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Abstract: Due to the growing demand for versatile hybrid materials that can withstand harsh condi-
tions (below −40 ◦C), fluorosilicone copolymers are becoming promising materials that can overcome
the limited operating temperature of conventional rubber. In order to synthesize a fluorosilicone
copolymer, a potent initiator capable of simultaneously initiating various siloxane monomers in
anionic ring-opening polymerization (AROP) is required. In this study, tetramethyl ammonium
silanolate (TMAS), a quaternary ammonium (QA) anion, was employed as an initiator for AROP,
thereby fluoro-methyl-vinyl-silicone (FVMQ) and fluoro-hydrido-methyl-silicone (FHMQ) were
successfully synthesized under optimized conditions. FT-IR, NMR, and GPC analyses confirmed that
the chain length and functional group content of FVMQ and FHMQ are controlled by changing the
ratio of the components. Moreover, fluorine-involved liquid silicone rubber (F-LSR) was prepared
with FVMQ as the main chain and FHMQ as a crosslinker. The tensile strength, elongation, and
hardness of each F-LSR sample were measured. Finally, it was confirmed through TGA, DSC, TR-test,
and embrittlement testing that elastic retention at low temperatures improved even though the heat
resistance slightly decreased as the trifluoropropyl group increased in F-LSR. We anticipate that the
optimization of fluorosilicone synthesis initiated by QA and the comprehensive characterization of
F-LSRs with different fluorine content and chain lengths will be pivotal to academia and industry.

Keywords: fluorosilicone; anionic-ring-opening-polymerization; liquid silicone rubber; cold resis-
tance

1. Introduction

The spotlight on organic–inorganic hybrid materials in modern industry and academia
is based on their characteristics [1]. Silicone rubber, a representative hybrid material, has
special features originating from its unique molecular structure [2]. Silicone rubber, with
the general formula (R2SiO)n, is composed of a robust inorganic backbone and organic
functional groups with various properties. Polydimethylsiloxane (PDMS), which contains
a large number of methyl groups, is widely used in various fields owing to its superior
flexibility, heat resistance, cold resistance, biocompatibility, and air permeability, compared
with conventional polymers [2,3]. The growing and exact demand for realizing the stable
operation of instruments in the space, defense, and automobile industries require silicone
rubber to withstand harsher conditions than the existing PDMS. In order to meet these
goals, silicone polymers have been diversely functionalized, and fluorosilicone is one of
the most reliable candidates.

Fluorosilicone, which contains siloxane segments and fluorinated groups, has sub-
stantially different properties than PDMS owing to the presence of fluoroalkyl groups [4].
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Among fluorosilicones, the most widely studied material is poly[(3,3,3-trifluoropropyl)
methylsiloxane] (PTFPMS). PTFPMS has various properties, such as waterproofing, re-
sistance to oil, fuel, and solvents, low-temperature resistance, and excellent film-forming
properties derived from the trifluoropropyl groups and siloxane backbone [5–10]. This mul-
tifunctional advantage of PTFPMS can be employed as a protective coating, antifoaming
agent, eye-curing agent, and adhesive. Furthermore, fluorosilicone elastomers are widely
used as sealing materials for gasoline, fuel, and aircraft because of their ability to seal at low
temperatures and reduce the possibility of fuel penetration. However, PTFPMS has several
drawbacks regarding high-temperature stability and mechanical properties compared to
conventional PDMS because the trifluoropropyl groups in PTFPMS are more susceptible
to homolytic scission at high temperatures [11]. In order to overcome these limitations of
fluorosilicone, it is essential to properly copolymerize it with a siloxane that has a methyl
or vinyl group when synthesizing fluorosilicone [6].

In general, fluorosilicone is synthesized through the ring-opening polymerization
(ROP) of 1,3,5-trimethyl-1,3,5-tris(3,3,3-trifluoropropyl)cyclotrisiloxane (F-D3). Compared
to the hydrolysis-condensation of fluorosilanes, synthesizing fluorosilicone through ROP
has advantages, such as facile reactions, inexpensive raw materials, and a high molecular
weight [12]. The mechanism of ROP consists of the Si–O bond of cyclosiloxane being cleaved
by an anion or a cation, which occurs because of the ring strain of the Si–O bond of cyclosilox-
ane resulting from the great electronegative difference between Si and O [4]. The reaction can
be initiated by alkaline or acid substances, which are referred to as anionic ring-opening
polymerization (AROP) or cationic ring-opening polymerization (CROP), respectively. In
particular, AROP is the most famous method for synthesizing fluorosilicone because of the
ease of controlling its viscosity and the clarity of its mechanism [13]. In the AROP process,
the initiator is a crucial factor in determining the reaction rate. The polymerization rate,
yield, and molecular weight of the products can be controlled depending on the type and
amount of initiator. The most widely used initiator for fluorosilicone synthesis is potassium
hydroxide [5,14–16]; additionally, sodium hydroxide [17,18] and lithium hydroxide [19]
have also been employed. Moreover, the quaternary ammonium base (QA), compared to
conventional bases, is the major initiator.

QA is a very useful initiator for fluorosilicone synthesis, reducing the reaction temper-
ature and number of processes. First, the reactivity of QA, except ammonium hydroxide,
is exceptionally high because of the bulky size of the counterion [20–22]. Tetramethyl am-
monium hydroxide (TMAH), a representative material of QA with the molecular formula
N(CH3)4

+ OH−, can initiate AROP with F-D3 at 25 ◦C [4]. When compared with other
alkaline initiators (KOH: 70 ◦C, NaOH: 90 ◦C, and LiOH: 120 ◦C), AROP that uses TMAH
can react at lower temperatures [4,5,23]. Additionally, diverse monomers with different
reactivities must react simultaneously to form silicone copolymers. Therefore, when react-
ing various cyclosiloxane monomers, a highly reactive initiator is required to readily reach
reaction equilibrium. Second, the reaction could be quickly terminated by a simple neutral-
ization process. In most AROPs of cyclosiloxane, catalyst neutralization is significant for
the success of the overall process, as basic catalyst residues lead to polymer degradation [4].
In general, after AROP, additional neutralization using substances such as silyl phosphate,
hydrochloric acid, and CO2 is required, whereas, in the case of QA, counterions can be
simply removed by heating above 130 ◦C [15,24]. Many studies have been conducted on
silicone synthesis using QA [25,26], but few studies have comprehensively evaluated the
factors influencing the fluorosilicone copolymerization process with various monomers
and their effect on the properties of synthetic products. Since the reaction rates of F-D3 and
D4 are different when producing fluorosilicone, it is necessary to evaluate the effect of the
reaction rates on the reaction and optimize the reaction conditions when using QA as an
initiator. In addition, it is required to evaluate the influence of the molecular length and
fluorine content of the synthesized fluorosilicone on the mechanical and thermal properties
of the synthesized fluorosilicone.
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In this study, we synthesized fluoro-vinyl-methyl-silicone (FVMQ) as the main chain
of fluorosilicone rubber and fluoro-hydride-methyl-silicone (FHMQ) as a crosslinker of
fluorosilicone rubber, using TMAS as the initiator. In addition, liquid-fluorosilicone rubber
(F-LSR) with various viscosities and fluorine content was prepared by hot press molding by
adding silica as a filler. Finally, the thermal and mechanical properties of the synthesized F-
LSRs with different molecular weights and fluorine content were investigated. In addition
to illustrating a reliable method of producing F-LSR by considering the reaction conditions,
fluorine content, and molecular weight, we believe that this work will help researchers to
understand the thermal and mechanical properties of F-LSR.

2. Materials and Methods
2.1. Materials

All chemicals and solvents were commercially available and used without further purifi-
cation. TMAH (25% in water) and methanol were purchased from Alfa Aesar (Haverhill, MA,
USA). Octamethylcyclotetrasiloxane (D4, >99%), tetramethyltetravinylcyclotetrasiloxane
(Vi-D4, >99%), tetramethylcyclotetrasiloxane (H-D4, >99%), hexamethyldisiloxane (MM,
>99%), and divinyltetramethyldisiloxane (ViVi, >99%) were purchased from Dami Polychem
(Iksan, Republic of Korea). 1,3,5-trimethyl-1,3,5-tris(3,3,3-trifluoropropyl)cyclotrisiloxane (F-
D3, >99%) was purchased from HRS Corporation (Seoul, Republic of Korea). Fumed silica
was purchased from Grace Continental Korea (Bucheon, Republic of Korea) to prepare the
liquid silicone.

2.2. Synthesis of TMAS

TMAS was synthesized by the reaction of TMAH (0.3 mol) and D4 (0.3 mol) in a 500 mL
four-neck flask equipped with a mechanical stirrer. The reactant was stirred at 200 rpm
under an argon atmosphere at 80 ◦C for 48 h. The product was obtained as a well-dissolved
solution with a 90% yield (Figure S1).

2.3. Synthesis of FVMQ

All FVMQs were synthesized in a 1 L four-neck flask with a mechanical stirrer and
reflux condenser. Before initiating polymerization, D4, F-D3, and Vi-D4 were charged into a
flask under an argon atmosphere at 90 ◦C for 1 h to maintain the initiating temperature.
Thereafter, the initiator TMAS and end-blocker ViVi were added to the solution, and the
solution was stirred at 300 rpm under an argon atmosphere for 0.5–5 h. After the reaction,
the product was heated to 150 ◦C and maintained for 24 h under vacuum conditions
to remove the unreacted reactant and initiator. Finally, all products were purified with
methanol to eliminate the cyclic monomers. The purified FVMQs were transparent liquids
with high viscosities, with yields of 50–95% (Figure S1).

2.4. Synthesis of FHMQ

All FHMQs were synthesized in a 1 L four-neck flask with a mechanical stirrer and
reflux condenser. First, D4 and F-D3 were charged into a flask under an argon atmosphere
at 90 ◦C for 1 h to maintain the initiating temperature. The reaction was initiated by the
addition of TMAS into the reactor at 300 rpm and 90 ◦C. After initiating the reaction, a
certain amount of H-D4 was added dropwise to this solution within 0.5 h under vigorous
stirring using a 250 mL dropping funnel. Thereafter, the end-blocker of MM was added to
the reactor, and the mixture was stirred at 90 ◦C for 1–4 h. After the reaction, the products
were heated to 150 ◦C for 24 h under vacuum conditions to remove unreacted reactant
and initiator. Finally, all products were purified with methanol to eliminate the cyclic
monomers. The purified FHMQs were transparent liquids with a lower viscosity than
FVMQ, giving yields of 75–83% (Figure S1).
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2.5. Preparation of F-LSR

To prepare the F-LSR, the synthesized product was divided using a two-part kit and
mixed. Kit A was composed of 100 weight parts of FVMQ, 10 weight parts of fumed
silica, and 0.1 weight parts of Karstadt’s. Kit B was composed of 100 weight parts of FVMQ,
10 weight parts of fumed silica, and 10 weight parts of FHMQ. Each kit was placed in a
vacuum oven at 100 ◦C for 2 h to remove residual moisture and air bubbles from the mixture.
Subsequently, the exact amounts of kit A and kit B were mixed using a hand-mixer at
300 rpm, and the mixture was directly injected into the molding cavity for hot-press
molding. All F-LSRs were compression molded at 160 ◦C for 5 min and post-cured at
200 ◦C for 5 h in an oven (Figure S1).

2.6. Characterization

Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) spectra
were obtained using a Spectrum 2 spectrometer (PerkinElmer, Waltham, MA, USA) with a
resolution of 1 cm−1 by acquiring 16 scans. The analysis was performed within a frequency
range of 4000–400 cm−1.

1H-NMR at 400 MHz (Bruker Advance III spectrometer (Bruker, Karlsruhe, Germany))
and 29Si-NMR at 100 MHz (Avance III-500 (Bruker, Karlsruhe, Germany)) were performed
to elucidate the detailed chemical structure and calculate the ratio of each functional group
in the fluorosilicone. All samples were prepared in 0.6 mL of CDCl3, and the NMR spectra
were recorded.

Viscosity was measured using the DV1 viscometer (Brookfield Engineering, Middle-
boro, MA, USA). All samples were measured in equal volumes of 300 mL at 25 ◦C. The
spindle type and rotation speed were adjusted such that the torque value was between 50
and 60% when measuring the viscosity of all samples.

The weight-average molecular weight and dispersity of FVMQ were measured by gel
permeation chromatography (GPC) using an isocratic high-pressure pump (S9430 (Schambeck
SFD, Bad Honnef, Germany)) and a refractive index detector (S2020 (Schambeck SFD, Bad
Honnef, Germany)). A sample of 50 mg was dissolved in the mobile phase (tetrahydrofuran),
and the toluene solution was allowed to flow at a rate of 1 mL/min at 40 ◦C.

Tensile tests of the F-LSRs were carried out according to the ASTM D-412 method using
a universal testing machine. All test specimens were dumbbell-type 1 at room temperature
with a crosshead speed of 500 mm/min. The hardness of the F-LSR was analyzed according to
ASTM D2240-15el using an ASKER Durometer type A (KOBUNSHI KEIKI CO, Kyoto, Japan).

Thermogravimetric analysis (TGA) was conducted using TGA 4000 (PerkinElmer,
Waltham, MA, USA), in which the samples were heated from 40 to 750 ◦C at a heating rate
of 10 ◦C/min under a nitrogen atmosphere. The weight loss rate curves of all samples were
obtained by differentiating the TGA thermograms.

Differential scanning calorimetry (DSC, DSC 8000 (Perkin Elmer, Waltham, MA, USA))
was performed to investigate the thermal properties at low temperatures. DSC measure-
ments of all samples using 5–10 mg was performed from −130 to 30 ◦C at heating and
cooling rates of 10 ◦C/min.

The low-temperature properties of F-LSR were analyzed using combined low-temperature
testers (ET05, Elastocon, Springfield, IL, USA). Temperature-retraction test (TR-test) of
F-LSR was conducted in accordance with the ASTM D1329-16 standard, and the brittleness
temperature of F-LSR was obtained by a test method in accordance with ASTM D746-20
(Figure S2).

3. Results and Discussion
3.1. Synthesis of TMAS

TMAS was prepared using TMAH and D4 prior to the synthesis of FVMQ and FVMQ.
TMAH shows strong initiating performance in the synthesis of silicone with a solvent.
However, because this reaction was a bulk polymerization without a solvent, the initiating
performance of TMAH might be decreased because of the immiscibility of TMAH and
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the siloxane monomer. Therefore, the modification of TMAH to TMAS is required. The
differences in the solubility of the initiator before and after the reaction are shown in
Figure 1. Before the reaction, TMAH and D4 were not dissolved with each other, but it
was confirmed that the TMAS after the reaction became a clear single phase. NMR data
confirmed that the peaks of Si–CH3, N–CH3, and OH at 0, 3, and 5.5 ppm, respectively,
coincided with the theoretical value.
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Figure 1. Synthetic pathways and characterization of functional groups from 1H-NMR spectrum
of TMAS.

3.2. Synthesis of FVMQ

FVMQ was prepared by AROP using TMAS as the initiator; the synthetic procedure is
illustrated in Figure 2. The D4, F-D3, and Vi-D4 monomers were used as precursors for the
addition of the methyl, trifluoropropyl, and vinyl groups, respectively, in the chain. Finally,
an end-blocker for ViVi was added to limit the length of the polymer chain and to determine
the functional groups at the end of the chain. All the feed ratios of the synthesized FVMQ
are shown in Table 1.
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Table 1. Compositions of reactants for the preparation of FVMQs.

Sample

Recipe

Variable
Monomer Ratio

(mol%) Initiator
(wt%)

Time
(h)D4 F-D3 Vi-D4 ViVi

FVMQ-100-f5 49 49 2 1

0.3 5
Viscosity &

molecular weight

FVMQ-200-f5 98 98 4 1
FVMQ-300-f5 147 147 6 1
FVMQ-400-f5 196 196 8 1
FVMQ-500-f5 245 245 10 1
FVMQ-600-f5 294 294 12 1

FVMQ-400-f0 392 0 8 1

0.3 5 MF-block content

FVMQ-400-f2 313.6 78.4 8 1
FVMQ-400-f4 235.2 156.8 8 1
FVMQ-400-f5 196 196 8 1
FVMQ-400-f6 156.8 235.2 8 1
FVMQ-400-f8 78.4 313.6 8 1

FVMQ-400-f10 392 8 1

3.2.1. Optimizing the Amounts of Initiator

Before preparing FVMQ, which is the main chain of F-LSR, the reaction conditions
were optimized because the properties of the product could be significantly affected by the
reaction conditions (Table S1). First, the reaction was carried out by varying the reaction
time from 0.5 to 4 h, and the viscosity was measured (Figure 3). The viscosity of the product
was 5150 cP at a reaction time of 0.5 h, and the viscosity increased as the reaction time
increased to 3 h. The reason for the increase in viscosity over time is that FVMQ did not
reach reaction equilibrium because the polymerization rate of D4 was significantly lower
than that of F-D3 [27,28]. The reaction time reached equilibrium after 3 h, and the viscosity
was fixed at approximately 7500 cP. Secondly, FVMQ was synthesized by changing the
amount of initiator under the same reaction conditions. When the ratio of F-D3:D4 was 7:3,
and the reaction time was 3 h, the viscosity of the product increased to 0.3 wt% of TMAS,
and the viscosity was maintained above 0.3 wt% of TMAS. According to these results, the
following experiments were carried out for 3 h in the presence of 0.3 wt% of the initiator.
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3.2.2. Viscosity and Molecular Weight of FVMQ

The formula for the reactant ratios of the synthesized FVMQs is listed in Table 2. The
viscosity and molecular weight of the FVMQs were analyzed using a viscometer and GPC,
respectively. Figure 4 shows the correlation between the molecular weight and viscosity
of fluorosilicone. Figure 4a confirms that the greater the difference between the amounts
of monomer and end-blocker in AROP, the greater the viscosity and molecular weight.
Moreover, when the functional groups of the product are similar, the molecular weight and
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viscosity are proportional, which is consistent with the general theory [29]. In contrast, the
molecular weight decreased as the monomer ratio of F-D3 increased, compared to D4, as
shown in Figure 4b. This AROP reaction is thermodynamically controlled ROP because of
the strong QA derived from TMAS [12]. In the thermodynamic reaction, the equilibrium of
F-D3 between the polymer and cyclosiloxane is biased towards cyclosiloxane. Therefore,
the chain length of FVMQ with a higher ratio of trifluoropropyl groups becomes shorter
and increases the occurrence of the unexpected side reactions, such as backbiting [15,17,22].
Meanwhile, it was confirmed that viscosity increased slightly and then decreased as the
number of trifluoropropyl groups increased. Although the molecular weight decreased
slightly from FVMQ-400-f0 to FVMQ-400-f5, the increase in the trifluoropropyl group in
the chain contributed to the higher viscosity. The viscosity of PTFPMS is 10 times that of
PDMS with the same molecular weight [4]. However, in the FVMQ-400-f6 to FVMQ-400-f10
samples, the molecular weight is small enough to offset the effect of increasing the viscosity
by the trifluoropropyl group. Finally, it was confirmed that the viscosity of FVMQ-400-f10
decreased to 670 cP.

Table 2. Viscosities and molecular weights of FVMQs obtained through the viscometer and GPC
analysis.

Sample Viscosity
(cP)

Mn
(g/mol)

Mw
(g/mol) Ð

FVMQ-100-f5 2,440 32,078 37,810 1.17
FVMQ-200-f5 7,568 55,102 59,278 1.08
FVMQ-300-f5 25,400 46,564 68,608 1.47
FVMQ-400-f5 59,760 55,228 72,089 1.31
FVMQ-500-f5 78,800 76,439 90,356 1.18
FVMQ-600-f5 103,400 85,592 108,909 1.27
FVMQ-400-f0 47,120 76,121 89,424 1.08
FVMQ-400-f2 47,040 75,614 80,934 1.07
FVMQ-400-f4 54,000 57,738 74,153 1.28
FVMQ-400-f5 59,760 55,228 72,089 1.31
FVMQ-400-f6 33,700 48,098 70,180 1.50
FVMQ-400-f8 9,840 32,307 48,904 1.51
FVMQ-400-f10 670 25,758 31,009 1.20
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Figure 4. Correlation between the viscosity and molecular weight of FVMQs with (a) different
chain-lengths and (b) different fluorine ratios.

3.2.3. Characterization of the Functional Groups of FVMQ

FT-IR analysis was performed to investigate the functional groups of the FVMQs.
Figure 5a,b shows the FT-IR spectra of the FVMQs with different viscosities and ratios
of the trifluoropropyl groups. The strong absorption band from 1130 to 1000 cm−1 in
all spectra was attributed to the –Si–O–Si– asymmetric stretching vibration of the FVMQ
backbone [30]. In addition, the absorption band of the–CH bond in –CH3 at 2960 cm−1 was
observed in all spectra of the FVMQs. As shown in Figure 5a, the locations of all absorption
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bands and peak intensities are not different because the feeding ratio of all samples shown
in Figure 5a is identical, except for ViVi [30].
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As shown in Figure 5b, when moving from FVMQ-400-f0 to FVMQ-400-f10, the peak
ratio of –CF3 (1210 cm−1) to Si–CH3 (1226 cm−1) increased. In other words, as the triflu-
oropropyl group content increased, the peak intensity at 1226 cm−1 decreased, and the
peak at 1210 cm−1 gradually appeared. The peaks at 1315 and 1128 cm−1, corresponding
to the −CH2−CH2− and C−H bonds of −CH2−, respectively, also increased with the
number of trifluoropropyl groups [4]. Meanwhile, the absorption band in the region of
870–750 cm−1 originating from −CH3 rocking and Si−C stretching changed from a single
peak at 2950 cm−1 to split peaks between 800 and 775 cm−1 when moving from FVMQ-400-
f0 to FVMQ-400-f10 [5]. However, the absorption band derived from the vinyl group was
not identified in any of the spectra because of the small number of vinyl groups compared
with other functional groups.

1H- and 29Si-NMR spectra were obtained to further investigate the functional groups
in FVMQ with different feeding ratios (FVMQ-400-f0 to FVMQ-400-f10) and determine the
specific structures of FVMQ. In Figure 5c, a strong peak at approximately 0 ppm is observed
for all the FVMQs, which is characteristic of Si–CH3 [31]. The peak intensities increase at 0.7
and 2.1 ppm for α-hydrogen and β-hydrogen, respectively, originating from Si-CH2CH2CF3
with increasing F-D3 in the feeding ratio [31]. Meanwhile, the spectrum corresponding to
the Si–CH=CH2 group was confirmed for all samples by expanding the scale of the NMR
spectrum to approximately 6 ppm [32]. The quantitative block ratios of dimethyl (DM-
block), methyl-fluoro (MF-block), and methyl-vinyl (MV-block) were calculated using the
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integrated peak areas, as shown in Table 3. The proportion of the functional groups (of the
DM-block to the MF-block) calculated using 1H-NMR was almost identical to the theoretical
proportion, where the errors were less than 2% for all FVMQs. Furthermore, the DM-block
of all FVMQs was calculated to be 2–2.5 mol%, which is sufficient for crosslinking with
FHMQ. Meanwhile, the 29Si-NMR spectra showed that the FVMQs of the copolymerization
with F-D3 and D4 were random copolymers (Figure S3) [33]. Under a TMAS catalysis, the
AROP of FVMQ is so fast that the reaction equilibrium is quickly reached, which means
that chain distribution occurs frequently.

Table 3. Theoretical functional groups molar ratio and empirical molar ratio in FVMQs acquired
from 1H-NMR analysis.

Sample
Theoretical Block Ratio Empirical Block Ratio

DM-Block MF-Block MV-Block DM-Block MF-Block MV-Block

FVMQ-100-f5 55.52 41.64 2.83 55.25 42.12 2.63
FVMQ-200-f5 55.68 41.76 2.56 55.84 41.62 2.54
FVMQ-300-f5 55.73 41.80 2.46 55.78 41.70 2.52
FVMQ-400-f5 55.76 41.82 2.42 55.78 41.80 2.42
FVMQ-500-f5 55.78 41.83 2.39 55.36 42.32 2.35
FVMQ-600-f5 55.79 41.84 2.37 55.85 41.9 2.25
FVMQ-400-f0 97.88 2.12 97.93 2.07
FVMQ-400-f2 82.33 15.44 2.23 82.75 15.06 2.19
FVMQ-400-f4 65.1 32.55 2.35 64.25 33.32 2.43
FVMQ-400-f5 55.76 41.82 2.42 55.78 41.7 2.52
FVMQ-400-f6 45.89 51.62 2.49 45.57 51.81 2.62
FVMQ-400-f8 24.34 73.02 2.64 24.89 72.38 2.73

FVMQ-400-f10 97.19 2.81 97.21 2.79

3.3. Synthesis and Characterization of FHMQ

FHMQ was synthesized using a procedure similar to that used for FVMQ synthesis,
except for subtle differences. The monomers D4 and F-D3 were used as precursors for
introducing the methyl and trifluoropropyl groups, respectively, and H-D4 was employed
to insert the hydrido groups instead of Vi-D4. In FHMQ, the vinyl group must be avoided
because of the possibility of self-crosslinking. Therefore, MM was used instead of Vi as an
end-blocker in the FHMQ synthesis. First, the reaction was carried out using F-D3 and D4.
H-D4 and an end-blocker were then added dropwise to the reactor over 30 min using a
dropping funnel. As the reactivity of H-D4 was too high under the above conditions, the
amount of TMAS was reduced from 0.3 to 0.1 wt% for decreasing reactivity. All FHMQs
were synthesized via AROP with different reaction periods ranging from 1.5 to 5.5 h, named
FHMQ-1.5h to FHMQ-5.5h, respectively (Table S2).

All the characterizations of the FHMQs are shown in Figure 6. Apart from the charac-
teristic absorption bands of the trifluoropropyl and methyl groups observed in silicone, the
absorption band at 2245 cm−1 for the Si-H bond was also detected [34]. Furthermore, the
characteristic 1H-NMR peak of Si–H at 4.7 ppm was clearly observed, as shown in Figure 6b.
The correlation between the viscosity and methyl-hydrido block (MH-block) content over
the reaction time is shown in Figure 6c. First, the viscosity of the FHMQ-1.5h sample was
14,280 cP, which is much higher than expected. It was assumed that the end-blocker of MM
could not be entirely reacted, unlike HD4, because the reactivity of linear siloxane was lower
than that of cyclosiloxane owing to the low ring strain [35]. Therefore, the long molecular
chain of FHMQ and high viscosity at a reaction time of 1.5 h were caused by insufficient
chain transfer. Conversely, the viscosities of the rest of the FHMQ samples, with a reaction
time of 2.5 to 5.5 h, were below 1000 cP, as expected. Meanwhile, the MH-block content
calculated from the peak area in the NMR spectrum decreased with increasing reaction
time. This is because when the reaction time is extended, a small amount of water added to
the initiator reacts with Si–H to form a Si–OH bond. The modified Si–OH groups condense
to form Si–O–Si bonds, resulting in an unexpected increase in the chain length [36,37]. This
is the same reason why the viscosity of the samples FHMQ-2.5h to FHMQ-5.5h gradually
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increased. In this study, FHMQ was targeted with an MH block of more than 10% and a
viscosity of less than 1000 cP in consideration of processability. Consequently, FHMQ-2.5h
was selected as the crosslinker for the preparation of F-LSR.
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3.4. Preparation and Characterization of F-LSR

F-LSR was prepared using synthesized FVMQ and FHMQ. A small amount of silica was
added to enhance the mechanical properties. Most of the F-LSRs were prepared successfully,
but we failed to cure FVMQ-400-f10 under the same conditions, consequently failing to
acquire a satisfactory F-LSR-400-f10 sample. The F-LSR-400-f10 sample had many cracks in
the sheet, which was too weak to be measured for its mechanical properties. However, the
FT-IR spectra of the remaining successfully manufactured F-LSRs were almost identical to
those of the FVMQ. In particular, it was confirmed that curing was complete as the Si–H
absorption band at 2247 cm−1 disappeared (Figure S4).

3.4.1. The Mechanical Properties of F-LSR

The mechanical properties, such as tensile strength, elongation at break, and hardness,
were identified using UTM and a durometer. Figures 7 and S5 and Table 4 show the mechanical
properties of all the F-LSRs with a few specific trends. Unfortunately, there are numerous
factors affecting the mechanical properties of silicone rubber, such as the crosslinking density,
molecular weight, chain length of the main chain, type and amount of functional groups,
and silica interaction [38–43]. Although it is difficult to directly compare the mechanical
properties of the F-LSRs in this study, several important points influencing the mechanical
properties were determined from the experimental results. First, the hardness of the F-LSR
with different functional groups increased gradually as the MF block increased (Figure 7a).
This phenomenon is attributed to the shorter chain length that occurs when the MF block
increases in the molecular chain owing to backbiting [44,45]. In the spring model of the cured
silicone rubber, shortening the chain length in silicone can increase the tensile strength and
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hardness and decrease elongation [29]. However, the growth of the MF-block can prevent
chain entanglement owing to the high polarity of the trifluoropropyl groups, resulting in
reduced elongation and tensile strength [46]. In addition, the Si–H/Si–Vi ratio related to the
crosslinking density from F-LSR-400-f0 to F-LSR-400-f8 decreased from 0.599 to 0.454, which
can cause a decrease in the tensile strength and elongation [34]. Due to the simultaneous
occurrence of several complex effects, the hardness increased as the MF block increased, and
the tensile strength and elongation increased for F-LSR-400-f5 and then decreased rapidly.
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Table 4. Mechanical property data of F-LSRs, and information on the Si-H/Si-Vi ratios calculated
from the 1H-NMR spectrum.

Sample Tensile
Strength (MPa)

Elongation at
Break (%) Hardness Si-H/Si-Vi

F-LSR-400-f0 0.708 127 16 0.599
F-LSR-400-f2 1 143.2 17 0.566
F-LSR-400-f4 1.037 147.8 18 0.510
F-LSR-400-f5 1.27 151.8 20 0.492
F-LSR-400-f6 1.135 142 21 0.473
F-LSR-400-f8 1.024 128 23 0.454
F-LSR-100-f5 0.467 149.6 8 0.471
F-LSR-200-f5 0.83 141.6 18 0.488
F-LSR-300-f5 1.031 145 19 0.492
F-LSR-400-f5 1.27 151.8 20 0.512
F-LSR-500-f5 1.075 172.6 18 0.528
F-LSR-600-f5 0.652 201.5 13 0.551

Second, when the viscosity increases with the same ratio of the MF block, the elon-
gation generally increases, except for FLSR-100-f5 (Figure 7b). Generally, elongation with
identical amounts of functional group was directly proportional to molecular weight [47].
According to the spring model, the tensile strength decreases when the molecular chain
length increases. However, it has been reported that as the chain length increases while
the vinyl group ratio is maintained, many entanglements occur, resulting in a decrease
in Mc and an increase in the crosslinking density of silicone [48,49]. Consequently, the
hardness and tensile strength of F-LSR-100-f5 to F-LSR-600-f5 increased to an optimum
point (F-LSR-100-f5) and then decreased.

3.4.2. Heat Resistance of F-LSR

The thermal stabilities of FVMQ and F-LSR were measured using TGA at temperatures
of 50–700 ◦C and a heating rate of 10 ◦C/min under a nitrogen atmosphere (Figure 8 and
Table 5). The initial weight loss was less than 5% up to 200 ◦C, which is ascribed to small
amounts of unremoved residue [50]. In order to evaluate the thermal properties, the onset
degradation point (Td) was set as 10% of the original weight. In addition, it was designated
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as Tdmax, where the temperature with the fastest weight-loss rate is shown in Figure 8b.
The degradation point of F-LSRs declined gradually from 550 to 460 ◦C as the number
of trifluoropropyl groups increased from F-LSR-400-f0 to F-LSR-400-f8. Moreover, Tdmax
shifted toward a lower temperature upon increasing the trifluoropropyl group content in
F-LSR. Due to the increased polarity derived from the trifluoropropyl groups, the molecular
chain of fluorosilicone, with high trifluoropropyl groups, is readily depolymerized at high
temperatures to revert to cyclic siloxane [11,51]. In addition, a similar trend for the thermal
degradation of FVMQ was confirmed in the TGA and DTGA graphs, shown in Figure S6.
The TGA and DTGA curves of F-LSR with different molecular chain lengths are shown in
Figure 8c. The Td for FLSR-100-f5 to FLSR-600-f5 is at about 490 ◦C, and all Tdmax is located
in the range of 538–549 ◦C. Consequently, the thermal properties at high temperatures are
governed by the fluorine content rather than the molecular chain length.
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Table 5. Thermal properties of F-LSRs obtained from TGA, DSC, TR-test, and embrittlement testing.

Sample Td Tdmax Tg TR10 TR30 TR50 TR70 TEm

F-LSR-100-f5 475.85 542.43 −97.48 −71.5 −71.5 −71.5 −71.5 /
F-LSR-200-f5 477.54 550.35 −98.68 −71.5 −71.5 −71.5 −71.5 /
F-LSR-300-f5 471.31 536.45 −97.74 −71.5 −71.5 −71.5 −71.5 /
F-LSR-400-f5 470.56 552.68 −97.66 −71.2 −71.0 −70.9 −61.7 /
F-LSR-500-f5 468.57 537.96 −97.43 −71.1 −71.1 −70.8 −55.8 /
F-LSR-600-f5 471.46 546.74 −96.11 −70.1 −71.1 −67.1 −30.4 /
F-LSR-400-f0 491.14 561.54 −123.76 −71.5 −71.3 −67.3 −26.1 −65.76
F-LSR-400-f2 486.67 557.77 −112.86 −72.3 −71.2 −70.5 −48.9 /
F-LSR-400-f4 474.20 554.21 −103.44 −71.5 −71.3 −70.8 −58.2 /
F-LSR-400-f5 470.56 552.68 −92.16 −71.2 −71.0 −70.9 −61.7 /
F-LSR-400-f6 468.73 536.76 −98.33 −72.3 −71.1 −70.8 −62.9 /
F-LSR-400-f8 459.6 532.02 −79.01 −71.8 −71.3 −71.3 −67.8 /
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3.4.3. Thermal Properties and Elastic Retention of F-LSR at Low Temperature

DSC analysis of F-LSR and FVMQ was conducted to examine their thermal properties at
low temperatures (Figures 9 and S5). In Figure 9a, a peak representing the melting point was
found at −47 ◦C in the DSC curve of FLSR-400-F0. Melting bimodal peaks appeared at −45.7
and −34.8 ◦C in the DSC curve of A, and the crystal region caused by “cold-crystallization”
can be identified at −97.3 ◦C. A slight difference in the DSC curves of FLSR-400-f0 and
FVMQ-400-f0 was induced by a small amount of FHMQ as a crosslinker for F-LSR. The
melting points of the other F-LSRs, apart from F-LSR-400-f0, were not observed in the DSC
curves. No crystalline regions in other F-LSRs exist because the trifluoropropyl group from
F-D3 breaks the symmetry and regularity of the polysiloxane monomer [11]. In addition,
the high polarity of the trifluoropropyl group prevents the stacking of molecular chains by
repelling each other [11,47,52]. Therefore, the crystallization of F-LSR with a high fluorine
ratio is challenging because of the hindrance from the trifluoropropyl group. Interestingly,
the Tg point in DSC appeared at −112.86 ◦C when FH-block was 20%, and as the MF-block
content increased to 40, 50, and 60%, the Tg point moved to −103.44, −92.16, and −98.33 ◦C,
respectively. Finally, when the MF-block content is 80%, Tg is formed at −79.01 ◦C, which
is approximately 45 ◦C higher than that of PDMS. Moreover, if the Tg of F-LSR with 100%
MF-block is inferred from the DSC data of FVMQ-400-f100, it is likely to be formed at
around 65 ◦C, which was also confirmed in the previous literature [33]. In other words, as
the content of the trifluoropropyl group in the chain increases, it can be seen that the Tg
significantly shifts toward the higher temperature. This phenomenon is attributed to the
introduction of the trifluoropropyl group for two reasons: (1) the trifluoropropyl group
increases the rigidity of the molecular chain owing to its high polarity and steric hindrance
due to its bulky size [6], and (2) an increase in the asymmetry of the molecular chain
resulting from the trifluoropropyl and methyl groups might alter Tg [11]. In contrast, the
Tg of F-LSR with the same fluorine ratio did not change dramatically, even if the molecular
length was significantly changed. It is negligible to shift Tg because of the increasing
entanglements derived from the long molecular chain.
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The TR test was performed to confirm the elasticity retention ability of F-LSR at
low temperatures. The TR test started at −75 ◦C and ended at a temperature restored to
75% of its strained length. In addition, the temperatures at the times of recovery of 10, 30,
50, and 70% from the initial strained length were defined as TR10, TR30, TR50, and TR70,
respectively [53]. The extent of retraction of all the F-LSRs is illustrated in Figure 10. Silicone
has an excellent capacity to maintain elasticity at low temperatures because Tg and Tm are
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formed at lower temperatures compared to other carbon-based polymers owing to the Si–O
bond with a long bond length and easily changeable bond angle. Thus, the TR10 and TR30
of all F-LSRs were placed below the test start temperature of 70 ◦C. The TR50 and TR70 of
the F-LSR-400-f0 prepared with FVMQ 400-f0 (as the main chain without fluorine groups)
were confirmed at −65.1 and −28.2 ◦C, respectively. In addition, as the fluorine group in
the F-LSR increases, the TR50 and TR70 of the F-LSR are located at lower temperatures. In
other words, as the fluorine group inside the F-LSR increases, the better the elastic retention
is at low temperatures. Interestingly, although the Tg of the F-LSR with a high fluorine
ratio was higher than that of the F-LSR with a low fluorine ratio, the elastic retention
at low temperatures improved as the fluorine group increased. This indicates that the
amount of energy change at Tg is so small that it does not significantly affect the elastic
retention despite the high Tg induced by the trifluoropropyl group. Antithetically, the
high polarity of the trifluoropropyl group blocks the crystallized molecular chain, which
makes F-LSR amorphous and flexible at low temperatures [6]. The retraction curves of
the F-LSR with different chain lengths are shown in Figure 10b. For F-LSR-100-f5 to F-
LSR-300-f5, we failed to find the TR70 because all of the strained samples were recovered
below 70 ◦C, despite the presence of 50% MF-block. The TR 70 from F-LSR-400-f5 to F-LSR-
600-f5 was located at −61.7, −55.8, and −30.4 ◦C, respectively, and the low-temperature
elastic retention decreased as the molecular length increased. This result suggests that
the longer the molecule, the more entanglement between the molecular chains occurs,
which makes it easier to crystallize. As a result, it was confirmed that both the MF block
ratio and the chain length of the F-LSR significantly affect the TR test results. In the low-
temperature embrittlement test, only the F-LSR-400-f0 sample broke at −67.5 ◦C, while
the others did not break at −70 ◦C. Therefore, the embrittlement temperature could not be
determined. Because the hardness of all the specimens was insufficient to proceed with the
embrittlement test, additional tests on specimens with a higher hardness were required.
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4. Conclusions

F-LSRs with various fluorine content and chain lengths were prepared by crosslinking
FVMQ and FHMQ. In the synthesis of FVMQ as the main chain and FHMQ as a crosslinker,
a TMAS catalyst with superior initiating performance and facile neutralization was used
as an initiator to copolymerize several cyclosiloxane monomers. The synthesis of FVMQ
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was optimized using TMAS, and the FVMQs with diverse molecular weights and fluorine
content in their chains were synthesized by changing the ratio of monomers to end-blockers.

(1) All FVMQs were synthesized as random copolymers, and the ratios of the functional
groups were almost identical to their theoretical values, with errors of less than 2%
determined by 1H- and 29Si-NMR. Furthermore, GPC confirmed that the molecular
weight of the FVMQs could be controlled by changing the loading of the end-blockers.
The synthesized FHMQ was also successfully optimized to achieve an MH block
content of more than 10% and a viscosity of less than 1000 cP;

(2) The mechanical properties of all F-LSRs were confirmed: (1) the hardness of F-LSR
increased as the proportion of fluorine in the chain increased; (2) at a constant fluorine
ratio, elongation was proportional to the molecular length, and (3) the tensile strength
was the greatest in F-LSR-400-f5;

(3) In TGA, it was confirmed that the thermal stability of the synthesized F-LSR at high
temperatures decreased as the fluorine group increased. Conversely, elastic retention
and brittleness at low temperatures improved with a high ratio of fluorine groups
and long molecular chain lengths.

We expect that this study will provide an excellent guideline for preparing F-LSRs by
AROP with a QA initiator, thereby expanding the application of F-LSRs with improved
operating conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14245502/s1, Figure S1: Description of synthetic methods
of TMAS, FVMQ, FHMQ, and F-LSR; Figure S2: Testing methods of TR-test (ASTM: D1329–16)
and brittleness test at low temperature (ASTM: D746–20); Table S1. Composition of the reactants
for optimizing FVMQ synthesis; Figure S3. 29Si-NMR spectra of FVMQs: (a) FVMQ-400-f0, (b)
FVMQ-400-f5, and (c) FVMQ-400-f10; Table S2. Composition of reactants for optimizing the synthesis
of FHMQ; Figure S4. FT-IR spectra of F-LSRs: (a) F-LSR-100-f5−F-LSR-600-f5 and (b) F-LSR-400-
f0−FLSR-400-f8; Figure S5. Stress-strain curves of F-LSRs: (a) F-LSR-100-f5−F-LSR-600-f5 and (b)
F-LSR-400-f0−FLSR-400-f8; Figure S6. DSC curves of F-LSRs with (a) different fluorine ratios and (b)
different chain lengths.
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