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Abstract: Microbial fuel cells (MFCs) provide considerable benefits in the energy and environmental
sectors for producing bioenergy during bioremediation. Recently, new hybrid composite membranes
with inorganic additives have been considered for MFC application to replace the high cost of
commercial membranes and improve the performances of cost-effective polymers, such as MFC
membranes. The homogeneous impregnation of inorganic additives in the polymer matrix effectively
enhances the physicochemical, thermal, and mechanical stabilities and prevents the crossover of
substrate and oxygen through polymer membranes. However, the typical incorporation of inorganic
additives in the membrane decreases the proton conductivity and ion exchange capacity. In this
critical review, we systematically explained the impact of sulfonated inorganic additives (such as
(sulfonated) sSiO2, sTiO2, sFe3O4, and s-graphene oxide) on different kinds of hybrid polymers (such
as PFSA, PVDF, SPEEK, SPAEK, SSEBS, and PBI) membrane for MFC applications. The membrane
mechanism and interaction between the polymers and sulfonated inorganic additives are explained.
The impact of sulfonated inorganic additives on polymer membranes is highlighted based on the
physicochemical, mechanical, and MFC performances. The core understandings in this review can
provide vital direction for future development.

Keywords: microbial fuel cell; bioenergy; water treatment; membrane; separator; hybrid polymer
composite; sulfonation; additives

1. Introduction

As the world’s population grows, resulting in the overconsumption of energy, mostly
from fossil fuels, it has a detrimental influence on the environment through green gas emis-
sions, resulting in global warming and a changing climate and biosphere emergency [1–3].
We need cleaner energy technology to solve this problem as soon as possible. This in-
cludes saving energy by making it more efficient, using fewer fossil fuels, and making
environment-friendly energy sources more accessible. Accordingly, renewable energy
sources, such as water, sun, wind, biomass, and geothermal technologies, have been
addressed as an alternative to conventional energy sources [4–6]. Therefore, scientists
worldwide have come up with different ways to convert and store electrochemical energy,
such as fuel cells [7–9], batteries [10,11], and electrochemical capacitors [12,13]. Electro-
chemical energy conversion and storage technologies have been considered an alternative
due to their eco-friendly and sustainable routes [14]. Over the past several decades, fuel
cell technologies have gained considerable attention because of their enhanced energy
conversion efficiency, energy density, and reliability, and they work continuously until
there is an endless supply of fuel and oxygen [8,15,16]. Based on the electrolyte, fuels, and
operating temperature, the fuel cells are classified into proton exchange membrane fuel
cells [17], alkaline fuel cells [18], solid oxide fuel cells [19], phosphoric acid fuel cells [20],
microbial fuel cells (MFCs) [21–23], enzymatic fuel cells [24], direct methanol fuel cells [25],
molten-carbonate fuel cells [26], direct ethanol fuel cell [27], unitized regenerative fuel
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cells [28,29], direct borohydride fuel cells [30], direct ethylene glycol fuel cells [31], direct
glycerol fuel cells [32], and direct formic acid fuel cells [8,33].

Among the different fuel cell technologies, the MFC is considered an excellent energy
system [34–37]. The most exciting advantage of MFCs is generating electricity via biological
microorganisms using wastewater [38–40], such as industrial wastewater [41–43]. Generally,
the MFC generates electricity using organic waste [44,45]. The MFC has been widely consid-
ered in various sectors, such as environmental science, engineering, electrochemistry, and
energy [46,47]. In terms of application, an MFC has been widely believed to produce biohy-
drogen, bioelectricity, and biosensors and also be used in bioremediation processes [48–51].
During MFC operation, MFC allows for simultaneous bioenergy production and bioreme-
diation in a single device. The MFC usually emits carbon dioxide during unit cell operation.
However, the MFC system was carbon-neutral for generating energy [52–54]. Based on
the unit cell alignments, the MFCs have been classified into different categories, such as
stacked, up-flow, double-chamber, and single-chamber MFCs [55,56]. Figure 1 [34] depicts
the dual-chamber MFC process schematically. Here, the anode chamber and the cathode
chamber have been separated by the ion exchange membranes [57–59]. In MFCs, the center
part of the ion exchange membrane has a predominant role during the unit cell operation,
such as ion transportation, controlling the substrate crossover, and prohibiting the oxygen
crossover [60–64]. The functioning of electron transportation and ion transportation in
MFCs is similar to the proton exchange membrane fuel cell [65,66]. In MFCs, electricity
is commonly derived using microbial sources. In MFCs, the microorganism breaks down
organic matter to make electrons, protons, and carbon dioxide as byproducts [67,68]. As
shown in Figure 1, an electron is transferred to the cathode using an external circuit, and
protons are transported to the cathode using a proton exchange membrane from the anode
side to the cathode side. At the cathode, oxygen, protons, and electrons combine to form
water, a byproduct of an oxygen reduction reaction (Figure 1). Some examples of oxidation
of organic matter through microorganisms in an anode chamber are as follows [69–71]:

Sucrose: C12H22O11 + 13H2O→ 48H+ + 48e− + 12CO2

Glucose: C6H12O6 + 6H2O→ 24H+ + 24e− + 6CO2

The example of cathode chamber reaction is as follows:

4H+ + 4e− + O2 → 2H2O
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The main things that affect the performance of MFCs are the components, the process
variables, and the way the unit cells are set up [40,72,73]. In MFCs, the proton exchange
membrane is one of the most critical components to attaining excellent performance for
generating electricity and wastewater treatment [74–76]. Perfluorosulfonic-acid-based
commercial membranes (e.g., Nafion and CMI 7000) have been used as an ideal proton
exchange membrane candidate for MFC applications because of their proton exchange
capability and stability [77–81]. Commercial membranes have certain drawbacks, such as a
high production cost, high oxygen/substrate crossover, biological accumulation, biofouling,
and deprivations [82,83]. Various kinds of polymer membranes have been developed in dif-
ferent categories, such as composite membranes, blend membranes, reinforced membranes,
sandwich-type membranes, and crosslinked membranes [84–92], to overcome these issues.

Among the various approaches, incorporating inorganic nanomaterials in the polymer
matrix to create a hybrid composite membrane is an important consideration for the MFC.
Inorganic nanomaterials are frequently used in membranes to improve their dimensional,
mechanical, thermal, and chemical properties. In MFCs, the inorganic nanoparticles are
used to control the fuel crossover and change the physicochemical properties of the mem-
brane, in addition to making it more stable. The incorporated inorganic nanomaterial
fillers are classified into various categories, such as inert hygroscopic, proton conductor,
and proton-conducting properties with hydrophilic nature [93–95]. In most cases, the
inorganic nanofillers control the membrane’s fuel crossover, dimensional stability, and
mechanical strength [96–99]. However, incorporating inorganic nanofillers can significantly
affect proton transport behavior in most membranes, which is a disadvantage of inorganic
nanofillers. To improve the efficacy of inorganic nanofillers, surface modification and func-
tionalization have been executed for different kinds of inorganic nanofillers and utilized
for MFC applications. Among the various changes and functionalization, introducing
the sulfonic acid functional group (-SO3H) in the inorganic nanomaterials is an excellent
way to promote proton conductivity and decrease the fuel crossover in the membrane.
The sulfonic acid functional group enhances the hydrophilicity of the membrane and also
holds the membrane’s dimensional stability, which is a significant benefit of using sul-
fonated inorganic additives. In addition, the sulfonation site in the inorganic fillers makes
it possible for hydrogen bonds to form between polymers and inorganic materials. The
membrane contains higher dimensional stability due to its hydrophilic nature. An acid
functional group can effectively transfer the protons from the anode to the cathode via the
vehicular (diffusion) and Grotthuss (hopping) mechanisms. This phenomenon generates
more ionic channels and carriers for efficient proton transport. As a result, many different
kinds of inorganic additives have been tried for MFC applications. The sulfonation of
nanoparticles (NPs) and nanomaterials has positively tuned the properties, such as water
uptake (WU), dimensional stability, ion exchange capacity (IEC), proton conductivity (PC),
biofouling, and mechanical stability and performance of membranes, for MFC applica-
tions. This review systematically explained the impact of nonsulfonated and sulfonated
inorganic additives on different kinds of polymers for MFC applications. According to
the developments of sulfonated inorganic additives for MFC applications, the evaluation
is described in five sections; namely, sulfonated silica incorporated polymer membrane,
sulfonated TiO2 containing polymer membrane, sulfonated graphene oxide containing
polymer membrane, sulfonated Fe3O4 containing polymer membrane, and different kinds
of sulfonated additives in polymer membrane.

2. Sulfonated Silica Incorporated Polymer Membrane for MFC Applications

Inorganic silica (SiO2) has recently been widely regarded as an excellent nanofiller
material in membranes for various energy devices [100–103]. Generally, the inorganic SiO2
contains considerable properties for membranes, such as an increased surface area with
excellent physical, chemical, and thermal properties [104]. Moreover, the incorporation
of inorganic SiO2 into the polymer matrix enhances the PC of the composite membrane
due to the high water-holding property of SiO2 [105]. Different ideas about SiO2 have
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been made and studied in this context for use in MFC membranes. Kircheva et al. inves-
tigated the MFC performance of a low-cost microporous polyethylene (PE)/silica (PE-Si)
membrane in an air-cathode MFC, finding that the PE-Si membrane performed similarly
to the Nafion 117 membrane under different conditions using nonparametric analysis
(Mann–Whitney) [106]. In another approach, composite membranes have been developed
by SiO2-polyvinyl chloride (PVC) by solution casting method [107]. The PC of the com-
posite membrane has been increased by incorporating hygroscopic silica gel due to its
high WU property and the inclusion of the desired ratio of citric acid and phosphotungstic
acid (PWA). Increasing the concentration of silica increases the IEC and WU capacities.
Though particle agglomeration has increased the silica concentration beyond the limit, this
has decreased the mechanical strength. The maximum power density (PD) obtained was
43.91 mW cm−2 for the composite membrane containing 5% silica with 5% PWA [107].

Angioni et al. introduced mesoporous silica (SBA-15) and modified it with propylsul-
phonic groups (10 and 50 mol.% of SBA-SO3H) as fillers into the Nafion membrane [108].
The prolonged study of MFCs using wastewater showed that the Nafion-SBA15−SO3H
(10 mol.%) membrane exhibited higher PD (380 mW m−3) than the Nafion membrane
with higher COD removal efficiency (95%) and enhanced coulombic efficiency (CE) (34%).
Moreover, SBA15-SO3H-based fillers protect the surface of the composite membrane from
biofouling. Thus, the mesoporous SBA-SO3H fillers in Nafion could be used to develop
composite membranes for MFC wastewater treatment [108]. Incorporating inorganic addi-
tives enhances the PC of the composite membrane at high temperatures [104]. In case of low
temperature (30 ◦C), the PC of the composite membrane has been reduced [104,109,110].
Hence, sulfonation of the inorganic additives has been incorporated to increase PC at low
temperatures. In this way, Sivasankaran et al. fabricated a PEM comprising sulfonated SiO2
(sSiO2—2.5, 5, 7.5, and 10%) into sulfonated polystyrene ethylene butylene polystyrene
(SSEBS) for single-chamber MFC (SCMFC) [104]. The interaction between sSiO2 and SSEBS
is shown in Figure 2a. By increasing the s-SiO2 content in the composite membrane, the IEC
(3.015 meq/g) and PC (0.321 S/cm) (Figure 2b) increased up to 7.5% s-SiO2 concentration.
In similar conditions, the IEC and PC of pure SSEBS are 1.825 meq/g and 1.52× 10−2 S/cm,
respectively. It makes the s-SiO2 concentration even higher (over 7.5%) and decreases
the PC of the membrane because too much s-SiO2 causes it to clump together. Because
of this, the composite membrane’s ability to take in water worsens, making it harder for
protons to pass through membranes. Due to its higher PC and lower oxygen permeability,
the SSEBS-s-SiO2 7.5% composite membrane has been found to improve the performance
of the SCMFC (Figure 2c,d); 7.5% sSiO2 in the SSEBS composite membrane resulted in a
higher PD of 1209 ± 17 mW m−2 [104]. In another study, Sivasankaran and Sangeetha
prepared (Figure 2e,f) a sSiO2-containing composite membrane with SPEEK [105] instead
of SSEBS polymer for SCMFC. The presence of sSiO2 in the SPEEK polymer enhanced the
WU, IEC, and PC of the SPEEK-sSiO2 membrane. Therefore, MFCs with a SPEEK-sSiO2
membrane generated a power output of 1008 mW m−2 (Figure 2g), three times more than
Nafion 115 (320 mW m−2). Moreover, the SPEEK-sSiO2 membrane revealed excellent unit
cell performance compared to the SPEEK (680 mW m−2) and SPEEK-SiO2 (nonsulfonated
SiO2-802 mW m−2) membranes [105]. Moreover, the same research group investigated the
effect of a SPEEK-SiO2 nanocomposite membrane on microbial community via tubular
MFC in generating electricity by treating sewage wastewater [111]. It was also observed
that sulfonated inorganic filler increased the PC of composite membrane because the sul-
fonated organic–inorganic materials in the membrane enhanced the performance [111].
Table 1 presents the physical and chemical properties and evaluation results of sulfonated
silica incorporated polymer membranes for MFC applications.
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Figure 2. (a) A graphical representation of SSEBS polymer and sSiO2 inorganic filler interaction.
(b) Nyquist plots, (c) power density, and (d) polarization curves of SSEBS, SSEBS/SiO2 (7.5%), and
SSEBS/sSiO2 (2.5, 5, 7.5, and 10%) membranes. Reproduced from [104], with permission from
Elsevier, 2016. (e) Preparation of sSiO2, (f) FT-IR of SiO2 and sSiO2, and (g) polarization curve
and power density of Nafion 115, SPEEK, SPEEK-SiO2, and SPEEK-sSiO2 membranes. Reproduced
from [105], with permission from Elsevier, 2015.
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Table 1. Physicochemical properties and performance evaluation results of sulfonated silica incorpo-
rated polymer membrane for MFC applications.

IA Polymer WU (%) IEC(meqg−1) PC S/cm) K0 (cms−1) IR (Ω) PD (mWm−2) CE (%) Ref.

Nafion 0.085

[108]

Mesoporous
silica (SBA-15) Nafion 0.028

SBA-SO3H10 Nafion 0.062 34

SBA-SO3H50 Nafion 0.088

SSEBS 164 ± 7 1.825 3.5 × 10−5 66 680 ± 13 75

[104]

SiO2-7.5% SSEBS 185 ± 8 1.622 0.9 × 10−5 60 852 ± 11 78

S-SiO2-2.5% SSEBS 175 ± 10 1.990 0.98 × 10−5 55 82

S-SiO2-5% SSEBS 187 ± 9 2.55 0.8 × 10−5 45 80

S-SiO2-7.5% SSEBS 210 ± 8 3.015 3.21 × 10−2 0.75 × 10−5 37 1209 ± 17 85

S-SiO2-10% SSEBS 200 ± 11 2.821 0.67 × 10−5 39 83

Nafion 22 0.982 2 × 10−2 1.6 × 10−4 290 ± 7

SPEEK 23 1.12 3 × 10−6 71 ± 3 680 75 ± 4

[105]

SiO2-5% SPEEK 39 1.41 0.9 × 10−6 62 ± 2 802 79 ± 4

S-SiO2-2.5% SPEEK 35 1.65 1.2 × 10−6 55 ± 2 864 85 ± 5

S-SiO2-5% SPEEK 40 1.73 1 × 10−6 50 ± 1 912 87 ± 6

S-SiO2-7.5% SPEEK 42 1.80 1.018 × 10−2 0.84 × 10−6 46 ± 0.5 1008 ± 17 90 ± 7

S-SiO2-10% SPEEK 37 1.74 0.7 × 10−6 52 ± 1 810 85 ± 6

22 3.0 × 10−2 1.6 × 10−5 320 ± 6

SPEEK 37 ± 0.3 1.15 ± 0.06 0.96 × 10−2 2.2 × 10−6 39 59 ± 1.2

[111]

2.5wt% S-SiO2 SPEEK 38 ± 0.5 1.34 ± 0.03 0.99 × 10−2 1.74 × 10−6 37 72 ± 1.6

5wt% S-SiO2 SPEEK 39 ± 0.4 1.54 ± 0.05 1.14 × 10−2 1.64 × 10−6 32

7.5wt% S-SiO2 SPEEK 40 ± 0.6 1.82 ± 0.08 1.24 × 10−2 1.42 × 10−6 29 154 ± 1.5

10 wt% S-SiO2 SPEEK 39 ± 0.3 1.71 ± 0.04 1.1 × 10−2 1.49 × 10−6 34

Nafion 22 ± 0.4 1.2 ± 0.05 0.85 × 10−2 2.42 × 10−6 45 145 ± 1.6

IA—inorganic additives, WU—water uptake, IEC—ion exchange capacity, PC—proton conductivity, K0—oxygen
mass transfer coefficient, IR—internal resistance, PD—power density, CE—coulombic efficiency.

3. Sulfonated TiO2 Containing Polymer Membrane for MFC Applications

The inorganic nanofillers of TiO2 and its modified version gained potential advantages
for developing organic–inorganic hybrid composite membranes due to their hygroscopic,
chemical properties and inbuilt antibacterial effect [112,113]. Membrane fouling has been
reduced in the composite membrane containing TiO2 due to its hydrophilic properties,
which increase the membrane surface hydrophilicity, thus decreasing the hydrophobic inter-
action between microorganisms and the membrane surface [114]. Christophe Pagnout et al.
studied the electrostatic interaction between Escherichia coli and TiO2. In this case, at
neutral pH, the TiO2 does not show any toxicity toward E.coli. Still, it exhibits toxi-
city in acidic and alkaline pH conditions due to the positive and negative charges of
TiO2 and bacterium, respectively [115]. Introducing TiO2 and sulfonated TiO2 (sTiO2)
provides considerable benefits for developing the hybrid membrane for various energy
systems [116–120]. Bajestani and Mousavi developed a Nafion-TiO2-1 wt% membrane
using different solvents (NMP, DMAc, and DMF) [112]. The characteristic membrane
behaviors were investigated along with the impact of casting solvents. The solvents used in
membrane preparation are responsible for the membrane morphology through their volatil-
ity and polymer–solvent–NP interaction. Nafion-TiO2 with DMF demonstrated strong
hydrogen bonding interactions and higher porosity among the tested solvents. Thus, the
Nafion-TiO2 in the DMF solvent membrane showed higher WU (51%), PC (0.0126 S/cm),
and IEC (1.32 meqg−1). Moreover, the enhanced PC of Nafion-TiO2 with DMF solvent
exhibits an increased OCV (330 mV) of MFCs at steady-state conditions [112].
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Sulfonated polyether ether ketone (SPEEK) is an excellent candidate among hydrocar-
bon polymers due to its low cost and higher chemical and mechanical stability [121,122].
The degree of sulfonation in SPEEK is proportional to the membrane’s PC [120]. However,
the increased amount of -SO3H functional group in the SPEEK membrane increased the
WU and swelling ratio, reducing the membrane’s mechanical stability [122]. To address
the issues, various inorganic fillers, including TiO2, were introduced to modify the prop-
erties of SPEEK membranes [123]. In this connection, Venkatesan and Dharmalingam
prepared a SPEEK-TiO2 composite membrane using the rutile structure of TiO2 for MFC
applications [124]. An increased oxygen mass transfer coefficient and cation transport
behavior were observed for the composite membrane. Among different concentrations of
TiO2 (2.5, 5.0, 7.5, and 10%), the 7.5% TiO2 in SPEEK composite membrane showed efficient
IEC, PC, antifouling properties, and PD. It has been seen that increased TiO2 content (10%
TiO2) exhibits a blocking effect and controls the ionic channels, which affects the PC of
the membrane [124]. In another approach, different ratios of TiO2 (2.5, 5, 7.5, and 10%) in
SPEEK membranes were developed for generating electricity from dairy wastewater [125].
Among different ratios, SPEEK with a 5% TiO2 composite membrane showed increased
WU (31%) and IEC (1.71 meqg−1). From the MFC performances, it has been identified
that SPEEK with a 5% TiO2 composite membrane showed increased PD (1.22 Wm−2) and
voltage (0.635 V). Moreover, the hybrid composite membrane exhibits a high COD removal
efficiency [125]. The Ti-based compounds of perovskite oxides, such as strontium titanate
(SrTiO3), have also been used as filler for their high hydrophilic nature that enhances the
WU property [126–128]. By means of this, silica particles can improve the homogenous
dispersivity of the polymer matrix. When surface-modified nanofillers are added to the
polymer matrix, they make the membrane stronger than when unmodified nanofillers are
added. Bhowmick et al. incorporated the modified SrTiO3/Si and TiO2/Si and nanofillers
into the PVA polymer matrix for fabricating PEM [126]. The base polymer PVA possesses
high hydrophilic properties and film-forming ability due to the cross-linking of the avail-
able –OH groups. SrTiO3/Si-PVA and TiO2/Si-PVA composite membranes generated PDs
of 5.39 ± 0.27 and 6.16 ± 0.31 Wm−3, respectively. The induced PDs were comparable to
Nafion and 30 times less expensive for developing the composite membrane [126]. Consid-
ering cellophane as the base material for membrane developments provides an alternative
option for generating electricity and pollutant removal using MFCs. In this case, a 1:1
ratio mixed combination of ZnO and TiO2 NPs (0.03%) was incorporated in the cellophane
and further altered with the bio-inspired polydopamine [129]. This combination has been
effectively considered because of its novel, cost-effective, antibiofouling, and self-cleaning
properties. Power generation was increased during MFC operation by increasing cation
transport during the oxidation process via PDA modifications and catalyst mixing of the
modified membrane. In addition to this, the membrane surface fouling and lifespan were
reduced by the increased hydrophilic property of membrane modifications [129].

Its surface properties have been modified in multiple ways to enhance the efficiency
of TiO2 NPs in membranes. Besides creating more proton transport channels, the surface
modification of TiO2, primarily sulfonation, also acts as a proton carrier vehicle owing
to its negative charge [130,131]. However, due to the neutral charge, metal oxides (-OH
group) and water molecules generated proton transport pathways [131]. In addition, the hy-
drophilic sulfonic acid groups exchanged the hydroxyl group of TiO2 during sulphonation
that further enhancing the antibiofouling characteristic of the composite membrane [132].
In this view, the impact of sulfonated TiO2 (sTiO2) has been evaluated using a SPEEK
polymer membrane [133]. The sTiO2 in the composite enhances PC and reduces oxygen dif-
fusion. The results showed that MFCs with SPEEK-sTiO2 (7.5 wt.%) membrane generated
an excellent PD of 1202.5 mW m−2 with a reduced internal resistance of 37 Ω [133]. The
same research group prepared a novel SPEEK-based composite membrane with hydrother-
mally synthesized sulfonated titanium nanotube (S-TNT) for enhancing the membrane
lifespan, PC and antibiofouling properties for electricity generation through tubular MFC
(Figure 3) [130]. The incorporated hollow S-TNT has a high water-holding capacity that
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helps to increase the proton transport mechanisms. By using tubular MFC (300 mL), the
maximum PD of 121 mWm−2 (with 79.37% COD removal) was obtained for the SPEEK/S-
TNT (7.5%) composite membrane. The higher performance is mainly possessed by a
high IEC value of 3.2 meqg−1 with decreased internal resistance (30 Ω) [130]. Another
approach was made with novel sulfonated polystyrene–ethylene–butylene–polystyrene
and sulfonated TiO2 (SPSEBS/sTiO2) nanocomposite membranes as PEM for MFC applica-
tions [131]. The membrane PC was enhanced by sulfonating the inorganic TiO2 nanofiller
and delivered the highest PD of 1345 ± 17 mW m−2 for SPSEBS/STiO2 7.5%, which was
found to be 124% higher than MFCs with pristine SPSEBS membrane [131]. For evalu-
ating MFC performance, a combination of SPSEBS polymer with various percentages of
synthesized S-TNT was used, as well as statistical optimization (Box–Behnken factorial
design) of operational parameters (catalyst concentration, external resistance, and substrate
type) [134]. Here, the STNT in the composite membrane improves hydrophilicity, mechan-
ical stability, and PC with the highest antibiofouling property in MFC application [134].
Cost-effective polyvinylidene fluoride (PVDF) polymers have been considered a membrane
candidate for MFC applications. PVDF is also considered a base polymer material for
preparing PEM due to its better thermal and chemical properties [135–137]. To enhance the
PC of PVDF, modifying PVDF through a polymer grafting method in which sodium styrene
sulfonate directly reacts with ozone-preactivated PVDF powder and is grafted into leading
chains resulted in the development of PVDF-g-PSSA membrane with enhanced mechanical
and chemical stability with PC [138]. Although the hydrophobic nature of PVDF causes
membrane biofouling on the membrane surface in PVDF-g-PSSA membranes, this makes
them not suitable for long-term operation in MFCs [138]. Hence, Li et al. created sTiO2
by grafting sulfonic groups onto TiO2 and embedding it in PVDF-g-PSSA membranes to
create a sTiO2-PSSA composite membrane with enhanced PC and antibiofouling prop-
erties using a solution casting technique [139]. Transmission electron microscopy (TEM)
analysis (Figure 4a,b) has shown that PPSSA and sTiO2-PPSSA have both hydrophilic and
hydrophobic regions and ionic aggregation. The hydrophilic region refers to darker regions,
and the hydrophobic region refers to brighter areas. Here, the hydroxyl groups in the
inorganic TiO2 filler have been substituted with a sulfonic acid group in sTiO2. Therefore,
adding of sTiO2 increased the hydrophilicity of the STiO2-PSSA composite membrane,
which made the membrane better at absorbing water. As a result of the interdependent
effect of Grotthuss and vehicle mechanisms, the development of proton transport pathways
increases membrane PC (Figure 4c). The sTiO2-PSSA composite membrane stability and
the antibiofouling property have been evaluated through MFC operation for 2 months with
their obtained PDs and polarization curves (Figure 4d). The fouled composite membrane
demonstrated an excellent PD and a 91% higher COD removal efficiency than the Nafion
117 membrane [139]. Table 2 displays the physicochemical properties and performance
evaluation results of polymer membranes with different kinds of TiO2 added for MFC
applications.

Table 2. Physicochemical properties and performance evaluation results of sulfonated TiO2 containing
polymer membrane for MFC applications.

IA Polymer WU (%) IEC
(meqg−1) PC S/cm) K0 (cms−1) IR (Ω) PD

(mWm−2) CE (%) COD (%) Ref.

S-TiO2-5% SPEEK 37 0.99 0.7 × 10−6

[133]

TiO2-5% SPEEK 25 0.75 0.7 × 10−6

SPEEK 20 0.9 3 × 10−6

S-TiO2-2.5% SPEEK 32 0.95 0.5 × 10−6

S-TiO2-7.5% SPEEK 39 1.05 1.382 × 10−2 0.8 × 10−6 37 1202.5

S-TiO2-10% SPEEK 38 0.94 0.87 × 10−6

Nafion 22 0.30 × 10−2 1.6 × 10−5 125 300
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Table 2. Cont.

IA Polymer WU (%) IEC
(meqg−1) PC S/cm) K0 (cms−1) IR (Ω) PD

(mWm−2) CE (%) COD (%) Ref.

SPEEK 37.2 1.8 0.97 × 10−2 2.2 × 10−6 39 59

[130]

S-TNT-2.5% SPEEK 37.9 2.5 1.1 × 10−2 1.74 × 10−6 35 70

S-TNT-5% SPEEK 38.5 2.8 1.24 × 10−2 1.54 × 10−6 33

S-TNT-7.5% SPEEK 39 3.2 1.37 × 10−2 1.32 × 10−6 30 121 51 ± 2 79.37

S-TNT-10% SPEEK 38.2 2.9 1.0 × 10−2 1.49 × 10−6 37

Nafion 22 1.2 0.81 × 10−2 2.4 × 10−6 45 117

S-TiO2-7.5% SPEEK 37.6 2.5 1.18 × 10−2 1.42 × 10−6 35 102

SPSEBS 163 ± 3 1.89 1.52 × 10−2 3.5 × 10−5 66 ± 4 695 ± 7 75 ± 3

[131]

TiO2-7.5% SPSEBS 170 ± 5 1.62 1.08 × 10−2 0.8 × 10−5 60 ± 3 835 ± 8 72 ± 2

S-TiO2-2.5% SPSEBS 185 ± 8 2.25 1.75 × 10−2 0.8 8 × 10−5 55 ± 2 975 ± 11 80 ± 4

S-TiO2-5% SPSEBS 200 ± 9 3.02 2.51 × 10−2 0.7 × 10−5 45 ± 1 1200 ± 15 83 ± 3

S-TiO2-7.5% SPSEBS 220 ± 11 3.35 3.57 × 10−2 0.64 × 10−5 35 ± 0.8 1345 ± 17 87 ± 4

S-TiO2-10% SPSEBS 218 ± 10 3.02 2.72 × 10−2 0.60 × 10−5 37 ± 0.5 1105 ± 13 85 ± 5

PVDF-g-PSSA 25 ± 0.2 0.046 ± 0.003 243.95 106.67 85

[139]

TiO2-1% PVDF-g-PSSA 28.3 ± 0.3 0.041 ± 0.002 309.67 98.18 86

S-TiO2-1% PVDF-g-PSSA 33.2 ± 0.2 0.048 ± 0.003

S-TiO2-2.5% PVDF-g-PSSA 36.4 ± 0.2 0.053 ± 0.002

S-TiO2-5% PVDF-g-PSSA 40.9 ± 0.1 0.067 ± 0.002 224.24 130.54 91

S-TiO2-7.5% PVDF-g-PSSA 32.6 ± 0.2 0.052 ± 0.003

Nafion 117 20 ± 0.1 0.078 ± 0.003 210.57 132.02 74

IA—inorganic additives, WU—water uptake, IEC—ion exchange capacity, PC—proton conductivity, K0—oxygen
mass transfer coefficient, IR—internal resistance, PD—power density, CE—coulombic efficiency.
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4. Sulfonated Graphene Oxide Containing Polymer Membrane for MFC Applications

The two-dimensional structure of graphene oxide (GO) is used as an inorganic filler
during composite membrane fabrication for its excellent physicochemical characteris-
tics, such as high hydrophilicity, PC, more surface area, and tremendous mechanical
strength [140–142]. The presence of different oxygen functional groups (i.e., hydroxyl,
carboxylic, and epoxy groups) in GO is responsible for its enhanced hydrophilicity. The
rigid mechanical strength of GO is also due to the strong covalent bonds in its hydrophobic
region [140,142]. As discussed, the SPEEK polymer exhibits immense PEM properties, such
as excellent thermal, mechanical, chemical stability, hydrophilicity, and low cost with high
ionic conductivity. In this view, Leong et al. successfully fabricated a GO/SPEEK composite
PEM with self-synthesized GO as a nanofiller [140]. GO/SPEEK composite membranes
are enhanced for transferring protons through the Grotthuss mechanism by a hydro-
gen bonding network that increases the composite membrane PC. Thus, the GO-SPEEK
composite membrane exhibits enhanced physicochemical properties with improved PC
(1.48 × 10−3 S cm−1) and oxygen diffusion coefficient (1.154 × 10−6 cm2 s−1). The per-
formance of MFCs with GO-SPEEK composite membrane exhibited a higher CE (16.88%)
than Nafion 117 (12.31%) and was recommended as a promising alternative to Nafion
117 membrane in MFCs [140]. A similar kind of composite PEM was developed by Sha-
bani et al. by introducing nano-sized GO into SPEEK for generating electricity while
simultaneously treating wastewater [143]. In MFCs, the SPEEK-GO composite membrane
outperformed the commercial Nafion 117 membrane in terms of WU, PD (53.12 mW m−2),
and CE (3.74 0.18%), as well as COD removal efficiency (88.71 0.29%) [143]. In another
approach, GO-SPEEK and Silver-GO/GO/SPEEK (AgGO-GO-SPEEK) self-fabricated com-
posite membranes were developed and used in MFC applications for their higher PC,
reduced oxygen crossover, and good antibiofouling properties [144]. The inclusion of Ag
NPs inhibits microbial growth in the membrane. The AgGO-GO-SPEEK membrane had a
54.2% higher PC and a 76.7% lower oxygen diffusion coefficient than the commercial Nafion
117 membrane. Furthermore, the AgGO-GO-SPEEK composite membrane demonstrated
low internal resistance with improved PD during MFC operation and outperformed the
commercial Nafion 117 membrane [144]. Along with SPEEK polymer, other sulfonated
hydrocarbon polymers (e.g., sulfonated polyethersulfone (SPES), sulfonated polysulfone)
have sparked interest in composite PEMs. Ali et al. developed a GO-incorporated SPES
composite membrane (GO/SPES) in MFCs for simultaneous electricity generation and
wastewater treatment [145]. The prepared GO-SPES composite membrane exhibited a
higher PD of 101.2 mW m−2 and a current density of 613 mA m−2 with an 80% COD
removal efficiency [145]. Inexpensive and high-availability PVA with higher thermal and
chemical stability was also introduced as a polymer matrix for developing PEM. Introduc-
ing the inorganic fillers into the PVA polymer matrix enhances its PC property and tunes
its physical and electrochemical properties to be suitable for IEM. GO, an inorganic filler,
was impregnated into a PVA and silicotungstic acid (STA) matrix for developing a low-cost
PVA/STA/GO composite membrane by solution casting technique for generating electric-
ity using SCMFCs [146]. The GO incorporation in the composite membrane enhances its
PC and antibiofouling properties. Moreover, SCMFCs with a PVA/STA/GO composite
membrane generated a maximum PD of 1.9 W m−3 by treating acetate wastewater with 91%
substrate removal efficiency [146]. Likewise, Rudra et al. prepared a graphite-oxide-based
nanocomposite membrane for harvesting electricity from SCMFCs containing crosslinked
PVA and sulfonated styrene (SS) (polymerized in situ) as the backbone matrix [147]. The
WU, swelling behavior, and oxygen diffusivity of the composite membrane have been re-
duced due to the hydrogen bonding of graphite oxide to the substrate. Thus, the composite
membrane with 0.4% graphite oxide in SCMFCs exhibited a higher PD of 193.6 mW m−2

with 803.33 mA m−2 current density and ~81.89% COD removal efficiency [147].
Recently, novel PEM has been developed by incorporating GO nanofiller into PVDF

and cellulose acetate (CA) polymer blend and used in MFCs for generating clean en-
ergy [148]. The presence of CA in this composite membrane has improved its ability to stop
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biofouling, the conductivity of protons, porosity, and the ability to attract water. In the same
way, the thermal and chemical stability of the composite membrane was attributed to PVDF
and GO for improving surface area along with membrane hydrophilicity [148]. This study
was extended by the same group, in which superior low-cost PEM was developed, consist-
ing of PVDF, CA, and reduced GO (rGO) for extracting electricity using MFCs [137]. During
MFC performances, it was seen that the performance of the composite membrane was
similar to that of commercial membranes. It has been seen that composite membranes gen-
erated a higher COD removal efficiency (92.0 ± 0.8%) along with 118 mW m−2 of PD [137].
Despite developing composite PEM using a synthetic polymer matrix, Holder et al. utilized
biopolymers such as chitosan (CS), in which GO was introduced as a filler to form CS/GO
composite membrane [149]. In addition, CS/GO cross-linked with sulfuric acid or phos-
phoric acid for developing CS/GO-P and CS/GO-S composite membranes. During MFC
operation using wastewater, CS/GO-P-membrane-equipped MFCs generated maximum
PD (16.35 mW m−3) and COD removal efficiency (89.52%). In the same conditions, the
CS/GO-S delivered a PD of 6.94 mW m−3 and COD removal efficiency of 31.99% [149].

Because of a reasonable amount of oxygen-containing functional groups (e.g., hy-
droxyl, carboxyl, and -SO3H groups), sulfonated GO (sGO) can effectively increase the
PC, mechanical stability, and antifouling properties in the hybrid composite membrane
when compared to GO [150–152]. The phosphoric-acid-doped PBI can also be used as
a base polymer matrix for its excellent chemical, thermal, and mechanical properties to
develop composite membranes for MFC applications [89,150,153]. The PC depends on an
acid-doped membrane’s acid doping level (ADL). However, increasing the ADL in the
membrane reduces its mechanical strength. Hence, modifications such as incorporating
inorganic nanofillers have been performed to develop PBI nanocomposite with enhanced
mechanical and thermal stability and dimensional stability. In this way, Mondal et al.
fabricated sulfonated SPBI-based composite PEM by introducing different proportions of
SGO (Figure 5a) [150]. For sulfonating PBI polymers, it reacts with 2-chloro ethane sulfonic
acid, in which the PBI imidazole nitrogen atom has been covalently grafted with alkyl
sulfonic acid. The GO nanofiller was synthesized using a modified Hummers’ method
and sulfonated with chlorosulfonic acid. Figure 5b shows that SPBI-5% SGO exhibited
a higher PC of 0.018 S cm−1 than pristine PBI membrane (4.28 × 10−4 S cm−1). This
increment was attributed to the development of more proton transport channels through
H-bonding developed by a higher content of –SO3H groups in the PBI matrix during SGO
inorganic filler incorporation. During the MFC operation (Figure 5c), it was observed
that the homogenous and widespread distribution of SGO in the 3% SPBI-SGO composite
membrane exhibited a higher OCV of ~669 ± 18 mV and a maximum current density of
2019.06 mA m−2 at 0.234 V. It was expected that MFCs with a 5% SPBI-SGO composite
membrane would exhibit a higher OCV and current density due to its enhanced PC and
IEC values. However, it performed worse than the 3% SPBI-SGO composite membrane,
owing to a higher concentration of SGO agglomerate on the PBI surface and more sul-
fonic acid groups on the membrane surface. Therefore, the substrate-generated cations
interacted with those groups enhancing membrane resistivity. It was also noted that the
maximum PD of 472.46 mW m−2 was generated by MFCs equipped with 3% SPBI-SGO
than pristine PBI, SPBI, or other composite membranes. Hence, MFCs with a 3% SPBI-
SGO composite membrane exhibited increased current generation with reduced voltage
drops, recommended as an alternative PEM candidate for MFC application [150]. More-
over, Shabani et al. prepared a cost-effective sulfonated polyethersulfone (SPES)-based
hybrid composite membrane by introducing GO, thiolated GO (TGO), and SGO filler for
enhancing MFC performances [154]. The proton selectivity of the composite membrane
was improved by introducing -SO3H and sulfhydryl (-SH) groups in the fillers. From this,
the 1.8% SPES-SGO composite membrane exhibited higher proton (H+) selectivity than
other cations (Li+, N+, and K+). Hence, the functionalized GO nanocomposite membranes
in MFCs showed higher PD and CE with higher COD removal efficiency [154]. A novel
composite antibiofouling PEM has been developed with the introduction of SGO into the
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PVDF-g-PSSA polymer matrix, and its MFC performance was evaluated [151]. The SO3
−

groups in the composite PVDF-g-PSSA/SGO membrane increase the WU, hydrophilicity,
and ionic conductivity of the membrane, which enhances the electricity generation during
MFC operation [151]. In another way, the same research group made new PVDF-g-PSSA-
based composite membranes with SiO2-filled SGO nanofillers (Figure 6a) to improve the
PC and antibiofouling properties [155]. SiO2 has been inserted into SGO through in situ
hydrolysis, with ethyl orthosilicate used as a precursor to obtain SiO2/SGO. Furthermore,
the various concentrations of developed SiO2/SGO NPs (0.1, 0.5, 1.0, and 2.0%) are pre-
pared and added to the PVDF-g-PSSA polymer matrix. Increasing the -SO3H content of
the membrane improves PC, as seen in the impedance spectra in Figure 6b. Incorporat-
ing SiO2/SGO enhances the proton transport channels for migration and increases the
composite membrane’s hydrophilic properties (WU%). These improvements improved
the composite membrane’s PC, which was higher at 1% SiO2/SGO. Further increasing the
SiO2/SGO NP content decreases the composite membrane’s PC values through the particle
agglomeration that prevents the polymer chain from free movement and thus reduces the
proton transport. MFCs with PVDF-g-PSSA/SGO/SiO2 membrane outperformed MFCs
in terms of PD and current density (185 mW m−2 and 1338 mA m−2, respectively) as
shown in Figure 6c. In addition, low resistance and reduced membrane fouling result
in 75% COD removal efficiency (Figure 6d,e) [155]. The physicochemical properties and
performance evaluation results of sulfonated GO-incorporated polymer membranes for
MFC applications have been provided in Table 3.
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Table 3. Physicochemical properties and performance evaluation results of sulfonated graphene
oxide containing polymer membrane for MFC applications.

IA Polymer WU (%) IEC
(meqg−1) PC (S/cm) OCV

(mV)
IR
(Ω)

CD
(mAm−2)

PD
(mWm−2) CE (%) COD (%) Ref.

Nafion ~716 ± 21 481.3

[150]

PBI 4.28 × 10−4 ~477 ± 13 709.19

SGO-1% SPBI ~567 ± 16

SGO-3% SPBI 0.912 ~669 ± 18 2019.06 472.46

SGO-5% SPBI 21 1.001 0.018 ~625 ± 18 1959.43

Nafion 17.5 0.86 ± 0.1 0.0013 233.3 ± 3 35.9 ± 2 2.28 ± 0.2 82.71 ± 5

[154]

PES 5.41 0.28 ± 0.1 0.00021

SPES 12.33 0.36 ± 0.1 0.00032 216.7 ± 3 27.8 ± 2 2.19 ± 0.2 79.76 ± 5

GO-0.6% SPES 20.71 0.42 ± 0.1 0.00044 218.7 ± 7 28.5 ± 2 2.04 ± 0.2 75.2 ± 5

GO-1.2% SPES 22 0.54 ± 0.1 0.00052 222.1 ± 3 32.1 ± 2 2.20 ± 0.2 80.74 ± 5

GO-1.8% SPES 23.13 0.74 ± 0.1 0.00056 225 ± 3±3 39.2 ± 2 2.28 ± 0.2 86.47 ± 5

SGO-0.6% SPES 28.41 0.61 ± 0.1 0.00105 233.5 ± 3 46.8 ± 2 2.13 ± 0.2 78.21 ± 5

SGO-1.2% SPES 33.54 0.72 ± 0.1 0.00125 276.4 ± 3 61.5 ± 2 2.64 ± 0.2 85.41 ± 5

SGO-1.8% SPES 36.32 0.84 ± 0.1 0.00142 300 ± 3 66.4 ± 2 3.73 ± 0.2 89.85 ± 5

TGO-0.6% SPES 24.55 0.55 ± 0.1 0.00084 223.6 ± 3 43.4 ± 2 2.18 ± 0.2 72.53 ± 5

TGO-1.2% SPES 26.22 0.63 ± 0.1 0.00101 255 ± 3 51.7 ± 2 2.51 ± 0.2 85.22 ± 5

TGO-1.8% SPES 30 0.77 ± 0.1 0.00125 275 ± 3 54.13 ± 2 3.20 ± 0.2 88.07 ± 5

PVDF-g-PSSA 25.00 0.58 0.046 243.9 106.67

[151]

GO-1.0% PVDF-g-PSSA 29.32 0.79 0.065 189. 138.02

SGO-0.1% PVDF-g-PSSA 26.45 0.64 0.056

SGO-0.5% PVDF-g-PSSA 30.14 0.81 0.068

SGO-1.0% PVDF-g-PSSA 32.56 1.24 0.083 167.9 180.27

SGO-1.5% PVDF-g-PSSA 33.05 1.08 0.079

SGO-2.0% PVDF-g-PSSA 34.24 0.85 0.070

Nafion 20.00 0.89 0.078 210.5 132.02

Nafion 20.1 ± 0.1 1.0 ± 0.1 0.071 ± 0.003 210 132 74

[155]

PVDF-g-PSSA 25.0 ± 0.2 0.60 ± 0.2 0.046 ± 0.003 228 147 68

SGO-1.0% PP 32.4 ± 0.2 1.4 ± 0.2 0.073 ± 0.002 191 166 71

SGO@SiO2-0.1% PVDF-g-PSSA 26.1 ± 0.3 1.0 ± 0.2 0.068 ± 0.002

SGO@SiO2-0.5% PVDF-g-PSSA 30.1 ± 0.1 1.2 ± 0.2 0.072 ± 0.004

SGO@SiO2-1.0% PVDF-g-PSSA 34.2 ± 0.2 1.6 ± 0.1 0.078 ± 0.004 152 1338 185 75

SGO@SiO2-2.0% PVDF-g-PSSA 33.6 ± 0.2 1.4 ± 0.2 0.074 ± 0.003

IA—inorganic additives, WU—water uptake, IEC—ion exchange capacity, PC—proton conductivity, OCV—open
circuit voltage, IR—internal resistance, CD—current density, PD—power density, CE—coulombic efficiency.

5. Sulfonated Fe3O4 Containing Polymer Membrane for MFC Applications

Developing hybrid membranes with Fe3O4 and its modified version for various sys-
tems was intriguing [156–158]. In this connection, Prabhu and Sangeetha prepared the
composite SPEEK-Fe3O4 by incorporating different weight percentages (2.5, 5.0, 7.5, and
10%) of Fe3O4 into the SPEEK polymer matrix [159]. The effect of Fe3O4 on the composite
membrane was measured in terms of its electrochemical performance, ability to take in
water, ability to let oxygen pass through it, and ability to conduct ions. The 7.5% Fe3O4-
SPEEK composite membrane fabricated MFCs exhibited a lower oxygen diffusion rate
with increased PC and attained a maximum PD of 104 mW m−2 [159]. Solution casting
techniques are commonly preferred for developing polymer nanocomposite membranes
because of their efficiency and applicability, even in smaller quantities [81,160]. However,
this technique is unsuitable during large-scale membrane development for its innate in-
appropriateness over commercial standards. Palma et al. fabricated a polyethersulfone
(PES)-based nanocomposite membrane using different contents of Fe3O4 NPs using melt
extrusion membrane for developing the membrane on a large scale [81]. The composite
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membrane performance was evaluated using H-type MFC with sodium-acetate-containing
synthetic wastewater. Incorporating Fe3O4 NPs into the membrane increases its mechanical
strength, which is desirable for long-term stable MFC operation. During MFC operation,
the highest PD of 9.59 ± 1.18 mW m−2 and current density of 38.38 ± 4.73 mA m−2 for
composite membrane with 20% Fe3O4 NPs incorporation were reported [81]. In a second
study, they looked at how pretreating PES/Fe3O4 nanocomposite membranes affected the
electrochemical performance of MFCs [161]. It was observed that pretreating the membrane
involved boiling the composite membrane for 1 h in deionized water and immersing it in
H2SO4 (0.5 M) for 1 h. As a result, PES-Fe3O4 (10 wt%) composite membrane exhibited a
membrane resistance of 7.55 kΩ with a PD of 10.59 ± 0.72 mW m−2 and a current density
of 52.07 ± 0.86 mA m−2. Hence, the pretreatment method reduces the incorporation of
the NPs used effectively for MFC applications [161]. In another approach, permanently
modified magnetite NPs filler (Fe3O4) has been achieved through the direct degree of
sulfonation using various amounts of sulfuric acid (0.5, 1, and 1.5 M) [162]. The micro- and
crystalline nature of the magnetite NPs structure was not altered during the sulfonation
process, as confirmed by experimental analysis. Then, the composite PES-based membrane
was fabricated by introducing various contents of sFe3O4 (5, 10, 15, and 20 wt%), and
their performance was evaluated in H-type MFC using an acetate substrate. Here, the
large number of –SO3H and -OH functional groups enhances the membrane hydrophilicity,
which improved the WU, IEC, and PC values with reduced oxygen diffusion properties
of the sulfonated membranes. The absorption peaks for pristine Fe3O4 and sulfonated
Fe3O4 NPs were analyzed through the FTIR technique and shown in Figure 7, which is
used to confirm the sulfonation functional group. During 350 h of MFC operation, the MFC
coupled with the PES20_S composite membrane exhibited the highest total organic carbon
(TOC) removal rate of 82.74% (Figure 7). It was observed that the PES10_S composite mem-
brane showed the highest power and current densities of 270% and 117% higher than the
Nafion 117 membrane, respectively, along with 868.09 mV of OCV and 29.58% of CE [162].
The physicochemical properties and performance evaluation results of sulfonated Fe3O4
incorporated polymer membranes for MFC applications have been provided in Table 4.
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Table 4. Physicochemical properties and performance evaluation results of different kinds of sul-
fonated additives containing polymer membrane for MFC applications.

IA Polymer WU (%) IEC
(meqg−1) PC (S/cm) K0 (cms−1) OCV (mv) IR (Ω) CD

(mAm−2)
PD
(mWm−2) Ref.

Fe3O4-10% PES 1.56 ± 0.24 0.07 ± 0.02 1.26 × 10−3 550.50 ± 3.53 13.87 ± 1.79 20.78 ± 0.30 5.72 ± 0.81

[162]

SFe3O4-5% PES 1.99 ± 0.04 2.08 ± 0.19 1.10 × 10−4 580.90 ± 32.4 7.92 ± 0.75 47.96 ± 3.58 18.70 ± 0.48

SFe3O4-10% PES 3.78 ± 0.20 5.49 ± 0.43 1.28 × 10−4 150.67 ± 8.45 5.77 ± 0.96 150.67 ± 8.4 65.24 ± 5.79

SFe3O4-15% PES 3.98 ± 0.01 6.49 ± 0.19 1.45 × 10−4 132.84 ± 4.29 5.42 ± 0.25 132.84 ± 4.2 47.82 ± 4.32

SFe3O4-20% PES 5.23 ± 0.30 9.76 ± 0.52 1.46 × 10−4 104.91 ± 5.62 5.91 ± 0.33 104.91 ± 5.6 32.52 ± 3.34

SPSEBS 37.9 1.9 0.98 × 10−2 2.2 × 10−6 42

[163]

SPOSS-2% SPSEBS 38.2 2.6 1.2 × 10−2 1.7 × 10−6 38

SPOSS-4% SPSEBS 39.9 2.9 1.36 × 10−2 1.9 × 10−6 36

SPOSS-6% SPSEBS 41 3.7 1.40 × 10−2 1.6 × 10−6 31 126

SPOSS-8% SPSEBS 39.4 2.9 1.3 × 10−2 1.9 × 10−6 35

Nafion 22 1.2 0.77 × 10−2 2.4 × 10−6 45

SPEEK 29 ± 0.05 1.4 ± 0.3 0.92 × 10−2 2.1 × 10−6 37 100 ± 1.2

[164]

S-POSS-2.5% SPEEK 33.8 ± 0.03 1.5 ± 0.06 1.25 × 10−2 1.65 × 10−6 31

S-POSS-5% SPEEK 35.5 ± 0.08 1.8 ± 0.05 1.31 × 10−2 1.42 × 10−6 28 162 ± 1.4

S-POSS-7.5% SPEEK 34.6 ± 0.07 1.7 ± 0.02 1.12 × 10−2 1.69 × 10−6 33

S-POSS-10% SPEEK 32.4 ± 0.02 1.6 ± 0.07 1.02 × 10−2 1.82 × 10−6 35

Nafion 22 ± 0.03 1.2 ± 0.05 0.81 × 10−2 2.4 × 10−6 40 154 ± 1.7

SPEES 29.8 ± 0.3 1.4 ± 0.05 1.12 × 10−2 1.9 × 10−6 36 75

[165]

ZnO-7.5% SPEES 30.5 ± 0.2 1.3 ± 0.05 1.19 × 10−2 1.83 × 10−6 34

S-ZnO NR-2.5% SPEES 32.5 ± 0.2 1.6 ± 0.03 1.29 × 10−2 1.71 × 10−6 32

S-ZnO NR-5% SPEES 33.7 ± 0.5 1.8 ± 0.07 1.36 × 10−2 1.67 × 10−6 30

S-ZnO NR-7.5% SPEES 34.6 ± 0.6 2.0 ± 0.05 1.4 × 10−2 1.51 × 10−6 29 142

S-ZnO NR-10% SPEES 31.8 ± 0.9 1.9 ± 0.04 1.21 × 10−2 2.45 × 10−6 34

Nafion 22 ± 0.5 1.2 ± 0.06 0.81 × 10−2 40 130

6% SZnO NR SPSEBS 1.49 × 10−2 147 [166]

IA—inorganic additives, WU—water uptake, IEC—ion exchange capacity, PC—proton conductivity, K0—oxygen mass
transfer coefficient, OCV—open circuit voltage, IR—internal resistance, CD—current density, PD—power density.

6. Different Kinds of Sulfonated Additives in Polymer Membrane for
MFC Applications

The outstanding chemical stability, conductivity, and antimicrobial property of silver
(Ag) were also investigated for its application as an inorganic filler in fabricating composite
PEM for MFC applications [144,167–169]. The antimicrobial activity of Ag not only reduces
the biofilm formation in the membrane but also reduces the microbial growth responsible
for generating electrons [167,170,171]. Thus, the optimizing Ag NPs concentration as
fillers in composite membrane preparation is necessary. Kugarajah and Dharmalingam
fabricated a SPEEK-Ag composite membrane by incorporating different concentrations of
Ag into the SPEEK polymer matrix and studying their effect on MFC performance and the
microbial community [167]. During MFC operation, a maximum PD of 156 ± 0.5 mW m−2

was achieved for SPEEK-7.5 wt% Ag than other composite membranes or Nafion 117.
Furthermore, the antibiofouling effect of Ag in composite membranes contributed to its
long-term operation and improved MFC performance [167]. Tiwari et al. utilized cost-
effective borosilicate glass as a backbone matrix incorporated with PVA/Nafion for casting
a PVA/Nafion/borosilicate composite (MPN) membrane for MFC applications [172]. It was
observed that MFCs with MPN membrane generated a higher PD (6.8 W m−3) than Nafion
117 membrane (7.1 W m−3). Hence, the low-cost MPN membranes are an alternative to the
Nafion 117 membrane in real-time MFC applications [172]. Apart from inorganic fillers,
heteropoly acids (HPAs) such as silico tungstic acids (STAs) with high protonic conductivity
range (2 × 10−2 S cm−1) have also been used as fillers in polymer matrix for improving the
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stabilities and PC [173]. The hybrid composite membrane was fabricated by entrapping STA
particles in the SPEEK membrane for SCMFC applications. The SPEEK-7.5% STA composite
membrane exhibited a high power density (207 mW m−2) than Nafion 117 during SCMFC
operation [173]. Similarly, phosphotungstic acid (PWA) and sulfonated polystyrene (SPS)
have been introduced into the SPEEK polymer matrix to create more proton pathways
for enhanced PC in a developed composite PEM for MFC applications [174]. Saniei et al.
created hydrophilic goethite NPs and their derivatives, goethite–tannic acid–sulfanilic
acid NPs, and goethite–tannic acid NPs [175]. The composite SPEEK membrane has
been fabricated by embedding the as-prepared NPs into the SPEEK polymer matrix and
is used as a membrane in MFC operations. SPEEK with 0.5 wt% of goethite exhibited
higher PD (73.7 mW m−2), current density (293 mA m−2), and CE (52.6%) with increased
COD removal efficiency (97.6%) [175]. Recently, Sugumar and Dharmalingam prepared
a new PEM by solution-casting sulfonated polyhedral oligomeric silica (S-POSS) into the
SPSEBS base polymer matrix to improve mechanical strength and PC [163]. They also
statistically optimized (RSM) various pH, substrate concentrations, and anode materials
with SPSEBS/6%-SPOS composite membranes for generating electricity through tubular
MFCs. It has been observed that maximum PD (126 mW m−2) was obtained at 75% substrate
concentration, maintaining the pH 7 with graphite rod as anode material in MFCs operating
over 3 weeks [163]. The same research group took a different approach, incorporating
S-POSS into the SPEEK polymer matrix to create a promising PEM candidate for improving
tubular MFC stability and performance [164]. The inorganic S-POSS filler created more ion
transport channels in the composite membrane with its hydroxide ions. This made the PC
and WU go up. Along with this, they observed that bacterial strains such as Firmicuteswere,
Gammaproteobacteria, and Betaproteobacteria identified as bioelectrogenesis and provided
the future view on different electron transfer mechanisms [164]. The physicochemical
properties and performance evaluation results of various sulfonated additives incorporated
in polymer membranes for MFC applications have been provided in Table 4.

In some instances, zinc oxide (ZnO) is used in anode or cathode catalysts for enhancing
antibiofouling properties by suppressing the formation of biofilms [165,176,177]. In the
case of membrane applications as nanofillers, ZnO NPs are converted into nanorods (ZnO
NR) to increase the surface area for enhancing the WU property [165]. If ZnO NR fillers
were used in the composite membrane, the ionic conductivity was attributed solely to
the vehicular mechanism (via water). As a result, sulfonation of ZnO NR (S-ZnO NR) is
performed in addition to the vehicular mechanism to increase PC via Grotthuss mechanism
(via SO3H groups), as shown in Figure 8d. As a result, the researchers incorporated
different sulfonated ZnO NR (hydrothermally synthesized) ratios (2.5, 5, 7.5, and 10%)
into a sulfonated poly(phenylene ether ether sulfone) (SPEES) polymer for fabricating
SPEES/SZnO NR composite membranes in tubular MFCs. At this point, the SPEES polymer
and ZnO NR filler enhance the membrane’s hydrophilic properties, improving its water
holding, IEC, and PC. Both vehicular (through water) and Grotthuss mechanism (through
-SO3H) means of proton transport have been observed in SPEES/SZnO NR composite
membranes, due to the presence of nanorod structure (improving WU property) and the
sulfonic acid group. In this case, ionic transport is also aided by SO3

− domains that exhibit
strong electrostatic attraction, with the -SO3H group interacting directly with the polymer
structure (Figure 8d). In addition, S-ZnO NR incorporation also improves the composite
membrane’s mechanical stability and antibiofouling property. At the start of an MFC
operation, the voltage output goes down because the uptake of microorganisms means
the medium needs to be filled with new material. It was observed (Figure 8c) that MFCs
equipped with SPEES/7.5% SZnO NR delivered a maximum PD of 142± 1.2 mW m−2 with
lower internal resistance and was recommended to be used as PEM in MFCs for a long time
of operation [165]. In a different approach, the same research group incorporated SZnO into
SPSEBS polymer to prepare PEM, which was then used in MFCs for the green electricity
generation [166]. Here, SZnO NR was used to improve the proton transport mechanisms
and make the proton transport more conductive. This made the surface area bigger and the
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material more water-friendly. The highest PC of 1.49 × 10−2 S cm−1 has been observed for
the SPSEBS/6% SZnO composite membrane [166]. Thus, it has been confirmed that the
homogeneous addition of inorganic additives to the polymer matrix effectively improved
the overall physicochemical properties, stabilities, and MFC performances.
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7. Concluding Remarks

Recently, global researchers have raised significant concerns for the energy and envi-
ronmental research and development sectors. In this case, energy generation and water
remediation are urgently important categories to address for a safer human life. Among
the various devices, the MFC can produce bioenergy by cleaning wastewater. Thus, consid-
erable attention has been provided to the MFC system. Usually, the MFC’s performance
depends on components and process variables. The proton exchange membrane is the most
important candidate for making the MFC work best by controlling the substrate/oxygen
crossover and improving proton transport. There are different kinds of commercial mem-
branes available for MFC applications. However, commercial membranes have certain
disadvantages, such as high cost and fuel crossover. To overcome these issues in the poly-
mer membrane, different kinds of inorganic additives have been included homogeneously.
The inclusion of inorganic additives has significantly improved the membrane properties
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and performance. This review details the impact of sulfonated inorganic additives on their
functional group surface properties and the base polymer material. Sulfonated inorganic ad-
ditives, such as sulfonated silica (S-SiO2), sulfonated titania (S-TiO2), sulfonated graphene
oxide (S-GO), sulfonated iron oxide (S-Fe3O4), and sulfonated zinc oxide (S-ZnO), have
effectively altered the overall physicochemical properties of the membrane. Furthermore,
the surface morphology of the inorganic additive (such as nanoparticles, nanotubes, 2D
nanosheets, and core@shell) plays an important role in the membrane for controlling the
oxygen crossover. The sulfonic acid functional group enhances the hydrophilicity of the
polymer membrane and also holds the membrane’s dimensional stability, which are the
significant benefits of using sulfonated inorganic additives. The membrane contains higher
dimensional stability with hydrophilic nature, and an acid functional group can effectively
transfer the protons from the anode to the cathode via the vehicular (diffusion) mechanism
and Grotthuss (hopping) mechanism. This phenomenon generates more ionic channels and
carriers for efficient proton transport. Thus, the overall performance of MFC-containing hy-
brid (organic polymers and inorganic-sulfonated additives) composite membranes has been
higher than that of commercial membranes and corresponding pure polymer membranes.
To further improve the overall performance of membrane for MFC applications, numerous
efforts can be made by developing the inorganic additives with various concepts: (i) di-
mensional modifications (e.g., developing 2D-structured inorganic additives containing
proton exchange site will be more effective in controlling the crossover of oxygen without
affecting the proton transport behavior); (ii) functionalization of different properties of
inorganic additives (Very limited inorganic additives have been studied as a nanofiller for
MFC membranes. Therefore, excellent inorganic additives can be identified using various
options with different functionalization.); and (iii) combinations with different kinds of
organometallics and inorganic polymers.
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