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Abstract: A study is presented on four polymers of the polyurethane family, obtained using a two-
stage process. The first composition is the basic polymer; the others differ from it by the presence
of a variety of fillers, introduced to provide radiopacity. The fillers used were 15% bismuth oxide
(Composition 2), 15% tantalum pentoxide (Composition 3), or 15% zirconium oxide (Composition
4). Using a test culture of human fibroblasts enabled the level of cytotoxicity of the compositions to
be determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay, along
with variations in the characteristics of the cells resulting from their culture directly on the specimens.
The condition of cells on the surfaces of the specimens was assessed using fluorescence microscopy.
It was shown that introducing 15% bismuth, tantalum, or zinc compounds as fillers produced a
range of effects on the biological characteristics of the compositions. With the different fillers, the
levels of toxicity differed and the cells’ proliferative activity or adhesion was affected. However, in
general, all the studied compositions may be considered cytocompatible in respect of their biological
characteristics and are promising for further development as bases for bone-substituting materials.
The results obtained also open up prospects for further investigations of polyurethane compounds.

Keywords: polyurethane polymer; bone-plastic materials; tantalum pentoxide; zirconium oxide;
bismuth oxide; cytotoxicity; fibroblasts; cytocompatibility; adhesion

1. Introduction

The proportion of the elderly population is growing, causing a stable global trend of
increasing degenerative diseases and increasing frequency of osteoporosis [1–5]. At the
same time, a constantly growing number of bone injuries [6–8] and of bone cancers [9] are
being recorded. Due to these trends, there is a progressively increasing demand for bone
replacement materials in the fields of modern traumatology, orthopedics, and oncology.
Furthermore, it is impossible not to note the wide use of materials for bone plastics in
dentistry and maxillofacial surgery [10,11].

Unfortunately, no osteoplastic material with ideal properties yet exists. Currently,
autografts are still the gold standard for osteoplasty [8,12,13], but their use has certain
drawbacks (the need for additional surgery, increased risk of infection, insufficient amount
of donor material, additional discomfort for the patient). The problems associated with the
use of allo- and xenotransplants [14,15] are forcing us to look for alternative materials, and
so the development of artificial compounds for osteoplasty is actively continuing.

For implant manufacture, various titanium compounds are widely used, but these
have obvious drawbacks despite their good osteoinductive properties, [16] e.g., it has
been shown that the elastic modulus of implants made of titanium is significantly higher
than that of bone tissue [17,18]. In addition, implants made of this material have high
radiodensity values that hinder bone block assessment using CT scanning [19].
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Polyetheretherketone (PEEK) is an alternative material used in orthopedics, with
mechanical properties close to those of bone tissue [20]. PEEK implant material does not
absorb CT radiation and hence does not hinder such assessments of bone tissue condition.
On the other hand, PEEK is bioinert and hydrophobic, this making its integration into the
bone tissue impossible and promoting a build-up of fibrosis around the implant [18,19,21].
For this reason, the incidence of pseudarthrosis is relatively high after using implants of
this material [22,23].

Currently, some of the main artificial materials for bone tissue augmentation are acrylic
polymers such as PMMA (poly(methyl methacrylate)). PMMA is a derivative of the acrylic
resins developed as plastic materials back in the 1930s. Two components represent the
PMMA used for surgery: the liquid monomer and loose powder polymer (with functional
additives). Currently, more than 30 different types of bone cements exist developed on the
basis of acrylic monomers and polymers. The differences between them are mainly in the
ratios of the components used to determine cement fluidity and viscosity.

It has been proven that PMMA bone augmentation is the most effective method for
restoring bone support ability, being able to increase the strength of screw fixation in it by
25 to 348 times [24–26]. However, this technique has disadvantages due to the physical
and chemical properties of PMMA. It is also known that polymerization of this material
is an exothermic reaction, resulting in its heating to 50–70 ◦C. Such high temperatures
increase the risk of damaging the surrounding tissues and slowing their regeneration [27,28].
In addition, the cytotoxicity of PMMA has been repeatedly noted, which in turn can
negatively affect the regeneration processes [29]. It is thought that methyl methacrylate
monomer release may underlie the so-called cement implantation syndrome with possible
manifestations such as cardiosuppression and hypotension, sometimes resulting in sudden
death in the early postoperative period [30,31]. All of the above makes it relevant to search
for a bone-replacement polymer that can be injected without causing chemical/thermal
damage to the surrounding tissues or systemic toxic effects.

Today, polymers based on polyurethanes are considered as promising materials for
surgery and regenerative medicine [32]. Due to the possibility of their structural modifica-
tion, polyurethane compounds can have their different physical and chemical properties
varied according to the planned application [31]. Their unique properties enable us to
obtain both elastic/soft and solid polyurethane-based materials, characterized by good
biocompatibility and biostability [31].

The possibility of obtaining a polymer with mechanical properties close to those
of bone tissue, good adhesiveness and biocompatibility make polyurethanes promising
osteoplasty materials. However, if liquid injection is planned for bone augmentation, it
is necessary to ensure effective polymer spreading, usually with the use of fluoroscopic
observation. This is achieved by the additional injection of radiopaque contrast agents.
Nevertheless, no studies of the effects of such radiopaque contrast agents on the biological
properties of polyurethane-based polymers have been published to date.

It should be noted that the interaction of a polymer material with biological objects
can determine the success of its biomedical applications. In particular, materials for bone
grafting should provide both mechanical strength and create optimal conditions for the
vital activity of all the cell populations involved in the process of reparative regeneration,
regardless of the localization of the damaged bone [33–36]. In addition, such materials can
act as scaffolding carriers for cells of different origins in the formation of tissue-engineered
constructs [37–39]. Thus, cytocompatibility, i.e., the positive interaction of the materials
being developed with cells, is mandatory to create conditions for tissue repair and for
them to be considered promising for subsequent use in clinical practice. The most im-
portant aspects of cytocompatibility concern the cellular events occurring directly on the
material’s surface. It is necessary to understand how contact with the material and the
topography of its surface provide cell adhesion, and affect first of all the cells’ proliferative
activity, but possibly also their secretory functions, differentiation potential, etc. [40–42]. In
particular, the study of the influence of the material on epigenetic regulation of cell gene
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expression could be one of the most promising research lines in the future [43]. At the
same time, characterization of the cytotoxicity of any material being developed is the first
and key test in assessing its biocompatibility. This is confirmed by the requirements of
international standard ISO 10993-5:2009 (DIN EN ISO 10993-5:2009, German Institute for
Standardization, Berlin, Germany), applicable to regulating cytotoxicity preclinical studies
in vitro. Further, if the cytotoxicity test is successful, examination of each material prior
to preclinical or clinical studies requires continuation of comprehensive cytocompatibility
testing in vitro [33,44].

The task of this study was to evaluate the interaction with human cells of an original
polyurethane-based material and of various modifications differing in radiopacity, in an
in vitro model.

2. Materials and Methods

Specimens of four materials of the polyurethane family were investigated. The first
and basic material (Composition 1) was a polymer derived from PPG (polypropylene
glycol, average molecular weight = 1000), MDI (4,4′-methylene diphenyl diisocyanate)
and glycerol; the other materials (Compositions 2, 3 and 4) were modifications of this
polymer with radiopaque fillers added. All specimens of the series used in this work
were obtained by the same two-stage technology [45]. In the first stage, a polymer was
obtained from MDI and PPG. In the second stage of the process, the material was cured
by the addition of glycerol as a hardener, using a catalyst dissolved in it (tertiary amines,
organotin compounds). During the same stage, one of the radiopaque contrast agents was
added—bismuth oxide (Composition 2), tantalum pentoxide (Composition 3), or zirconium
oxide (Composition 4). Reagents manufactured by J-S C (Khimreaktiv, Nijni Novgorod,
Russia) were used for polymer synthesis. Thus, specimens of materials differing in their
radiopaque filler composition were obtained (Table 1).

Table 1. The compositions of the specimens.

Specimen Specimen Composition

Composition 1

Basic composition:
- Standard prepolymer (from MDI and PPG with an

average molecular weight of 1000) containing
11–13% of isocyanate groups;

- Standard glycerol-based hardener.

Composition 2 Basic composition
+ 15% bismuth oxide

Composition 3 Basic composition
+ 15% tantalum pentoxide

Composition 4 Basic composition
+ 15% zirconium oxide

After the hardener was added, the curing process of the mixture began, accompanied
by a slight heating. In general terms, the polymer can be represented as follows—Figure 1.
See Figure 2 for simplified polymer production process.
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Figure 2. Simplified general formula for polymer production.

After complete curing, 24 h later, the materials were cut into specimens of the desired
shape and size for the study. The specimens of all 4 compositions were sterile yellowish
tablets (Figure 3). Each series of 12 specimens was individually labeled and each specimen
was individually packaged. The specimens were approximately 10 mm dia × 2 mm
thick. Cross sections of the specimens of the materials showed chaotically located holes of
different diameters (pores formed during the polymerization reaction); microscopic studies
indicated different shapes and sizes of holes distributed across the entire surfaces of the
specimens.
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To assess the biological characteristics of the presented materials and the possibility of
their subsequent application in biomedicine, the level of cytotoxicity and any changes of
test culture cells during cultivation on the specimens were evaluated.

To assess the cytotoxicity, an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetra-
zolium bromide) assay [46] was used to determine the estimated relative growth rates
(RGRs) of the cells, as percentages based on a determination of the relative optical density
(OD) levels. A plate reader was used to run the measurements and to evaluate them
according to a ranking scale [47] for each material.

Cell relative growth rate was calculated according to the following formula:

RGR (%) =
mean OD in the test culture

mean OD in the control culture
× 100

where OD is the optical density.
According to the ranking scale [47], the cytotoxicity levels (ranks) of materials represent

toxicities as follows: 0 (100% of relative growth rate) and 1 (75–99% of relative growth
rate)—nontoxic, 2 (50–74% of relative growth rate)—mild degree, 3 (25–49% of relative
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growth rate)—medium degree, 4 (1–24 of relative growth rate), and 5 (0% of relative growth
rate)—evident toxicity.

The MTT assay test cultures were previously characterized cultures of human der-
mal fibroblasts obtained in the biotechnology laboratory of the Federal State Budgetary
Educational Institution of Higher Professional Education PIMU of the Ministry of Health
of Russia. Sampling of biomaterial and obtaining a cell culture with its subsequent use
for in vitro studies was approved by the local ethical committee FSBEI HE PRMU MOH
Russia (Nizhny Novgorod, Russia) (approved by the local ethics committee on 10 March
2021, protocol No. 5). Cultures of passages 4–6 were taken for studies, with sterility and no
contamination with mycoplasmas or viruses confirmed by bacteriological methods and
PCR analysis. Cell viability was 97–98% before use in the tests. The culture cells were
morphologically homogeneous, predominantly spindle-shaped, less frequently star-shaped
with clear contours and prominent outgrowths. The phenotype of the cells corresponded to
that of mesenchymal cells: CD 90+, CD 105+, CD 73+, CD10+, CD45−, CD 14−, CD 34−,
CD HLA DR−.

The specimens were weighed before testing. The average specimen weight was
156.68 ± 13.67 (130.75 to 184.75). To obtain the extract, multiple specimens were used,
weighing in total at least 500 mg for each extraction term (1 or 7 days).

The effects on test cultures of human dermal fibroblasts of the extracts obtained
from each material were evaluated by comparing the optical densities of the experimental
series and of the control series. The optical density was recorded at 540 nm on a Sunrise
analyzer (Tecan Austria GmbH, Grödig, Austria) using Magellan for F50 v7.2 software
(Tecan Austria GmbH, Grödig, Austria), allowing for automatic plotting of a calibration
curve and determination of the concentrations of the substances under study.

Further, we studied the interaction between the polymer materials and test cells
cultivated on their surfaces. During the study, evidence of adhesion to the material surface,
variations of cell viability and morphology, and the possibility of cell proliferation on each
specimen’s surface during cultivation were evaluated.

To implement this study, a 4–6 passage fibroblast suspension with a density of 104/cm2

in 2 mL of complete growth medium was seeded on the surface of each specimen. Each
material series was examined in at least three replicates for each experimental period.
The specimens were placed in the wells of 24-well culture plates (Costar, Washington,
DC, USA). Igla medium modified with Dulbecco (DMEM) and added antibiotics (peni-
cillin/streptomycin), glutamine, and 10% fetal calf serum was used as the growth medium.
All media and reagents used were produced by PanEco LLC, Moscow, Russia. Cultivation
was run in a humidified CO2 incubator atmosphere at 37 ◦C and 5% CO2. The cells were
cultured on the specimens for 72 h and culture growth was monitored every 24 h using
light microscopy and phase-contrast microscopy (Leica, Wetzlar, Germany, DMI 3000B
inverted microscope with LAZ.V.4.3, Leica, Wetzlar, Germany imaging software). After
24 and 72 h of cultivation, part of each specimen was taken for fluorescence microscopy
examination, implemented with a Cytation 5 (BioTek, Winooski, VT, USA) imager, allow-
ing for visualization of the cells by phase-contrast and fluorescence microscopy. For the
analysis, in vivo cell staining was used with the following fluorochromes: Hoechst 3334
(BD Pharmingen™, Franklin Lakes, NJ, USA) for labeling nuclei; and Calcein AM, BD
Pharmingen™ for staining the cytoplasm of viable cells. Staining was performed according
to the manufacturers’ protocols.

Fluorochrome Hoechst 3334 (BD Pharmingen™) having high specificity for double-
stranded DNA molecules (377 nm excitation wavelength, 447 nm emission wavelength),
produced bright blue stained cell nuclei. The use of Calcein AM (469 nm excitation
wavelength, 525 nm emission wavelength), resulting in green staining, not only confirmed
their viability but also allowed for evaluation of the morphological features and distribution
on the specimen surfaces. As a control, growth on the plastic plate (control wells) of the
test culture and the variation of its characteristics were evaluated.
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The visual images from each specimen were recorded to a video archive, analyzing at
least 10 microphotographs from different fields of view.

3. Results and Discussion

The level of cytotoxicity is one of the first and most important indicators needed to
assess the potential value of such materials for biomedical purposes. The results of our
investigation, obtaining extracts after different periods, are presented in Tables 2 and 3.

Table 2. Cytotoxicity evaluation of polyurethane polymer specimens at 1 day extraction.

Series Parameter
Specimen Denomination

Composition 1 Composition 2 Composition 3 Composition 4

Control
(n = 8)

OD 0.451 ± 0.021 0.438 ± 0.018 0.382 ± 0.012 0.433 ± 0.007
RGR, % 100 100 100 100

Cytotoxicity level 0 0 0 0

Extract
(n = 8)

OD 0.414 ± 0.016 0.294 ± 0.018 0.350 ± 0.022 0.403 ± 0.012
RGR, % 92 67 91 93

Cytotoxicity level 1 2 1 1

Extract 1:1
(n = 8)

OD 0.471 ± 0.015 0.274 ± 0.010 0.279 ± 0.012 0.393 ± 0.011
RGR, % 104 63 73 91

Cytotoxicity level 0 2 2 1

Extract 1:2
(n = 8)

OD 0.410 ± 0.02 0.298 ± 0.009 0.282 ± 0.009 0.403 ± 0.008
RGR, % 91 68 74 93

Cytotoxicity level 1 2 2 1

Extract 1:4
(n = 8)

OD 0.452 ± 0.008 0.255 ± 0.009 0.314 ± 0.012 0.374± 0.008
RGR, % 100 58 82 86

Cytotoxicity level 0 2 1 1

Extract 1:8
(n = 8)

OD 0.372 ± 0.017 0.308 ± 0.008 0.295 ± 0.011 0.392 ± 0.021
RGR, % 82 70 77 91

Cytotoxicity level 1 2 1 1

Table 3. Cytotoxicity evaluation of polyurethane polymer specimens at 7 day extraction.

Series Parameter
Specimen Denomination

Composition 1 Composition 2 Composition 3 Composition 4

Control
(n = 8)

OD 0.329 ± 0.008 0.467 ± 0.021 0.330 ± 0.010 0.339 ± 0.010
RGR, % 100 100 100 100

Cytotoxicity level 0 0 0 0

Extract
(n = 8)

OD 0.352 ± 0.008 0.330 ± 0.021 0.126 ± 0.004 0.302 ± 0.006
RGR, % 107 71 38 89

Cytotoxicity level 0 2 3 1

Extract 1:1
(n = 8)

OD 0.318 ± 0.020 0.525 ± 0.031 0.391 ± 0.011 0.404 ± 0.008
RGR, % 97 112 118 119

Cytotoxicity level 1 0 0 0

Extract 1:2
(n = 8)

OD 0.259 ± 0.006 0.491 ± 0.035 0.441 ± 0.019 0.447 ± 0.007
RGR, % 78 105 134 132

Cytotoxicity level 1 0 0 0

Extract 1:4
(n = 8)

OD 0.262 ± 0.007 0.302 ± 0.008 0.362 ± 0.015 0.475 ± 0.021
RGR, % 80 65 110 140

Cytotoxicity level 1 2 0 0

Extract 1:8
(n = 8)

OD 0.287 ± 0.022 0.292 ± 0.022 0.416± 0.011 0.379 ± 0.049
RGR, % 87 63 126 112

Cytotoxicity level 1 2 0 0



Polymers 2023, 15, 831 7 of 16

The presented materials showed variable cytotoxicity as determined by the MTT assay,
e.g., specimen extracts of the base material (Composition 1) and the material containing
zirconium dioxide (Composition 4) were nontoxic after both extraction periods, with
cytotoxicity ranks of 0–1 (Tables 2 and 3). The Composition 2 extract containing bismuth
showed a mild toxicity level after both periods (rank 2). Composition 3′s toxicity level
was variable. Therefore, the 1-day extract showed a cytotoxicity level not exceeding rank
2 when diluted to 1:1 and 1:2. However, the 7-day extract showed a cytotoxicity level
corresponding to rank 3, but this was completely leveled when diluted.

To study the interaction between cells and the polymer specimens, the cell culture
condition was monitored in comparison with that of the test culture seeded on the plastic
surface of the culture plate wells. The test culture cells cultured in the control wells were
evenly distributed, well-attached, and had spread on the plastic, maintaining their typical
spindle shape, or less frequently, a stellate shape with prominent outgrowths throughout
the study. By the 72nd hour of cultivation, the culture cells in the control wells had produced
confluent monolayers (Figure 4a,b).
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After 24 h of cultivation of the cells seeded on Composition 1 specimens, cell adhesion
to the specimen surface could be observed and the cells’ distribution on the specimen
surface was fairly uniform (Figure 5a). In the process of further cultivation (after 72 h), the
number of stained cell nuclei across the surface of the specimens had visually increased
(Figures 5b and 6b). However, we noted that approximately only 50% of the cells were typi-
cally spindle-shaped, indicating their good adhesion to the specimen surface (Figure 5a,b).
The remaining cells, although attached to the surface of the specimens, retained a spherical
shape and did not appear to have spread (Figure 6a,b).

Taking account of the zero cytotoxicity of the base composition, cell attachment to the
surface of the specimens, and visual data on cell proliferation on the specimen surfaces,
despite the noted incomplete cell proliferation, Composition 1 may be considered as
cytocompatible and promising for further application in biomedicine.

As shown above, the basic composition is a polyurethane polymer, and the charac-
teristics we obtained are not in conflict with the properties of similar polymers described
by other specialists. Data on the positive biological characteristics of polyurethanes are
quite numerous in the literature, e.g., polyurethanes have been shown to have good cyto-
compatibility and to provide for the attachment and proliferation of mesenchymal stem
cells of humans [48], rats [49], and rabbits [50]. Studies on various experimental animals,
in turn, testify to the favorable properties of materials based on polyurethanes in respect
to enabling bone regeneration processes. This has been confirmed using polyurethanes
in experiments on animal models to restore tibial bone defects in sheep [51] and a vari-
ety of bone defects in rats [52,53] and mice [54]. However, working with polyurethane
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compounds requires consideration of the possibility that their biological characteristics
may be affected by variations in the composition of the initial components and the catalyst
used [55].
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It can be assumed that the use of a radiopaque contrast filler, in turn, may also affect
the properties of the resulting compounds, and so these will depend to a certain extent on
the features of the radiopaque.

Thus, the introduction of bismuth into the polymer composition (Composition 2) led
to an increase in cytotoxicity, up to rank 2—mild degree of cytotoxicity, in our specimen
extracts obtained from both study periods (Tables 2 and 3). Furthermore, the 1-day extract
retained the same toxicity level (rank 2) even when diluted, this being a possible result of the
release into the medium of some kind of rapidly degradable toxic compounds, or perhaps,
as quite often occurs, insufficient purification of the original materials. Additionally,
the undiluted extract of this specimen, obtained over 7 days, as mentioned above, also
demonstrated a toxicity level of 2, although the results for the cytotoxicity of its dilutions
varied.

Cells cultured on Composition 2 specimens were distributed less evenly than on the sur-
face of the base composition specimen, mostly being present as small islets (Figures 7 and 8).
Use of the fluorochrome Calcein AM (BD Pharmingen™) showed the cells had retained
their viability for 72 h, but on the surfaces of these specimens no spread had occurred,
neither by day 1 nor by day 3, and the cells had retained their original spherical shapes
with short outgrowths (Figure 8a,b). When microphotographs were analyzed visually, the
number of cells on the surfaces of these specimens had increased only insignificantly as
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compared to the cell dynamics on the basic Composition 1. Thus, given that no cell prolifer-
ation was evident on the surface of Composition 2 and no cell spread had occurred during
the observation period (72 h), these results confirm the data obtained during the specimen’s
cytotoxicity study using the MTT assay. Thus, both the one-day and seven-day extracts
obtained from specimens containing bismuth oxide showed a mild toxicity corresponding
to rank 2.
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Bismuth oxide, like other fillers, has been deliberately selected to produce polyurethane-
based compositions, given that the value of bismuth compounds has been known in
medicine for over 200 years [56,57]. Various drugs containing bismuth have been used
in the treatment of syphilis [58] and gastritis, for ulcers [59] (including when the disease
was caused by Helicobacter [60,61]), and for other gastrointestinal diseases. Bismuth ox-
ide has been used to manufacture radiopaque rods to repair spinal deformities, and the
zero cytotoxicity of these products has been demonstrated in an in vitro model [62]. The
antibacterial activity of a number of bismuth compounds is also known [63], and their
anticancer effectiveness confirmed [64–66]. Obviously, antibacterial activity is often a nec-
essary quality for bone-replacement materials, as inflammation is one of the most common
complications after surgical interventions with implants. For this reason, compositions
with antibacterial activity, combined with cytocompatibility, would be highly desirable. A
study by Shanmugam, Copal, 2014, showed that low concentrations of bismuth compounds
are antibacterially active against various microorganisms but were not cytotoxic (rank 1)
in their study on murine fibroblasts [47]. However, the same work emphasized that if
the bismuth concentration in the material was increased, this would significantly increase
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the cytotoxic effect. In summary, our data, indicating some limited cytotoxicity of the
composition containing bismuth oxide, are, in general, not in conflict with the results of
other researchers. The use of materials of cytotoxicity level 2 may be allowed, with certain
limitations, when their clinical effect significantly exceeds the clinical risks. In addition, it
can be assumed that the composition cytotoxicity may be changed by optimizing the filler
concentration.

The cytotoxicity of Composition 3 extracts containing tantalum, obtained after 1 day
of extraction, showed rank 1 or 2 (zero to mild degree). The undiluted extract obtained
after 7 days’ incubation of Composition 3 specimens showed toxicity of a medium degree
(rank 3) (Tables 2 and 3). The indicated toxicity completely disappeared when the extract
was diluted; moreover, all dilutions of this composition extract showed an insignificant
stimulatory effect.

Test cells cultured on specimens of Composition 3 were distributed unevenly as small
colonies. After 24 h, only a small number of spreading cells could be visualized on the
surface (Figures 9a and 10a), but by 72 h, many viable, spread cells, typically spindle-shaped
and with prominent outgrowths, were already fixed, (Figures 9a and 10b). Thus, the visual
characteristics (spread, maintenance of viability, typical morphology, and increase in cell
number on the specimens during cultivation) indicated the good adhesion properties of
polymer specimens made of the composition containing tantalum.
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It should be noted that tantalum and its compounds have a variety of medical applica-
tions, including the manufacture of pacemaker electrodes, heart stents, dental implants,
artificial joints, radioactive markers, nerve repair nets, hemostasis materials, and dental
pulp sealants [67–75]. Tantalum is also very attractive for the production of materials for
osteoplasty, its biocompatibility being one of the most important characteristics for this
purpose. Therefore, the issue of cytotoxicity and cell interaction with tantalum-containing
compositions continues to be actively studied, e.g., studies using mouse osteoblasts have
shown that low concentrations of tantalum compounds are nontoxic and have a positive
effect on the adhesion, proliferation, maturation, and mineralization of osteoblasts [76–79].
A study by Asadullah et al., 2019, even demonstrated increased cellular responses such
as adhesion, proliferation, and differentiation of rat bone tissue mesenchymal stem cells
(rBMSCs) when the tantalum content was increased [80].

During the MTT assay, we observed an increase in cytotoxicity of the extract from
Composition 3 containing 15% tantalum pentoxide after 7 days of extraction, while the
1-day extract was noncytotoxic (Tables 2 and 3). The detected increase in toxicity may
be attributed to tantalum accumulation in the medium during extraction for 7 days. The
results obtained are consistent with the data of Wang et al., 2020, who showed in a study on
mouse osteoblasts that the level of toxicity of tantalum compounds may possibly increase
if their concentration is increased [81]. At the same time, according to the results of our
work, dilutions of the Composition 3 extract activated human fibroblast proliferation as
manifested by a clear optical density, and as a consequence, an increase in cell growth
relative intensity (Table 3), this being similar to the activation of cell activity by low doses
of tantalum, as found in the studies by Wang et al., 2020 [81] and Huo et al., 2017 [76].
These results in combination with the obtained data on good adhesion and the positive
dynamics of cell proliferation on the specimen surfaces demonstrate the biocompatibility
of Composition 3. In the light of our data, polyurethane compounds with added tantalum
may be considered promising for developing basic osteoplasty materials. Studying such
compounds in the future, it would possibly be interesting to obtain compositions with
different tantalum content and to analyze their biological characteristics.

Applying the MTT assay to Composition 4 specimens with added zirconium showed
that this material was nontoxic (rank 1) at both extraction terms (Tables 2 and 3). However,
when cells were cultured on its surface, the majority of them showed no spread, and no
typical adherent morphology was produced within 3 days, and although their distribution
was fairly uniform (Figures 11a and 12a), there had been an insignificant increase in the
total number of cells on the surface (Figures 11b and 12b).
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Figure 12. Viable fibroblasts on the surface of Composition 4 specimen (fluorescence microscopy,
fluorochrome—Calcein AM (BD Pharmingen™): (a) 24 h cultivation; (b) 72 h cultivation. Mag. 100×.

Furthermore, dilution of the 7-day extract of the zirconium-containing composition
showed a positive effect on the proliferation of the test culture cells. However, some incon-
sistency in the data obtained requires a more detailed study of the zirconium-containing
compositions in order to assess their suitability as the basis of osteoplasty materials. The
positive qualities of zirconium-based materials, such as their high biocompatibility, mechan-
ical strength, and corrosion resistance, are known [82], and their inclusion into osteoplasty
materials is being actively investigated. It has been shown that introducing zirconium com-
pounds into the material structure, while improving its biocompatibility, prevents biofilm
formation. Its cause is the evident bactericidal activity of such compounds against a wide
range of microorganisms, including various strains of Staphylococcus aureus [83–86]. A num-
ber of studies have demonstrated zero cytotoxicity for materials coated with ZrO2 [86–89],
e.g., according to Zhang et al., 2012, the cytotoxicity of materials coated with zirconium
oxide is no higher than ranks 1 or 2 [89]. Thus, our data are similar to the literature data
and confirm the potential value of Composition 4, containing zirconium.

4. Conclusions

The presented study demonstrates an investigation of the biological characteristics
of polyurethane polymers with different radiopaque filler compositions, when used with
human cell cultures. It has been shown that introducing 15% bismuth, tantalum, or
zirconium compounds as fillers results in a range of effects on these biological characteristics.
In different cases, the level of toxicity is changed, proliferative activity is affected, or cell
adhesion is impacted. However, in general, all the studied compositions may be considered
cytocompatible in respect of their biological characteristics and are promising for further
development as bases for bone-substituting materials.

It should be noted that in addition to the changes in the characteristics of the cells
on the surfaces of the studied specimens, the microscopic methods used allowed us to
visualize the different distribution and sizes of the pores in their structure, this confirming
the potential value of the described materials. Indeed, while the varied effects of the fillers
are relevant, the availability of a system of differently sized, interconnected pores appears
to be the most important parameter for bone-replacement materials, determining their
positive qualities [90,91] and providing for the processes of cell adhesion, subsequent
proliferation, and differentiation.

Of course, the data we have presented are preliminary, and a large complex of research
lies ahead to develop and study the properties of new polyurethane compounds and their
various potential modifications.
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