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Abstract: Mechanistic studies of the interaction of electromagnetic (EM) fields with biomaterials
has motivated a growing need for accurate models to describe the EM behavior of biomaterials
exposed to these fields. In this paper, biodegradable bone scaffolds were fabricated using Wangi rice
starch and nano-hydroxyapatite (nHA). The effects of porosity and composition on the fabricated
scaffold were discussed via electrical impedance spectroscopy analysis. The fabricated scaffold
was subjected to an electromagnetic field within the X-band and Ku-band (microwave spectrum)
during impedance/dielectric measurement. The impedance spectra were analyzed with lumped-
element models. The impedance spectra of the scaffold can be embodied in equivalent circuit models
composed of passive components of the circuit, i.e., resistors, inductors and capacitors. It represents
the morphological, structural and chemical characteristics of the bone scaffold. The developed
models describe the impedance characteristics of plant tissue. In this study, it was found that the ε′

and ε′′ of scaffold composites exhibited up and down trends over frequencies for both X-band and
Ku-band. The circuit models presented the lowest mean percentage errors of Z′ and Z′′, i.e., 3.60%
and 13.80%, respectively.

Keywords: scaffold; rice starch; hydroxyapatite; circuit; impedance

1. Introduction

Bone scaffolds are soluble materials made up of proteins for the sake of amendment
of injured tissue. Bone scaffolds can be made of various materials, e.g., metals, composite
materials, ceramics and polymers [1,2]. Scaffold plays a similar role as the extracellular
matrix in native tissues through the aspect of their architectural, biological and mechanical
features [3]. The bone scaffold enhances the migration of resident fibroblasts and adult stem
cells to the injured area to increase the rate of proliferation to form new tissue. Scaffold
plays the role of sending stimulating signals, e.g., growth factors, to enhance the rate of
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regeneration. Increments in porosity enhance osteogenesis, but this results in a reduction in
mechanical properties of the scaffold, e.g., compressive strength [4]. A scaffold should have
an adequate porosity level to ensure efficient nutrient and metabolite transport, without
variation in the stability of the bone scaffold’s structure [5]. In addition, the biomaterial used
for the production of scaffolds should be biodegradable, whereby the rate of degradation
should match the production rate of new tissue matrix. Scaffolds should be biocompatible
with the cellular components of the host tissue [6]. In this research, a nano-hydroxyapatite
with Wangi rice starch as a biodegradable composite scaffold was chosen for the study.

Lumped-element circuit modeling is a method of using ideal electronic elements to
demonstrate real physical systems. The typical elements used are resistors, capacitors,
and inductors. Lumped-element modeling provides a good physical insight for a variety
of systems. However, the circuit’s characteristic length is much smaller than the circuit’s
operating wavelength. Lumped-element modeling can be realized at microwave frequen-
cies [7–10]. Many past studies have used this model for various applications [11–16]. At
higher frequencies, the inductive and capacitive reactance of the passive elements are
significant. High frequencies lead to high loss and spurious resonance, which may result in
inaccuracies of the prediction of the lumped-element circuit’s performance. Each reactance
is an integral part of the component, where its effect would be considered in the design of
the model. The lumped-element circuit model consists of elements which are needed for
the electrical response of a physical system. The models can be constructed analytically,
numerically and empirically.

The porosity levels of scaffolds can barely be identified and predicted without actual
experimentation, e.g., gravimetric method, mercury intrusion method and scanning elec-
tron microscopy (SEM) method. Porosity and pore dimensions can influence the dielectric
properties of the porous bone scaffold. Impedance is excellent in denoting the electrical
properties of a scaffold from the perspective of porosity, and is simple to compute on the
basis of the dielectric constant and loss factor. Impedance is the performance parameter in
this study which can be embodied in the lumped-element circuit model to demonstrate the
electrical properties of the scaffold. Lumped-element circuit modeling is advantageous,
due to its simplicity and compatibility within a wide bandwidth. Hence, lumped-element
circuit modeling is implemented for the behavior of the scaffold in the aspect of the porosity
and composition of the bone scaffold, which is mainly composed of nano-hydroxyapatite
(nHA) and rice starch. The impedance of the lumped-element model needs to be ver-
ified by comparison with measured values. The mean errors of this comparison were
determined to verify the accuracy of lumped-element models. The developed lumped-
element circuit models can be used to impersonate the scaffold composite in terms of the
impedance that is interrelated with variations in its dielectric properties, due to porosity
and structural change.

2. Materials and Methods

In this research, nHA and Wangi rice starch were used to fabricate the composite
scaffold. Composite scaffolds made of nHA have the advantages of good biocompatibility,
large specific surface area, high biological activity and stable chemical properties. Mean-
while, rice is a staple food in ASEAN countries. Wangi rice starch is ubiquitous in ASEAN
countries, especially in Malaysia. In this study, commercial native cornstarch (Cs) and
analytical-grade sodium chloride (NaCl) were used as matrix material and particle porogen
of the composite, respectively. The hydroxyapatite nanoparticles (HA, CAS: 1306-06-5)
from Sigma-Aldrich (St. Louis, MO, USA) were used as filler.

2.1. Sample Preparation

Table 1 tabulates the percentages of weight/volume (w/v%) of rice starch and nHA for
preparation of the rice starch/nHA composite scaffold. In this study, Wangi rice was used.
Withal, sodium chloride (NaCl) acts as a porogen to produce the biocomposite scaffold
with a porous structure.
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Table 1. Weight/volume percentages (w/v%) of nHA and Wangi rice starch used to fabricate the scaffold.

Composition nHA
(w/v%)

Rice Starch
Concentration (w/v%)

A 50 50
B 40 60
C 30 70

A is 50% rice starch + 50% nHA; B is 60% rice starch + 40% nHA; C is 70% rice starch + 30% nHA.

Rice starch powder was fully dissolved in distilled water. NaCl was applied to the
rice starch solution to form a rice starch/NaCl mixture at a temperature of 35 ◦C. The
mixture was stirred at 65 ◦C using a double boiling process. nHA powder was mixed with
the rice starch/NaCl mixture to prepare the rice starch/nHA solution at a temperature of
75 ◦C, and the solution was stirred to ensure uniform mixing. The concentration of rice
starch/nHA solution can be expressed in Equation (1) as follows:

Concentration =
mass of HA powder(mg)

liter of solution(L)
(1)

The rice starch/nHA composite was cast into Teflon molds, with cavity dimensions of
22.86 mm × 10.16 mm × 5 mm (WR90) and 15.8 mm × 7.9 mm × 5 mm (WR62). The cast
composites in the mold were kept in an oven at 80 ◦C for 48 h (drying process).

After the drying process, the composites detached from the mold were soaked in 25%
glutaraldehyde (GA) for 5 h (cross-linking) [17]. The immersion process in distilled water
and ethanol was then continued for 24 h and 12 h, respectively. Lastly, the composites were
dried in an oven at 65 ◦C for 48 h before measurements.

2.2. Measurement

Dielectric measurement was conducted using Agilent E5071C ENA vector network
analyzer, in conjunction with WR90 and WR62 rectangular waveguides. Calibration was
conducted using the through-reflect-line (TRL) calibration technique prior to dielectric
measurement. The casted samples in the mold were placed in a sample holder based on
the dimensions of WR90 and WR62. The sample with the sample holder was placed in
between the pair of rectangular waveguides (WR90 and WR62) for dielectric measurement.
Dimensions of the sample under testing were determined through an aperture in the
WR62 and WR90 rectangular waveguides. The WR90 waveguide operates from 8.2 GHz to
12.4 GHz (X-band); meanwhile, the WR62 waveguide operates from 12.4 GHz to 18 GHz
(Ku-band). The ε′ and ε′′ were measured to determine complex electrical impedance.

2.3. Lumped-Element Modeling

In this study, the impedance analysis of the scaffold was carried out. Equations (2) and (3)
express the magnitude and phase of complex impedance [18]:

|Z| =
√
µo/ε′

[1 + (ε
′′
ε′ )

2
]

1
4

(2)

where
µo = 4π× 10−7N/A2 (3)

For convenience, the complex impedance of the circuit is presented in rectangular
form. The real and imaginary parts of the complex impedance can be expressed as follows:

Z∗ =
∣∣Z′∣∣− j|Z′′| (4)

where
Z′
∣∣=∣∣Z∗∣∣ cos θ (5)
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and ∣∣Z′′∣∣=∣∣Z∗∣∣ sin θ (6)

Meanwhile, frequency-dependent resistance can be expressed as follows:

R(f) =

√
πfµ0
σ

(7)

where σ is conductivity.

3. Results and Discussion
3.1. Dielectric Constant and Dielectric Loss Factor of Wangi Rice Starch/nHA Scaffold with
Various Ratios at X-Band and Ku-Band

The dielectric measurements at high frequencies were conducted on the porous com-
posites, to investigate the dielectric response due to the rapid process of molecular rear-
rangements and distortions in the bone scaffold composites [19,20]. The effect of the nHA
and Wangi rice starch on interactions and the microstructural features of the porous bone
scaffold composites were studied through dielectric analysis [21–23]. At high frequencies,
the dipolar and interfacial polarization were described by the real part of complex permit-
tivity (ε′). Meanwhile, the effect of energy dissipation (polarization loss and conductivity
loss) were expressed by ε′′ [24]. As per the Maxwell–Wagner effect, the presence of complex
interfaces and dipole moments in the heterogeneous scaffold composites with rice starch
and nHA were due to the dispersion and morphology of the hydroxyapatite nanoparticles
and pores in the starch matrix [25,26]. The hydroxyapatite nanoparticles interacted with
rice starch in the porous scaffold via storage charge and charge dissipation. This led to
the polarization and the energy dissipation mechanisms of the composites [27]. The peak
of ε′ in Figure 1a corresponds to a dielectric relaxation peak of ε′′ in Figure 1b [28]. In
Figure 1a,b, it can be observed that for ε′ and ε′′, composite scaffold with compositions A
and C increased from 8 GHz to 11 GHz, and decreased when the frequency was >11 GHz.
This indicated the dispersion of homogeneity. It led to interfacial polarization and space
charge. However, scaffold composite with composition B was exempted. This may have
been due to the high homogeneity that occurred within the scaffold composite with compo-
sition B. A partially collapsed starch matrix presented in the scaffold composite. It led to
reduction in polarization mechanisms. Hence, the ε′ of scaffold composite with composi-
tion B was the lowest. The SEM images of the composite scaffold with compositions A, B
and C can be referred to [28].
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With dipole polarization when the frequency increased to 11 GHz, the increment in ε′

over frequency indicated that the effectiveness of alignment of polar functional groups in
nHA with an operating frequency of applied field increased. The functional groups in nHA
contributed to variations in ε′, especially –OH [28] and -CO3

2−. These polar functional
groups were involved in dipole polarization. During dipole polarization, these functional
groups oscillate and vibrate by exposure to a time-varying field. Meanwhile, the non-polar
functional group in nHA was -(PO4)3−. However, rice starch consists of amylose and
amylopectin, which imposed an insignificant effect on the variation in ε′. The -OH groups
in amylose for hydrogen bonding with polar molecules were reduced in amylose, due
to their coiled nature. Meanwhile, amylopectin had low polarity due to the additional
1–6 glycosidic bonds on the branch chains. It diminished hydrogen bonding potential, and
led to a low polar moment. Hence, the scaffold composite with the highest proportion of
nHA (50%) was the highest, as shown in Figures 1a and 2a. The non-uniform oscillation
of -OH, -(PO4)3

2− and -CO3
2− in nHA due to polarization may have caused collisions

and friction among molecules and functional groups. Subsequently, this phenomenon
increased ε′′. Nevertheless, ε′′ declined, as shown in Figure 1b, when frequencies were
>11 GHz. The stagnant polarization that led to the reduction in ε′ presented a decrement in
ε′′. This indicates that the process of friction and collision during oscillation or vibration
was retarded. Although the variation in ε′ over the percentage of HA is an anomaly, as
shown in Figure 1a, ε′′ increased over the percentage of HA within frequencies < 11 GHz.
When frequencies were >11 GHz, ε′ of scaffold composite with 60% rice starch + 40% HA
at X-band exceeded those of 50% rice starch + 50% HA and 70% rice starch + 30% HA.
Meanwhile, ε′ of scaffold composite with 60% rice starch + 40% HA at X-band was lower
than those of 50% rice starch + 50% HA and 70% rice starch + 30% HA. This inconsistency
may be attributed to the transition of the polarization mechanism.
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The ε′ of scaffold composite with 50% rice starch + 50% HA was the highest at 11 GHz.
At 11 GHz, resonance occurred due to the consistency between the applied field and
relaxation frequency of the scaffold composite with the highest proportion of HA. It had
the most effective absorption capacity and polarization by exposure to the oscillating field.

The ε′ at Ku-band, as shown in Figure 2a, was relatively lower than that for the X-band.
High frequencies at Ku-band led to a high discrepancy between the operating frequency
of the applied field and the relaxation frequency of the bone scaffold. As a result, the
polarization mechanism was stagnant. This response caused a low ε′′ at Ku-band, as shown
in Figure 2b. The vertex of ε′′ can be noticed over frequency in both Ku-band and X-band.
It implies the transition of polarization mechanisms.
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Likewise, a similar anomaly can be noticed in Figure 2a,b. The ε′ and ε′′ of the scaffold
composite with 60% rice starch + 40% HA at Ku-band were lower than those for 50% rice
starch + 50% HA and 70% rice starch + 30% HA. The strength of the bone scaffold relies on
either agglomeration HA or recrystallization of amylose and amylopectin (starch). Rapid
recrystallization of amylose molecules and slow recrystallization of amylopectin molecules
occurred during the retrogradation process of starch. Meanwhile, the agglomeration of HA
occurred due to electrostatic forces between HA in the nanoscale. These phenomena helped
strengthen the structure of scaffold composite. However, the strength of the composite
was largely subject to applying the proper ratio of rice starch to HA. It can be speculated
that a scaffold composite with 60% rice starch + 40% HA has a weak structural wall that is
fragile and tends to collapse. This phenomenon causes a switch of the main polarization
mechanism, i.e., space charge and interfacial polarization of dipole polarization due to
one polar functional group to the other. As a result, the response of ε′ and ε′′, as shown in
Figures 1 and 2, is an anomaly.

3.2. Lumped-Element Circuit Model

The lumped-element circuit models in Figures 3 and 4 were designed to simulate the
electrical properties of the scaffold composite with Wangi rice starch and nHA at X- band
and Ku-band, respectively. The specifications of the circuit models at X-band and Ku-band
are tabulated in Tables 2 and 3.
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The Z′ and Z′′ of scaffold composites over frequency are shown in Figures 5–8 for
scaffold composites with 50% rice starch + 50% nHA (composition A), 60% rice starch +
40% nHA (composition B) and 70% rice starch + 30% nHA (composition C) at X-band and
Ku-band. Z′ and Z′′ imply the DC and AC characteristics of the circuit model. Typically,
a resistor has a resistance that is frequency-independent. However, resistance becomes
frequency-dependent (=R(f)), as expressed in Equation (7), at high frequencies. The varia-
tion in Z′ over frequency is insignificant. It is similar to the resistance of a resistor in the DC
response. The narrow frequency range at either X-band or Ku-band leads to insignificant
variation. It is mainly due to the time-invariant average power of the applied field. In
other words, the variation in Z′ is attributed to the DC effect of time-variance or the electro-
magnetic field. The presence of frequency-independent resistor R2, as shown in Figure 3,
reduces the impact of R(f) towards Z′ and Z′′. It can be noticed that R2 plays an effect in
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reducing the total resistance of the circuit for the scaffold composite with 70% rice starch
+ 30% nHA. This may be due to the retrogradation of the 70% rice starch-prepared scaffold
composite with a short oscillation distance (short diameter of the pore).

Table 2. Component values of the lumped-element circuit (Figure 3) for scaffold composites of Wangi
rice starch and nHA at X-band.

Composition
Component Values in the Circuit (Figure 3)

L1 (H) L2 (H) L3 (H) L4 (H) C1 (F) C2 (F) R1 (Ω) R2 (Ω)

A 7.24 × 10−10 3.27 × 10−11 3.16 × 10−10 - 1.00 × 10−9 3.60 × 10−14 R(f) ≥8000

B 3.30 × 10−11 3.00 × 10−12 1.00 × 10−9 1.70 × 10−10 1.00 × 10−9 7.00 × 10−14 R(f) 400

C 5.00 × 10−10 3.00 × 10−11 1.00 × 10−12 - 3.44 × 10−8 1.14 × 10−14 R(f) 604

Table 3. Component values of the lumped-element circuit (Figure 4) for scaffold composites of Wangi
rice starch and nHA at Ku-band.

Composition
Component Values in the Circuit (Figure 4)

L1 (H) L2 (H) C1 (F) C2 (F) R1 (Ω) R2 (Ω)

A 1.20 × 10−9 9.00 × 10−8 3.16 × 10−13 1.00 × 10−14 0 R(f)

B 1.69 × 10−10 6.00 × 10−10 <1.00 × 10−6 3.39 × 10−13 R(f) >8000

C 1.00 × 10−9 1.00 × 10−8 2.00 × 10−13 1.00 × 10−14 0 R(f)
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When the operating frequency of the applied field corresponds with the relaxation
frequency of the scaffold composite, the charge in the pore can oscillate within the pore that
is presented in the scaffold composite, and this leads to the presence of space charge. This
charge is responsible for interfacial polarization. More oscillation occurs simultaneously
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in high porosities of scaffold composites than in low porosities. Apparently, the scaffold
composite with 60% rice starch + 40% nHA (composition B) exhibited lower porosity than
those of 50% rice starch + 50% nHA (composition A) and 70% rice starch + 30% nHA
(composition C). The interfacial polarization facilitated charge migration and oscillation
within the body, as well as within the pore. The rate of change in electric potential difference
(voltage) due to the presence of space charge on grain boundary increased, and this
increased current. Consequently, the increment in current implied that resistance decreased.
Hence, it is explicable that a low resistance value of R2 is applied to mitigate the impact of
R(f) on Z′. On the other hand, it can be seen that the mean percentage error of Z′ of the
scaffold composite with composition C was the highest (i.e., 18.31%), as tabulated in Table 4.
Generally, the Z′ of the circuit model has better agreement with the measured Z′ for X-band
and Ku-band, as shown in Figures 5a and 7a, respectively. This can be noticed through
Tables 4 and 5, where the mean percentage errors of Z′ are lower than Z′′ for X-band and
Ku-band. These may be attributed to the lower variabilities in Z′ than Z′′, where the AC
resistance R(f) and DC resistance R have a significant and direct effect on Z′. Meanwhile, Z′′

is a function of frequency, inductance and capacitance, depending on the circuit network.

Table 4. Components values of the lumped-element circuit (Figure 3) for scaffold composites of
Wangi rice starch and nHA at X-band.

Composition
Mean Percentage Error (%)

Z′ Z′′

A 11.09 23.90

B 3.60 13.57

C 18.31 19.80

Table 5. Mean percentage errors for comparison between measured and simulated Z′ and Z′′ for
scaffold composites at Ku-band.

Composition
Mean Percentage Error (%)

Z′ Z′′

A 10.23 17.21

B 12.86 23.30

C 6.78 13.80

The mean percentage error of Z′′ of composition C was considerably high, i.e., 19.80%.
This proportion provided the strongest inner wall structure. Hence, it had substantial well-
established and distributed pores. This increased the complexity of the internal structure of
the scaffold composite, which led to a severe discrepancy of Z′ and Z′′ between the circuit
model and measurement, that was reflected by the highest mean percentage error.

When the scaffold composite had low porosity, charge migration in the thick inner wall
was attributed to oscillation during polarization. At high frequencies, charge migration
may have been stagnant due to operating frequencies that exceeded relaxation frequencies.
Hence, the resistance of composition B at Ku-band had a higher resistance than that at
X-band.

Z′′ is frequency dependent. It can be capacitive or inductive. The Z′′s of scaffold
composites composition A and composition C were inductive, where Z′′ increased over
frequency. Meanwhile, scaffold composite composition B exhibited a capacitive charac-
teristic, where Z′′ decreased when frequency increased. Both proportions of rice starch
to nHA indicated an increment in inductive effect that led to a decrement in capacitive
effect. This may have been due to the oscillation of charge within a substantial number of
pores. At X-band and Ku-band (high frequency, ~109 Hz), the variation in charge on the
grain boundary in the pore induced a magnetic field that accounted for inductive behavior.
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It caused a loss of energy in polarization, which accounted for the capacitive effect. In
the high-frequency range, the rate of charge change in the pores was high. It generated a
considerably large current. This implies the presence of significant inductive characteristics
at X-band and Ku-band. It can be clearly seen in Figures 6a,c and 8a,c. However, scaffold
composite with composition B (60% rice starch + 40% nHA) had fewer pores to act as
a platform for polarization. Hence, the effect of dielectric polarization on the Z′′ was
less significant.

It can be seen that composition C at Ku-band exhibited a lower mean percentage
error than X-band for Z′ (6.78%) and Z′′ (13.80%). This was noticed through a compari-
son of the mean percentage errors between X-band (Table 4) and Ku-band (Table 5). The
designed circuit model at Ku-band was less complex than that for X-band. Z′′ over fre-
quencies <15.5 GHz and >15.5 GHz, as shown in Figure 8c, exhibited negative and positive
gradients, respectively.

The major switch of gradient from negative to positive within this narrow frequency
range (Ku-band) cannot be represented by a single circuit model. It can be justified by
the low coefficient of determination (R2) of Z′′ for composition Cat Ku-band (R2 = 0.19).
As a result, the same circuit model, as shown in Figure 4 for frequencies <15.5 GHz and
>15.5 GHz, can still be applied. However, new component values for frequencies <15.5 GHz
and >15.5 GHz are tabulated in Table 5. Table 6 shows the new component values of the
circuit model (composition C) in Figure 4 for frequency ranges <15.5 GHz and >15.5 GHz.

Table 6. New component values of the circuit model (composition C) in Figure 4 for frequency ranges
<15.5 GHz and >15.5 GHz.

Composition
Component Values in Circuit

L1(H) L2(H) C1(F) C2(F) R1(Ω) R2(Ω)

<15.5 GHz 0 1.00 × 10−9 <1.00 × 10−9 3.20 × 10−13 R(f) >8000

>15.5 GHz 3.50 × 10−10 5.00 × 10−11 <1.00 × 10−9 1.40 × 10−12 R(f) >8000

When the frequency was <15.5 GHz, the capacitive effect reduced as Z′′ decreased
over frequencies where the increment of inductive effect mitigated the capacitive effect, as
shown in Figure 9a. It can be seen in Table 5 that the value of L2 is smaller than C2 in the
parallel network. The impact of L2 in this parallel network had a more significant effect on
the Z′′ than that of C2. The storage of electrical energy during polarization decreased due to
the delay of polarization mechanisms when the frequency increased gradually to 15.5 GHz.
This delay may be ascribed to the immobilization of the hydroxyl group (−OH), due to
the recrystallization of amylose and amylopectin. The decrement ceased at 15.5 GHz, and
began increasing at frequencies above 15.5 GHz. The Z′′ increased when frequencies were
>15.5 GHz, as shown in Figure 9b. The polarization mechanism involved the oscillation of
charges in the pore with the applied field. The recrystallization of amylose and amylopectin
with 70% rice starch in the scaffold composite prepared sufficient pores as a platform for
space charge or interfacial polarization. The charge could oscillate synchronously with the
applied field polarization when frequencies were >15.5 GHz. This phenomenon occurred
in the scaffold composite with composition C (70% rice starch + 30% nHA) within the high-
frequency range (Ku-band). In regards to the circuit, L1 and L2 exerted a significant impact
on Z′′, causing Z′′ to increase with frequency. This gradient switch was not observable at
X-band, since the frequency range of X-band is lower than that of Ku-band. The Z′′ of the
circuit model, as shown in Figure 9a,b, demonstrated good agreement with measurement.
This was observed through the mean percentage error of Z′′. The mean percentage error
and R2 of Z′′ for frequencies <15.5 GHz were 7.35% and 0.85, respectively. For frequencies
>15.5 GHz, the mean percentage error and R2 of Z′′ were 4.90% and 0.90, respectively.
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4. Conclusions

This study discussed composite scaffolds with nano-hydroxyapatite and Wangi rice
starches using lumped-element circuit models. Scaffold composites with Wangi rice starch
and nHA were fabricated. The porosity level of this biodegradable composite was identified
through impedance analyses in electromagnetic fields. In this research, Z′ and Z′′ of these
designed circuit models were found to be in good agreement with the measurement where
the mean percentage error was <25%. However, the mean percentage error of composition
C for Ku-band was higher than that for X-band. It was surmised that the weak structural
wall was sensitive to frequency. A minor difference was noticed between X-band and
Ku-band in terms of the designed circuits. However, distinctive component values of
both circuits were noticed due to different frequency ranges (X-band and Ku-band). The
developed model is useful to determine the electromagnetic behavior of the biomaterial,
which can be associated with morphological, structural and chemical characteristics. A
similar model can be formed and used for other composite biomaterials of interest.
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