclusions could be drawn,
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as the weak diffraction peaks of these copolymers might have overlapped with the weak
diffraction peak of PLA at about 25◦. In our previous study, both PLA and PBF were able
to crystallize in a wide range of PLA PBF compositions [16].
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blend and (d) PLA, PBF-PBAd 25 75 and PBF-PBAd 25 75 PLA blend.

3.5. Nanomechanical Properties

The nanomechanical properties of the copolymers and their blends with PLA were
measured through nanoindentation testing. In Figure S7, the representative indentation
load–depth curves are illustrated, along with the FEA force–depth data that fit the experi-
mental nanoindentation loading curve.

For the FE analysis, an initial value was introduced into the model for the first tangent
modulus of the sample’s stress–strain curve. This value was related to the elastic mod-
ulus that was derived from the nanoindentation tests. The measured indentation depth
was applied in steps to the FE model (on the indenter), and then the force reaction was
computed and compared with the measured value. The FEA force–depth data should fit
the experimental nanoindentation curve; else, the value of the tangent modulus has to be
computed again. For the cases where the solutions returned a computational force matching
the measured force, the value of the tangent modulus was considered to be accepted, and
the next couple of values of force and depth were applied to the model. The following
calculation steps started with the previous indentation depth value, considering the already
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existing stress status and the previously obtained tangent modulus. This process was
repeated until the last couple of load–depth values converged and the loop ended. At
least 20 simulation steps were considered sufficient to achieve converged FEA solutions
and proceed to a satisfactory curve fitting of the nanoindentation curves. The potential to
calculate the stress–strain curves of polymers based on the force–depth nanoindentation
testing under varied conditions allowed for the estimation of the materials’ constitutive
laws. The computationally generated stress–strain curves are presented in Figure 6. The
resulting elastic modulus, ultimate stress and strain from the FEA-assisted nanoindentation
testing (analytical–experimental method), as well as the elastic modulus and hardness from
nanoindentation testing, are summarized in Table 3.

Polymers 2022, 14, x FOR PEER REVIEW 14 of 25 
 

 

model. The following calculation steps started with the previous indentation depth val-
ue, considering the already existing stress status and the previously obtained tangent 
modulus. This process was repeated until the last couple of load–depth values con-
verged and the loop ended. At least 20 simulation steps were considered sufficient to 
achieve converged FEA solutions and proceed to a satisfactory curve fitting of the 
nanoindentation curves. The potential to calculate the stress–strain curves of polymers 
based on the force–depth nanoindentation testing under varied conditions allowed for 
the estimation of the materials’ constitutive laws. The computationally generated stress–
strain curves are presented in Figure 6. The resulting elastic modulus, ultimate stress 
and strain from the FEA-assisted nanoindentation testing (analytical–experimental 
method), as well as the elastic modulus and hardness from nanoindentation testing, are 
summarized in Table 3. 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

0

5

10

15

20

25

30

St
re

ss
 (M

Pa
)

Strain (-)

 FEA PBF
 FEA PBF-PBAd 75 25
 FEA PBF-PBAd 50 50
 FEA PBF-PBAd 25 75
 FEA PBAd

(a)

 
0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

5

10

15

20

25

30

35

St
re

ss
 (M

Pa
)

Strain (-)

 FEA PBF PLA
 FEA PBF-PBAd 75 25 PLA
 FEA PBF-PBAd 50 50 PLA
 FEA PBF-PBAd 25 75 PLA

(b)

Figure 6. FEA generated stress–strain curves of (a) PBF, PBAd and PBF-co-PBAd, (b) PBF-PBAd 
PLA blends. 

The results showed a good correlation between the measured nanoindentation tests 
and the computational data for all specimens that contained PLA (Figure 6b). For the 
PBF-PBAd copolymer specimens (Figure 6a), the FEA seemed to overpredict the elastic 
modulus results. This was due to the inherent nature of calculation from the Oliver–
Pharr approach [26], which measures the elastic modulus from the unloading section of 
the load–depth curve, while the FEA approach calculates the response from the loading 
curve up to the maximum force. Overall, the results showed a significant increase in 
strength for the PLA-containing blends. Considering these results, it can be concluded 
that the PBF-PBAd copolymers affected the specimen’s overall stress–strain behavior by 
reducing the elastic modulus values; however, from the elasto-plastic type stress–strain 
curves, the ultimate strain increased due to the flexible macromolecular chain of PBAd. 

Furthermore, the experimental nanoindentation technique assisted by FEA was 
shown to be a very successful method for determining the mechanical behavior of the 
materials. The values of elastic modulus obtained from the nanoindentation testing and 
FEA of the blends were almost similar and always in the same order of magnitude. A 
decreasing trend in the elastic modulus values of PBF-PBAd was observed with the in-
crease of PBAd content in the copolymers, which was expected due to the flexible behav-
ior of PBAd. A similar drop is observed in the values of hardness. 

The elastic properties of the PLA matrix differed significantly from those of the dis-
persed phases since the PBF-PBAd copolymers had a much smaller elastic modulus 
when compared with PLA, which is a stiff polymer with small elongation. Thus, the 
blends had intermediate elastic modulus and stress at break values that decreased as the 
softness of the dispersed phase increased. Similar behavior was observed when PBAT 
was added in the PLA for PBAT content up to 40 wt% [48]. It was reported that when 
using only a small amount of PBF in the preparation of immiscible blends of PLA/PBF, 
the elongation and impact toughness of PLA significantly increased [22]. Herein, the 

Figure 6. FEA generated stress–strain curves of (a) PBF, PBAd and PBF-co-PBAd, (b) PBF-PBAd
PLA blends.

Table 3. Mechanical properties of the homopolymers, copolymers and blends obtained using nanoin-
dentation and FEA-assisted nanoindentation.

Property Elastic
Modulus

FEA Elastic
Modulus

FEA Ultimate
Stress

Nanoindentation
Hardness

Units MPa MPa MPa MPa
PLA 3572 ± 260 3600 60 142 ± 7.4

PBF 774 ± 43 1080 N.D. 39.2 ± 3.1
PBF PLA 2260 ± 107 1873 30.569 125.5 ± 11.4

PBF-PBAd 75 25 217.7 ± 4.51 574 29.679 14.5 ± 0.7
PBF-PBAd 75 25 PLA 1262 ± 38 1204 27.512 72.9 ± 0.4

PBF-PBAd 50 50 35 ± 1 383 23.743 2.6 ± 0.08
PBF-PBAd 50 50 PLA 1004 ± 16.4 1070 24.455 66.7 ± 2.8

PBF-PBAd 25 75 31 ± 0.43 255 18.994 1.9 ± 0.08
PBF-PBAd 25 75 PLA 561 ± 19.3 617 18.342 37.7 ± 1.5

PBAd 506.03 ± 57 502 20.570 29.72 ± 5.5
N.D.: not determined.

The results showed a good correlation between the measured nanoindentation tests
and the computational data for all specimens that contained PLA (Figure 6b). For the
PBF-PBAd copolymer specimens (Figure 6a), the FEA seemed to overpredict the elastic
modulus results. This was due to the inherent nature of calculation from the Oliver–Pharr
approach [26], which measures the elastic modulus from the unloading section of the
load–depth curve, while the FEA approach calculates the response from the loading curve
up to the maximum force. Overall, the results showed a significant increase in strength
for the PLA-containing blends. Considering these results, it can be concluded that the
PBF-PBAd copolymers affected the specimen’s overall stress–strain behavior by reducing
the elastic modulus values; however, from the elasto-plastic type stress–strain curves, the
ultimate strain increased due to the flexible macromolecular chain of PBAd.
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Furthermore, the experimental nanoindentation technique assisted by FEA was shown
to be a very successful method for determining the mechanical behavior of the materials.
The values of elastic modulus obtained from the nanoindentation testing and FEA of the
blends were almost similar and always in the same order of magnitude. A decreasing trend
in the elastic modulus values of PBF-PBAd was observed with the increase of PBAd content
in the copolymers, which was expected due to the flexible behavior of PBAd. A similar
drop is observed in the values of hardness.

The elastic properties of the PLA matrix differed significantly from those of the dis-
persed phases since the PBF-PBAd copolymers had a much smaller elastic modulus when
compared with PLA, which is a stiff polymer with small elongation. Thus, the blends had
intermediate elastic modulus and stress at break values that decreased as the softness of
the dispersed phase increased. Similar behavior was observed when PBAT was added
in the PLA for PBAT content up to 40 wt% [48]. It was reported that when using only a
small amount of PBF in the preparation of immiscible blends of PLA/PBF, the elongation
and impact toughness of PLA significantly increased [22]. Herein, the amount of PBF used
might have been too large to obtain a similar improvement in elongation. Overall, the
materials PBF-PBAd 75 25 and PBF-PBAd 75 25 PLA presented the best nanomechanical
properties during nanoindentation testing in comparison with all the PBF-PBAd copoly-
mers and blends. However, it should be noted that since the blends are all immiscible, the
cavities from the dispersed phase particles are expected to act as stress concentration points
upon mechanical loading.

3.6. Wettability and Soil Burial Test

The effect of blending on the wettability of PLA was investigated by measuring the
water contact angle. The values obtained are shown in Figure 7. Water contact angle
values are related both to the composition of the material, as well as the roughness of the
substrate [49]. The contact angle values of all the materials were <90◦, which is considered
hydrophilic and was attributed to the numerous oxygen species of the repeating units of
the polyesters. The contact angle of PBF and its copolymers with PBAd are represented
by the green bars of Figure 7. PBF has a contact angle of 55.8 ± 3.5◦, and it was increased
after copolymerization with PBAd, as well as with increased PBAd content. This increase
was due to the introduction of the eight methylene groups of the PBAd repeating unit into
the macromolecular chain. The contact angle of PBF reported in the literature was larger
than in this study [43,50], which was likely a result of the higher molecular weight and, as
a result, fewer polar terminal -OH and -COOH groups. PLA was the least hydrophilic of
all the polymers in this work, as it had the highest molecular weight. After introducing the
FDCA-based polymers in the PLA matrix, its contact angle decreased and, therefore, its
hydrophilicity increased, and all the blends had contact angle values in between those of
their components.

PLA degrades under industrial composting conditions (58 ◦C, 90% biodegradation
up to 6 months) and is likely to degrade in thermophilic anaerobic digestion at 52 ◦C.
PBAT is also degradable under industrial composting conditions and certain grades are
susceptible to home composting and soil degradation [51]. PBF does not degrade after
8 weeks of composting [52]. PBF-co-PBAd with 40–60% BF was found to be compostable
under standard conditions regulated in ISO 14855-1:2005 and GB/T 19277.2-2013, as they
reached 90% biodegradation in 110 days [32]. As expected, increasing the BF content
decelerated the biodegradation.

The hydrolysis rate of aliphatic–aromatic copolyesters depends on the sequence length
of the aromatic unit, the hydrophilicity and the inherent sensitivity of the ester bonds to
hydrolytic attack. Ester bonds adjacent to aliphatic moieties are more prone to hydroly-
sis [53,54]. In addition, in soil degradation, the soil type and quality affect degradation
rates [55]. In the scope of this work, a preliminary evaluation of the degradability of
the polymers in real environmental conditions was performed. The cumulative mass
loss of the polymers studied is shown in Figure 8. As seen in Figure 8a, both PBF and
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PBF-PBAd 75 25 did not lose significant mass after 7 months of burying. Increasing the
BAd content to 50 and 75 mol% enabled measurable mass loss, which reached ~25% in
7 months. In fact, PBF-PBAd 50 50 degraded similarly to PBAd, which contained only
aliphatic units in its macromolecular chain. The accelerated degradation of this copolymer
can be attributed to its lower molecular weight. PLA and its blends (Figure 8a) showed a
different mass loss pattern since PLA and the matrix of the blends were not degradable
in soil. Both PBF and the blend PBF PLA seemed to gain weight, which was attributed
to the contamination of their surface with soil and a simultaneous lack of mass loss. PLA
showed an insignificant mass loss with a large standard deviation; therefore, it was con-
sidered completely non-degradable under the testing conditions. After blending it with
the FDCA-based copolyesters, a small mass loss was observed, reaching ~6% for the blend
PBF-PBAd 25 75 PLA. This mass loss might be limited but it is an indication that having
only a small fraction of the biodegradable repeating BAd units in the blend composition
could accelerate the degradation of PLA. The properties that dictate degradation rates of the
materials are molecular weight and hydrophilicity. Overall, for the samples that degraded,
mass loss was increasing faster after 3 months of burying, which could be associated with
the higher temperatures in that timeframe (Figure S1).
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blends during soil burial.

The appearance of the samples after being buried for 7 months is shown in Figure 9.
PLA was not significantly affected macroscopically, except for the contamination of its
surface by soil residues (Figure 9a). PBAd broke into several fragments and its color
turned from white to brown (Figure 9b). Among the PBF-PBAd copolymers, macroscopic
changes were noticed for PBF-PBAd 50 50 (Figure 9g) and PBF-PBAd 25 75 (Figure 9i),
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which had the lowest molecular weights and the highest BAd contents. These two films
had holes visible to the naked eye and started breaking after 5 months of burying. The
appearance of the blends was affected the most in terms of coloring with contamination
from the soil, and some holes started appearing at the thinnest parts of the films of the
blend PBF-PBAd 25 75 PLA, Figure 9j, which agreed with the mass loss results and revealed
the important role of film thickness on degradation rates. The microscopic changes in the
surface of the materials were examined with SEM. Besides PLA and PBF (Figure 9a,c), all
polymers had very rough surfaces with defects and holes, suggesting surface erosion, as
well as deposited particles. These could be traces of soil, mineral deposits or biofilms. In
Figure 9j, a fiber-like structure that resembled microbial biofilms formed on the PBF-PBAd
25 75 PLA blend.
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Figure 9. The surfaces of the materials after 7 months of soil degradation. From left to right: macro-
scopic photograph, stereoscope image with ×7.5 magnification and SEM image with ×2000 magnifi-
cation. Reactive blending. (a) PLA; (b) PBAd; (c) PBF; (d) PBF PLA; (e) PBF-PBAd 75 25; (f) PBF-PBAd
75 25 PLA; (g) PBF-PBAd 50 50; (h) PBF-PBAd 50 50 PLA; (i) PBF-PBAd 25 75; (j) PBF-PBAd 25 75 PLA.
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3.7. Reactive Blending

Reactive blending was performed to examine whether it can improve the compatibility
between the components of the blends. In general, reactive blending concerns the mixing
of the blend at elevated temperatures for prolonged times to enable transesterification
reactions to occur. Increasing the blending time leads to the formation of block copolymers
initially, and further increasing it yields random copolymers. Reactive blending was
simulated inside the DSC pan to make a preliminary estimation of its effect on miscibility
improvement. To do so, the blends were held isothermally at 220 ◦C or 250 ◦C for different
times ranging from 10 to 50 min. After each isothermal step, a quenching and a heating
scan with a heating rate of 20 ◦C/min were performed to measure the Tg. The start of
thermal degradation during reactive blending was concluded from the DSC curves of the
isothermal steps.

The effect of the reactive blending time on the Tg of the blends is shown in Figure 10. In
general, when Tg values gradually approach each other, it indicates compatibilization [56].
Another indication for improved miscibility is the suppression of cold crystallization and a
decrease in the Tm since the ability of copolymers to crystallize is limited in comparison
with blends.

In the PBF PLA blend, only the Tg of PBF increased during reactive blending at
220 ◦C (Figure 10a); the cold crystallization (Figure S9a) shifted slightly toward higher
temperatures, indicating reduced macromolecular mobility; and the positions of the Tm
peaks were not significantly affected. The total melting enthalpy ∆Hm reduced with
time, which was reflected by the smaller area of the melting peaks, showing the reduced
crystallinity after reactive blending. At 250 ◦C, the Tg of both PLA and PBF shifted
toward each other (Figure 10b), cold crystallization was suppressed significantly, the Tm
values shifted to lower temperatures and the two distinct melting peaks merged into one
((Figure S9c). The reduction in the Tm could be a result of less perfected crystallites due to
reduced chain mobility as transesterification reactions take place. TGA measurements of
the PBF PLA blend did not show any significant mass loss up to 300 ◦C (Figure S8).
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Figure 10. Study of reactive blending with DSC: derivative heat flow and change in the Tg

of the (a,b) PBF PLA, (c,d) PBF-PBAd 75 25 PLA, (e,f) PBF-PBAd 50 50 PLA and (g,h) PBF-
PBAd 25 75 PLA blends.



Polymers 2022, 14, 4725 19 of 23

The change in the Tg of the blend PBF-PBAd 75 25 PLA during the reactive blending
is shown in Figure 10c,d. At 220 ◦C, the two Tg values approached each other up to 20 min,
and after that, their changes remained insignificant. Signs of degradation started showing
up on the DSC curves after 40 min of reactive blending as a small exothermic decline of the
baseline (data not shown). The Tm and the Tcc were reduced with blending time, and the
extent of cold crystallization remained similar. At 250 ◦C, reactive blending seemed to be
efficient again until 20 min, with reduced ∆Tg and Tm values, as well as suppressed cold
crystallization, but thermal degradation occurred for prolonged times. Indeed, the TGA
curves (Figure S8) showed that the blend PBF-PBAd 75 25 PLA lost 1.5% at 220 ◦C and ~5%
of its initial mass at 250 ◦C.

The PBF-PBAd 50 50 PLA blend was thermally stable up to 275 ◦C (Figure S8); there-
fore, extensive degradation was not expected to occur during reactive blending. At 220 ◦C
and with 40 min of reactive blending, the Tg of PLA reduced by 9.2 ◦C, and the Tg of
the dispersed phase increased by 7 ◦C (Figure 10e). Based on the shift of the Tg values,
transesterification reactions might have occurred for the first 30 min. After that, the changes
in both Tg were subtle. The Tcc and Tm of PLA shifted to lower temperatures with time,
but the overall crystallinity was sustained after reactive blending. As the Tcc of PLA be-
comes smaller, the Tm splits into two peaks because PLA crystallizes into both α and α’
form crystals when the Tcc decreases [57]. Despite the good thermal stability of the blend
PBF-PBAd 50 50 PLA, thermal degradation was detected using DSC after the reactive
blending at 250 ◦C for times ≥20 min. After 20 min, the shift in the Tg values (Figure 10f)
became less pronounced, marking the competition between potential transesterification
and degradation reactions. The Tcc increased and crystallization of PLA was suppressed,
which are additional indications that transesterification reactions might have occurred
during the reactive blending for 10 and 20 min at 250 ◦C.

The blend PBF-PBAd 25 75 PLA was thermally stable at 220 ◦C in TGA and started
losing mass right after 250 ◦C (Figure S8). During reactive blending at 220 ◦C (Figure 10g),
the Tg of the blend shifted toward each other and, like the rest of the blends, the shift was
more intense during the first 20 min. The Tcc increased and the extent of the crystallization
remained unaffected. At 250 ◦C (Figure 10h), degradation had occurred already during
the first 10 min; therefore, reactive blending of the blend PBF-PBAd 25 75 PLA was not
possible at this temperature.

The largest shift in Tg values after 20 min of reactive blending occurred for the blend
PBF-PBAd 50 50 PLA, both at 220 ◦C and 250 ◦C. Thus, reactive blending had the most
prominent effect on the improvement of the compatibility of this specific blend. This
observation was in line with the observed smaller domain size of PBF-PBAd 50 50 PLA,
which was correlated to the smaller viscosity of the dispersed phase PBF-PBAd 50 50.

To further investigate the effect of reactive blending on the chemical structure of the
blends, NMR spectra were recorded. Indicative NMR spectra of the PBF-PBAd 75-25 PLA
blends obtained after 20 min at 220 ◦C and 250 ◦C are displayed in Figure 11, while the 1H
NMR spectra of the other blends are presented in Figure S13. Resonance signals attributed
to PLA were observed at 5.19 ppm (OCH) and 1.59 ppm (CH3), in addition to the PBF-PBAd
copolymer peaks (vide supra). New peaks indicative of the formation of bonds between
PLA and PBF-PBAd copolymers could not be observed. Nevertheless, the −CH2OH end
groups of PBF-PBAd copolymers decreased during the blending, strongly suggesting
some transesterification reactions occurred with PLA. Furthermore, this decrease was
proportional to the temperature, confirming a more effective blending at 250 ◦C. The blends
composition was calculated using the integrals of the peaks at 5.19 ppm and 4.43 ppm
for PBF, or 4.14–4.49 and 4.38–4.43 ppm for PBF-PBAd copolymers and was found in
accordance with the feed ratio.
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4. Conclusions

PLA/PBF and PLA/PBF-co-PBAd blends with 70 wt% PLA were prepared using
melt blending and their physicochemical properties were evaluated. The blends were
immiscible (confirmed using SEM and DSC) and the domain size had an increasing trend
with increasing PBAd content, except for the blend PBF-PBAd 50 50 PLA, which had the
smallest domain size due to the smaller intrinsic viscosity of the copolymer PBF-PBAd
50 50. During the melt blending, some transesterification reactions might have occurred,
as detected in the FTIR spectra. In all blends, the PLA matrix was able to crystallize
during annealing. Nanomechanical characterization revealed that the elastic modulus,
stress at break and hardness of the PLA reduced after the addition of the dispersed phases.
FEA allowed for the generation of stress–strain curves that showed a good correlation
between the measured nanoindentation tests and the computational data and confirmed
the improvement in the case of the presence of PLA. Soil degradation was studied using
mass loss quantification and surface observation with microscopy. The blends showed a
small but detectable mass loss of the blends, which was accompanied by contaminated
surfaces and microscopic holes, among other defects. Finally, reactive blending was found
to be a possible compatibilizer-free approach to improve blend miscibility since it reduced
the ∆Tg of the blend’s components.

Supplementary Materials: The following supporting information can be downloaded from https:
//www.mdpi.com/article/10.3390/polym14214725/s1. Figure S1: Average daily temperature in
Thessaloniki, Greece, during the soil degradation testing. Figure S2: NMR spectra of the synthesized
copolymers. (a) 1H NMR, (b) 13C NMR, (c) 1H NMR zoom in the 1.5–4.5 ppm region and (d) numbered
structures of PBF-PBAd copolymers. The peaks with the asterisk are assigned to the deuterated
solvent (CDCl3 and TFA-d1). Figure S3: Possible triads of PBF-PBAd copolymers. Figure S4: DSC
scans of the homopolymers and copolymers during (a) 1st heating with a rate of 20 ◦C/min, (b) 2nd
heating with a rate of 20 ◦C/min, (c) cooling with a rate of 10 ◦C/min and (d) heating after quenching
with a rate of 20 ◦C/min. Figure S5: Thermal characteristics of the homopolymers PBF, PBAd
and their copolymers. Figure S6: XRD patterns of PBF, PBAd and their copolymers. Figure S7:
Load–depth nanoindentation curves of the PBF, PLA, PBF-PBAd and PBF-PBAd PLA specimens,
along with the curve-fitted FEA response. Figure S8: (a) TGA and (b) DTG curves of the PLA-based
blends. Figure S9: Study of reactive blending with DSC: heating curves after different times, with
a zoomed-in view of the Tg region of PBF PLA at 220 ◦C (a,b) and (c,d) 250 ◦C. Figure S10: Study
of reactive blending with DSC: heating curves after different times, with a zoomed-in view of the
Tg region of PBF-PBAd 75 25 PLA at 220 ◦C (a,b) and (c,d) 250 ◦C. Figure S11: Study of reactive
blending with DSC: heating curves after different times, with a zoomed-in view of the Tg region of
PBF-PBAd 50 50 PLA at 220 ◦C (a,b) and (c,d) 250 ◦C. Figure S12: Study of reactive blending with
DSC: heating curves after different times, with a zoomed-in view of the Tg region of PBF-PBAd
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25 75 PLA at 220 ◦C (a,b) and (c,d) 250 ◦C. Figure S13: 1H NMR spectra of (a) PBF PLA, (b) PBF-PBAd
50-50 PLA, (c) PBF-PBAd 25-75 PLA blends, at 220 ◦C and 250 ◦C.
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