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Abstract: The demolding of plastic parts remains a challenging aspect of injection molding. Despite
various experimental studies and known solutions to reduce demolding forces, there is still not a
complete understanding of the effects that occur. For this reason, laboratory devices and in-process
measurement injection molding tools have been developed to measure demolding forces. However,
these tools are mostly used to measure either frictional forces or demolding forces for a specific part
geometry. Tools that can be used to measure the adhesion components are still the exception. In
this study, a novel injection molding tool based on the principle of measuring adhesion-induced
tensile forces is presented. With this tool, the measurement of the demolding force is separated from
the actual ejection step of the molded part. The functionality of the tool was verified by molding
PET specimens at different mold temperatures, mold insert conditions and geometries. It was
demonstrated that once a stable thermal state of the molding tool was achieved, the demolding force
could be accurately measured with a comparatively low force variance. A built-in camera was found
to be an efficient tool for monitoring the contact surface between the specimen and the mold insert.
By comparing the adhesion forces of PET molded on polished uncoated, diamond-like carbon and
chromium nitride (CrN) coated mold inserts, it was found that a CrN coating reduced the demolding
force by 98.5% and could therefore be an efficient solution to significantly improve demolding by
reducing adhesive bond strength under tensile loading.

Keywords: injection molding; mold tool; demolding measurement; ejection; ejection force; adhesion
force; hard coating; PET

1. Introduction

As the final stage of an injection molding cycle, demolding can cause damage on
molded plastic parts when too-high demolding forces occur. These may result in visible
ejector marks or deformed parts, which can lead to a reduced component quality as
well as excessive wear on molding tools and even production downtimes due to sticking
components. Demolding forces are a superposition of thermal contraction force caused by
plastic shrinkage, friction force and adhesion [1]. The number of individual components
varies depending on the tool design and mold part geometry. In their review, Delaney
et al. [2] presented known solutions in research to reduce these individual force components.

One significant factor that influences demolding forces are the processing parameters.
Shrinkage of the plastic material is particularly influential, because it determines the
normal force of the plastic material acting on the mold and can therefore change the friction
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condition between the plastic and the cavity. Higher mold temperatures or shorter cooling
times can reduce the shrinkage and therefore the necessary demolding forces, particularly
in core molds [3]. Roughness also contributes to the demolding forces. In principle, higher
mold roughness leads to higher demolding forces due to mechanical locking between the
specimen and the mold surfaces, whereby very smooth surfaces can cause high demolding
forces in certain cases as well [4]. In this case, adhesion effects become dominant as some
plastics and the part begin to adhere excessively to the cavity surface. As a result, the
necessary demolding forces can therefore increase for core molds with a rise in mold
temperature despite lower shrinkage [5]. In addition, the roughness of machined mold
components, such as core molds, has a significant impact on the force required to demold
the component [6]. While draft angles or release agents may provide solutions in certain
cases, they may not always provide a feasible solution due to design or application-related
constraints. Hard coatings have been proposed as a means of reducing demolding forces in
injection molding, since such coatings are known to reduce both frictional and adhesion
forces [7,8].

Recently, studies have been conducted using molding experiments with mold building
simulations for improved estimation of the demolding force [9,10]. While the results
show tendencies as to how certain process parameters affect demolding, it is still not fully
possible to pre-estimate demolding forces before the actual injection molding process. The
relationship between adhesion effects and demolding has also not yet been adequately
clarified. However, it is apparent that the choice of process parameters, as well as non-
stick coatings and process parameters, has a strongly empirical character. Therefore, the
demolding force for different parameters still needs to be determined via extensive testing,
for which different laboratory measuring devices and in-process measurement injection
molding tools have been developed.

Laboratory tools to measure static friction during demolding, which can be integrated
into a tensile testing machine, were presented in [11,12].

For in-process measurement, a common approach is to use cup-, tube- or sleeve-shaped
parts for specimen geometry. The plastic material is injected onto a mold core and the
specimen is afterwards ejected using a stripper plate [4,13–17]. Due to the comparatively
simple tool design, the demolding forces can be measured in a controlled and repeatable
manner. The measured force is, due to the design of the mold, a superposition of frictional
and adhesion-related shear strength components.

Another method of measuring demolding forces is to determine the friction between
the plastic part and the tool surface by means of an opposing motion, such as sliding [7,18]
or twisting [19]. To measure the pure friction between the plastic component and the
tool surface, a movement of sliders in the tool is necessary before starting the actual
measurement in order to decouple the plastic component from other surfaces. However,
the movement of components in the mold assembly can cause vibrations, which can lead
to premature detachment of adhesive bonds. This makes it difficult to consider only the
adhesive force component.

A third approach is to pull a flat specimen surface vertically away from a flat mold
surface [20,21]. With this method, the frictional force components can be minimized so
that the measured force corresponds to the adhesive force between the plastic and the
considered mold surface. These types of gauging tools also have the ability to evaluate
the molding of micro-structured specimens, as they are not sheared off during demolding
compared to core tools. However, flat samples suitable for producing textured surfaces are
often still ejected using either one [22] or multiple ejector pins [23–25]. These are connected
to a force sensor to measure the ejection force. In these configurations, the adhesion force
between the sample surface and the mold cannot be measured directly.

In order to ensure an accurate and reliable measurement of adhesion-induced de-
molding forces, it is essential that the contact area between the mold and specimen does
not detach before the actual measurement. Detachment can be caused by vibrations due
to mechanical movements, as outlined for friction measurement tools, but also due to
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shrinkage of the plastic, as observed in a core tool [26]. In addition, it is desirable to monitor
the contact area prior to measurement to ensure that premature detachment of the specimen
does not occur. The measuring tools presented above for determining demolding forces
in plastic injection molding are mainly designed to determine the frictional and shear
forces that occur. Tools for determining exclusively adhesion-related demolding forces are
rather rare.

In this study, a novel injection molding tool is presented that enables the measurement
of adhesion-induced tensile forces during demolding, separated from a subsequent ejection
of the specimen. The functionality of the injection molding tool was verified by recording
the adhesive force needed to separate polyethylene terephthalate (PET) specimens from
mold inserts at three mold temperatures. Two different mold geometries, either planar or
structured by micro-milling, as well as uncoated and hard coated molt inserts, were tested.
Since this is a completely newly developed tool, a two-factor verification was performed to
ensure complete wetting of the tool surface by the plastic melt.

2. Materials and Methods
2.1. Injection Molding Tool for Adhesion-Induced Demolding Force Measurement

The design of the injection molding tool to measure adhesion-induced demolding
forces is shown in Figure 1. The main focus during development was to ensure an in-
tact contact surface between the specimen and a defined tool surface, which should be
easily exchangeable.
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To achieve this, the injection mold was designed as a three-plate mold with a roller
puller that ensures the desired movement of the intermediate plate to prevent premature
detachment of the contact surface. The specimen, red-colored in Figures 1–3, was designed
as a disc with double ledges on its outer circumference, as shown in Figure 4. The di-
mensions of the specimen were optimized by simulation to minimize warpage and thus
also premature detachment [5] and are shown in Figure 4b. This ensured reliable and
consistent measurements of the demolding forces. The entire thickness of the disc was
2 mm, with a total diameter of 45 mm. The melt-facing surface area of the exchangeable
mold insert (MI), colored in yellow in Figures 1–3, was a circular surface with a diameter
of 27 mm corresponding to the contact area of the specimen. A single-axis piezoelectric
force transducer 9301C (Kistler Instrumente AG, Winterthur, Switzerland), which is capable
of measuringdynamic and quasi-static tensile forces up to 3 kN, was used to record the
adhesion-induced demolding force. The sensor was embedded in a measuring package,
blue-colored in Figure 1. Via a charge amplifier 5015A1000 (Kistler Instrumente AG, Win-
terthur Switzerland), the signals were fed into a measuring system. A sampling rate of
9000 Hz was used to record the demolding force. This high sampling rate ensured that
the peak of the demolding force was reliably recorded. The mold cavity and measuring
package were separated by a wedge-shaped slider, purple-colored in Figures 1–3, to prevent
the sensor cell from overload while molding. The measuring package was driven by a
motor. Since mold temperature is one of the most critical process variables influencing the
demolding force, a temperature sensor was used to determine the temperature directly
at the mold insert before each measuring cycle. After opening the tool, a built-in camera
enabled an optical detection of the contact surface between mold insert and specimen in
order to verify a full wetting of the tool by the plastic melt and thus adhesion of the polymer
on the mold insert. Two photos were taken per measuring cycle, one directly before and
one after the measurement. The molded specimens were ejected by the use of ejector pins,
green-colored in Figure 4. The individual steps per molding/measuring cycle were as
follows:

(a) After closing the mold, the plasticized melt was injected into the cavity. The three
plates—molding, intermediate and base plate—were initially in contact, as shown in
Figure 2(1). After the mold cooled down to the desired temperature, the mold was
opened. At this point, only the intermediate plate was lifted off a short distance from
the base plate by the roller puller, as shown in Figure 2(2). The molding plate was
still connected to the intermediate plate in this first step. This minimized mechanical
stress on the contact surface of the specimen with the mold insert and prevented
premature detachment.

(b) The molding plate then lifted off the intermediate plate and the tool was fully opened,
as shown in Figure 2(3).

(c) The wedge-shaped slider moved downward, as shown in Figure 3(1). Via the built-in
camera, the intact contact surface area between mold insert and specimen was verified.

(d) For the actual demolding force measurement, the entire measuring package was
driven backwards by the motor and the mold insert detached from the specimen,
as shown in Figure 3(2). The required force was recorded by the force sensor in the
measuring package.

(e) The measuring package then returned to its initial position and the slider was moved
up again.

(f) Finally, the specimen was ejected by the use of the ejector pins, as shown in Figure 3(3,4).
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2.2. Mold Insert Manufacturing and Characterization

Seven mold inserts were manufactured for the injection molding experiments. All
mold inserts were high-gloss polished to reduce mechanical friction to the bare minimum
and thus measure solely adhesive demolding force. The melt-facing surface area of the
inserts was configured to be either planar or with micro-milled channels, and either un-
coated or PVD hard coated. Variation in surface conditions was investigated in order to
evidence their influence on the adhesion-induced demolding force result obtained with the
presented tool. The configuration of the different mold inserts is presented in Table 1.

Non-hardened hot-work tool steel 1.2343 ESR (Meusburger Georg GmbH & Co., KG,
Wolfurt, Austria) was used as the raw material due to its high toughness and very good
suitability to produce smooth surfaces from polishing. Using a grinder-polisher LaboPol-25
(Struers ApS, Ballerup, Denmark), the planar surfaces of the mold inserts were first plane
ground and subsequently polished with a 1 µm diamond suspension in order to achieve a
highly polished surface. Eighteen micro-channels were milled into the polished surfaces of
MI 4, MI 5 and MI 6. The channel depth and width were set to 300 µm with a draft angle of
10◦, which corresponds to the common structure dimensions of precision engineering parts,
e.g., for microfluidic applications. The milling was performed using an ultra-precision
milling machine Micromaster 5X-L (Kugler GmbH, Salem, Germany).

The polished and structured surfaces of MI 2 and MI 4 were then coated with a silicon
modified hydrogenated amorphous (a-C:H:Si) diamond-like carbon (DLC) coating. A
high-power impulse magnetron-sputtered chromium nitride (CrN) coating was deposited
onto MI 3 and MI 6. Both coatings were chosen due to their high resistance to abrasive wear,
the same reason these coatings are widely used in industry. The coatings were provided by
industrial suppliers. MI 7 was kept in the ground surface state to compare the measured
demolding force with the one measured for the CrN coated MI 3 at equivalent surface
roughness values.

Table 1. Mold insert configuration for demolding force measurements.

Mold Insert Pre-Condition Structuring PVD Hard Coating

MI 1 Polished None None
MI 2 Polished None a-C:H:Si DLC
MI 3 Polished None CrN
MI 4 Polished Yes None
MI 5 Polished Yes a-C:H:Si DLC
MI 6 Polished Yes CrN
MI 7 Ground None None
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For a reliable comparison of the demolding forces in terms of the surface quality of
the mold inserts, each mold insert was inspected prior to and after the coating deposition.
The scanning electron microscope (SEM) unit of the dual beam system Helios NanoLab 600
(FEI Company, Hillsboro, OR, USA) was used to image the morphology of the mold inserts
for a field of view (FOV) of 128 µm width (=̂SEM magnification 1000×). Subsequently,
areal surface roughness measurements were carried out with a 3D optical profiler ZYGO
Nexview NX2 (Zygo Corporation, Middlefield, CT, USA). The evaluation area was set
to the FOV of the SEM imaging. Further operators were set in accordance to the ISO-
standard 25178-3 [27]. The arithmetic mean height (Sa), root mean square height (Sq) and
maximum surface height (Sz) were determined. By this method, the topography can be
directly compared with the respective morphology of the investigated mold insert. Each
measurement was carried out three times on different areas on the surface and the measured
roughness values were averaged. A laser probe microscope MITAKA MLP-3 (Mitaka Kohki
Co., Ltd., Tokyo, Japan) was used to measure the profiles of the milled channels.

2.3. Injection Molding Experiments

The plastic selected for this study was PET D04 300 (DuFor Resins B.V., Zevenaar,
The Netherlands). The molding temperature of PET is within the possible temperature
range of the measuring mold and preliminary investigations indicated potentially difficult
demolding properties for PET. In addition, PET is transparent, which enables the optical
monitoring of the specimen surface adhering to the mold insert. Since these investigations
also exhibited a high sensitivity of the mold temperature on the demolding force, the mold
temperature was varied in the investigations. All other parameters were kept fixed. The
injection molding parameters are given in Table 2.

Table 2. Molding parameters used in this study.

Parameter

Mold temperature [◦C] 40, 50, 60
Injection speed [cm3/s] 15
Injection pressure [bar] 500

Measuring package speed [mm/s] 5
Molding temperature [◦C] 280

The experiments were conducted with the injection molding machine Allrounder 270
S 250-60 (Arburg, Loßburg, Germany). Prior to the actual injection molding cycles for
demolding force measurement, the molding tool was heated and then kept at the desired
mold temperature for a period of 60 min. Then, 50 injection molding cycles were run,
whereby only the last 15 cycles were used for the demolding force measurement.

Two-factor verification was conducted in order to confirm a complete filling of the
mold cavity and thus verify complete wetting of the MI surfaces by the plasticized melt,
which is required for an accurate and reliable measurement of the demolding force. After
opening the mold, the built-in camera module was used to take pictures of the specimen
adhering to the mold insert. Next, the areal roughness of the molded parts was measured on
unstructured areas using the same measurement conditions and texture analysis operations
as described for the MI in Section 2.2.

3. Results
3.1. Characterization of Mold Inserts

For MI 1–3, mean surface roughnesses of Sa = 2.16 nm, Sq = 2.82 nm and Sz = 63.02 nm
were achieved through polishing, matching optical requirements. In Figure 5a, the planar
polished and uncoated MI 1 is shown. The surface is smooth, containing only a few
scratches from polishing, as can be seen in Figure 5b. This is validated by the areal
roughness measurement pictured in Figure 5c.
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Figure 5. Mold insert 1; (a) planar uncoated mold insert, (b) SEM imaged surface morphology and
(c) measured topography, both at FOV 128 µm.

Figure 6a shows the DLC-coated planar surface of MI 2. The very low surface rough-
ness of the polished condition was preserved. The morphology was fully reproduced by
the DLC coating, as can be derived from Figure 6b,c as well as by comparing the roughness
values of MI 1 and MI 2 in Table 3. In contrast, the morphology and surface roughness
changed with the CrN coating. The planar surface is slightly matted (Figure 7a) and the
coating morphology is of a denser, wavier texture (Figure 7b) compared to the uncoated
state. Compared to the uncoated condition, for the determined surface topography in
Figure 7c, the mean roughnesses were increased to Sa = 27.05 nm and Sq = 33.35 nm,
as was also the case in [15]. In order to compare the subsequently conducted adhesion
force measurements in terms of areal roughness, MI 7 with a mean surface roughness of
Sa = 21.20 nm and Sq = 29.65 nm nearly equivalent to MI 3 was manufactured by grinding.

Table 3. Surface roughness of mold inserts no. 1, 2, 3 and 7.

Mold Insert Sa [nm] Sq [nm]

1 2.15 2.70
2 2.00 2.50
3 27.05 33.35
7 21.20 29.65

For MI 4–6, the surface roughnesses of unstructured areas were similar to the rough-
nesses of MI 1–3.
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Figure 7. Mold insert 3; (a) planar CrN-coated mold insert, (b) SEM imaged surface morphology and
(c) measured topography both at FOV 128 µm.

In Figure 8a, MI 4 is shown as an example for the micro-milled mold inserts. The
profile of a micro-milled channel is shown in Figure 8b. The geometry was uniform, with
a measured channel depth, width and draft angle of 300.5 ± 17.5 µm, 296 ± 3 µm and
9.95◦ ± 0.35.
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Figure 8. Mold insert 4: (a) uncoated micro-structured mold insert and (b) micro-channel geometry.

The draft angle of MI 4 was steep-stepped, as can be derived from Figure 9a. However,
tool marks on the draft angle and some smaller material breakouts that occurred during
machining were found, as can be seen in Figure 9b.

The SEM-imaged coated micro-channels, as well as their morphology, are shown in
Figure 9c–f. Over the entire mold insert surface, the deposited coatings were uniform. The
micro-channel sidewalls were also coated. However, the coating contained micro-droplets,
resulting in a craggy morphology. Due to the steepness of the sidewalls, the areal roughness
could not be determined by using optical measurement devices.
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Figure 9. SEM imaged micro-milled channel at FOV 1020 µm and morphology of channel sidewall at
FOV 128 µm of (a) and (b) MI 4, (c) and (d) MI 5, (e) and (f) MI 6.

3.2. Injection Molding Tool Functionality
3.2.1. Typical Force Curve for a Demolding Force Measurement

A typical force curve, which was recorded with the presented injection molding tool,
is shown in Figure 10. The last 15 measurements of the 50-cycle test are printed in different
colors on top of each other. The mean value of the measured curves is presented in black
color. All force curves show an equal curve progression. The variance of the force peak
in the measurements is in the range from 10 to 20%. Blank measurements as well as the
force profile show force values of below 1 N immediately after the detachment process.
Parasitic force values, such as those caused by mechanical movement of the measuring
package, are thus small compared to the demolding force values and were neglected for
further measurements.
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Figure 10. Typical force curve of the measuring tool. Fifteen consecutive measurements (color) and
their mean value (black) using an uncoated mold insert at a mold temperature of 40 ◦C.

3.2.2. Stability of Measurements

The evaluation of 50 consecutive measurement cycles is shown in Figure 11. The
demolding force corresponded in each case to the force peaks from the measurement. In
principle, the course can be divided into three phases:



Polymers 2023, 15, 1285 11 of 17

1. Within the first 15 cycles, contaminants such as oil and grease were still present
on the surface. A low level of wetting was also observed at the beginning of the
measurements (Figure 12). The determined demolding force was therefore very low.

2. In the next 15 measuring cycles, the demolding force increased steadily due to an
established thermal equilibrium caused by the heat supply through the melt. Any
contaminants that may be present were usually removed by the 30th cycle. In certain
measurements, increasing amounts of polymer residues on the mold insert were also
observed.

3. After approximately 30 cycles, the system was in a steady state. The measured
demolding forces did not increase any longer.
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Figure 11. Typical progression of temperature (orange) and measured forces (blue) over the injection
molding cycles.

This procedure was performed before each measurement to achieve a steady state for
comparable results.
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Figure 12. Adhesive sticking of the mold surface (a) after the 3rd cycle and (b) after the 30th cycle.
Deposits on the mold insert after ejection of the specimen are shown in (c).

3.2.3. Optical Monitoring of the Contact Surface

A full wetting of the mold insert by the plasticized melt, resulting in a full adherence
of the specimen surface to the mold insert, is required to measure the adhesion-induced
demolding force. For transparent plastics, the surface area of the specimen adhering to the
MI surface can be monitored with the built-in camera tool, which was used as an initial
verification step.

Figure 12a shows the contact area between a specimen and a mold insert at the
beginning of the molding cycles. Compared to Figure 12b, which shows the state after
the injection molding tool has run into a steady state, it can be derived that initially, only
partial wetting of the MI surface by the polymer melt occurs. As soon as the process was in
a thermal steady state at the 30th molding/measurement cycle, a full wetting of the mold
insert surface was achieved. As shown in Figure 12c, polymer residuals were observed
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for both the uncoated MI 1 and the DLC coated MI 2 after a few cycles. The amount of
residuals, however, increased with each cycle until a stable condition was finally achieved
after approximately 10–20 cycles.

3.3. Measurement of Demolding Forces for Mold Inserts
3.3.1. Planar Mold Inserts MI 1–MI 3

For the mold inserts MI 1–MI 3 and each mold temperature, the surface roughness
was measured as a second verification step to confirm replication fidelity. Both the sur-
face roughness values of the replicated parts and the surface morphologies exemplarily
evaluated for a mold temperature of 60 ◦C are shown in Figure A1 and Table A1. The
well-replicated mold insert morphologies on the plastic parts, in combination with the
well-matching roughness values of the specimens with the roughnesses given in Table 3,
verify a high replication fidelity for the investigated injection molding parameters with
this tool.

The results of the demolding force measurements of the PET for the planar mold
inserts MI 1–MI 3 are shown in Figure 13. While the demolding forces for MI 1 and MI 2
show average maximum forces in the range of 135 to 310 N, the CrN-coated mold insert
shows consistently significantly lower forces up to an average maximum of merely 13 N.
The required demolding force increases with rising mold temperature. In contrast, both the
uncoated and the DLC-coated mold insert show the lowest demolding force at 50 ◦C. At a
mold temperature of 60 ◦C, a DLC coating is advantageous, whereas at lower temperatures,
an uncoated mold temperature offers better demolding force behavior compared with a
DLC coating.
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Figure 13. Demolding force [N] of PET for planar, uncoated, DLC coated and CrN coated MI 1, MI 2
and MI 3 at mold temperatures 40 ◦C, 50 ◦C and 60 ◦C.

Since the CrN coated MI 3 shows significantly lower demolding forces (−98.5% at
40 ◦C and −95.6% at 60 ◦C), but also a higher roughness, which, in principle, has an
influence on the demolding result with other measuring tools [4], the uncoated mold insert
MI 7 was ground to an equivalent roughness. A comparative injection molding was carried
out at a mold temperature of 60 ◦C, for which the highest difference in the demolding
force was found between MI 1 and M3. The results are presented in Figure 14. The slight
increase in surface roughness leads to a slightly lower demolding force. However, the
demolding force of the uncoated MI 7 is still significantly higher compared to MI 3 with
equivalent roughness.
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Figure 14. Demolding force [N] of PET for planar polished, planar ground and planar CrN coated
MI 1, MI 3 and MI 7 at mold temperature of 60 ◦C.

3.3.2. Micro-Milled Mold Inserts MI 4–MI 6

The influence of the channel structures, micro-milled into the mold inserts MI 4–MI 6,
on the measured demolding force seems to be very inconsistent, as shown in Figure 15.
For MI 4, the structuring led to significantly lower demolding forces, irrespective of the
mold temperature. In contrast, the CrN coated MI 3 and MI 6 exhibited the opposite
behavior. The microstructures led to an increased demolding force for all investigated
mold temperatures. With the DLC-coated mold inserts, the microstructures led, in some
cases, to a drastic reduction in the demolding force (40 ◦C) or increased the demolding
force (50/60 ◦C).
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Figure 15. Demolding force [N] of PET for planar, uncoated, DLC coated and CrN coated MI 1, MI 2
and MI 3 (bright colored) compared to structured, uncoated, DLC coated and CrN coated MI 4, MI 5
and MI 6 (dark colored) at mold temperatures 40 ◦C, 50 ◦C and 60 ◦C.

When comparing the structured mold inserts, a similar result was obtained to the
comparison of the unstructured mold inserts. The highest demolding forces of the struc-
tured mold inserts were measured for MI 5, which are higher than the uncoated MI 4 over
the entire temperature range. For MI 6, a significantly lower demolding force compared
to MI 4 or DLC coated MI5 was found for all investigated temperatures. Especially at a
mold temperature of 60 ◦C, a high absolute demolding force reduction can be observed. In
comparison to the uncoated MI 4, the demolding force of MI 6 decreased by an average of
92.7 N (−59.6%). In comparison to MI 5, the demolding force decreased by an average of
225.2 N (−76.7%). At the low temperatures investigated, a very high relative decrease in
the demolding force was observed. In this case, the decrease was −77.1% compared to MI4
and −88.4% compared to DLC coated MI 5.
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The results were gained on the premise that a full wetting of the MI 4–MI 6 and thus a
high replication fidelity could be determined for the investigated molding parameters.

4. Discussion

In this work, a novel type of injection mold was presented that was designed to
investigate purely adhesion-related demolding forces between plastics and the mold surface.
After running in the injection molding tool, a steady state of the demolding force peak
with a variance within a range of 20% was achieved. Since comparable studies largely
do not provide information on the measurement variance, a comparison among different
measurement concepts is difficult. Core tools that do not solely measure adhesion-induced
demolding forces exhibited a high variance of up to >40% [15,26]. In this context, a sufficient
reliability of the measurement results can be attested.

The two-step verification conducted shows that the required wetting of the mold insert
surface by the plasticized melt and thus a full adherence of the specimens to the inserts can be
achieved with the presented molding tool. For future measurements, the usage of the built-in
camera should be sufficient without the need for additional roughness measurements.

In accordance with previous investigations, the results for the adhesion-induced
demolding forces show a strong dependence of the demolding force on the coatings [14,28],
the mold insert design [15] and surface roughness [29]. For PET, the CrN coating has a
positive influence on the demolding behavior compared to an untreated surface or a DLC
coated surface, regardless of incorporated structures or the surface roughness. The high
demolding forces occurring with planar, uncoated mold inserts cannot be explained solely
by the slightly lower surface roughness compared to CrN, as the investigations with ground
mold inserts show. According to [30], there is a region with minimal deformation force. As
also found by Tillmann et al. in [15], coating with CrN increases surface roughness, which
resulted in an increase in deformation force. Yet, a core tool was used for measurement in
this study. The significant reduction in measured forces with CrN observed in this study
suggests that the direction of deformation has a significant impact on the performance of
coatings and, therefore, further research is necessary.

However, in the case of unstructured mold inserts MI1 and MI 2, some PET residues
were found on the mold inserts after a few injection molding cycles, which was not the
case for the CrN-coated MI 3 and MI 7. Such deposits indicate a strong adhesion of plastic
material to the mold surface and a cohesive failure in the specimen, which results in high
forces required to separate the part. These effects cannot be solely used to fully explain
the results for MI 1 and MI 2 as well as MI 4 and MI 6, showing a minimum demolding
force at 50 ◦C. In contrast, a slight and steady increase in the demolding force was observed
for CrN with increasing mold temperature. The presented results are in accordance with
previous studies, which also present a volatile influence of the mold temperature on the
demolding for different plastic materials [22,23]. However, adhesion is not only related to
the temperature itself but also to the chemical affinity of two adjacent materials [2] as well
as their individual thermal properties [8].

A positive influence on the demolding force could be the roughening of the mold
insert surfaces [4]. This means that milled microstructures, which are of higher roughness
than polished surfaces, can have a positive influence on demolding behavior under certain
conditions. However, under very low demolding forces, as occurred with the CrN coated
mold inserts, the microstructures had a negative effect on the demolding behavior. In
this case, other effects, such as mechanical anchoring of the plastic to the fine ridge of the
microstructures, might dominate.

5. Conclusions

In this study, a novel injection molding tool with an integrated demolding force mea-
surement of adhesion-induced tensile forces, separated from the ejection of the specimen,
was presented. The study can be summarized as follows:
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• The presented tool is shown to be effective in measuring adhesion-induced demolding
forces with a comparatively good variance.

• A two-factor verification was helpful to ensure complete wetting of the tool surface by
the plastic melt. For further investigations, the use of the built-in camera should be
sufficient to monitor the wetting, at least of amorphous plastic materials.

• To verify the function of the tool, PET specimens were molded on both uncoated and
hard coated mold inserts and then demolded at mold temperatures of 40 ◦C, 50 ◦C
and 60 ◦C. CrN provided the lowest demolding force for the experimental setup,
regardless of whether the mold insert surface was planar or structured. A complete
explanation of how molding parameters and plastic and mold material properties
affect the adhesive demolding force in detail cannot yet be given.

For future research, we plan to use the presented tool to investigate plastics and
coating materials for varying molding parameters further to gain a deeper understanding
on demolding behavior, including related effects.
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Figure A1. Surface topographies of injection-molded specimens at demolding temperature 60 ◦C for
(a) MI 1, (b) MI 2 and (c) MI, all measured for FOV 128 µm.
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Table A1. Surface roughness of injection-molded parts from mold inserts MI 1–3.

Mold Insert Mold Temperature [◦C] Sa [nm] Sq [nm]

40 2.30 2.89
MI 1 50 2.25 2.87

60 2.37 2.98

40 2.05 2.64
MI 2 50 2.24 2.85

60 2.12 2.71

40 25.09 30.59
MI 3 50 25.90 32.09

60 26.20 32.30
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