
Citation: Yuan, R.; Zhang, M.; Sun, H.

Design and Construction of an

Azo-Functionalized POP for

Reversibly Stimuli-Responsive CO2

Adsorption. Polymers 2023, 15, 1709.

https://doi.org/10.3390/

polym15071709

Academic Editor: Youliang Cheng

Received: 16 January 2023

Revised: 27 March 2023

Accepted: 27 March 2023

Published: 29 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Design and Construction of an Azo-Functionalized POP for
Reversibly Stimuli-Responsive CO2 Adsorption
Rongrong Yuan *, Meiyu Zhang and Hao Sun

Department of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
* Correspondence: yuanrongrong@jlju.edu.cn

Abstract: A porous azo-functionalized organic polymer (JJU-2) was designed and prepared via oxida-
tive coupling polymerization promoted by FeCl3. JJU-2 exhibited reversibly stimuli-responsive CO2

adsorption properties as a result of the trans/cis isomerization of the polymer’s azo-functionalized
skeleton. Under UV irradiation and heat treatment, this porous material displayed various porous
structures and CO2 adsorption properties. The initial Brunauer-Emmett-Teller (BET) surface area
of JJU-1 is 888 m2 g−1. After UV irradiation, the BET surface area decreases to 864 m2 g−1, along
with the decrease of micropores around 0.50 nm and 1.27 nm during the trans-to-cis isomerization
process. In addition, CO2 sorption isotherms demonstrate an 8%t decrease, and the calculated Qst
of CO2 has decreased from 29.0 kJ mol−1 to 26.5 kJ mol−1 due to the trans to cis conversion of the
azobenzene side group. It is noteworthy that JJU-2′s CO2 uptakes are nearly constant over three cycles
of alternating external stimuli. Therefore, this azo-functionalized porous material was a potential
carbon capture material that was responsive to stimuli.

Keywords: porous organic polymer; azobenzene; trans/cis isomerization; CO2 sorption

1. Introduction

Modern industrial-era greenhouse gas emissions have a significant impact on global
warming and environmental change. Carbon dioxide (CO2) is regarded as one of the most
important greenhouse gases, resulting in an increased focus on reducing or capturing CO2.
Unfortunately, the concentration of CO2 in the atmosphere continues to rise globally, endan-
gering human health and the global ecosystem. Consequently, the development of materials
and technologies for CO2 capture and utilization is crucial for addressing the intractable
global problem [1]. Numerous scientists and researchers have focused on the development
of functional porous materials to capture and transform CO2 under mild conditions [2],
including zeolite [3,4], porous carbon [5,6], and metal-organic framework [7–9] among others.
Porous organic polymers (POPs), as a class of emerging porous materials, are gradually
attracting more research efforts due to their excellent physical and chemical stability, large
surface area, good designability, and diverse structures, resulting in their wide applications
in gas sorption [10–12], heterogeneous catalysis [13–15], sensor [16–18], and drug deliv-
ery [19–21]. Friedel-Crafts alkylation [22,23], Yamamoto reaction [24,25], Suzuki coupling
reaction [26,27], and Sonogashira-Hagihara cross-coupling reaction [28,29] are examples
of effective synthetic techniques that have been utilized to create POPs. However, some
polymerization techniques have disadvantages that limit their applications in the synthesis of
POPs, such as undesirable by-products, high energy consumption, low yield, harsh reaction
conditions, and costly catalysts. Among these techniques, oxidative coupling polymerization
utilizing FeCl3 is regarded as one of the most popular approaches to constructing POF due
to its low-cost, large-scale preparation, simple operation, and high universality [30–33]. On
the other hand, carbazole and its derivatives are used as organic monomers to prepare POPs
via FeCl3-promoted oxidative coupling polymerization due to the large-conjugated system,
rigid structure, high reactivity, and excellent photoelectric properties of carbazole and its
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derivatives. Thus, some carbazole-based POPs have been synthesized and implemented in
diverse fields [34–36].

In recent years, effective regulation of the interaction between CO2 and porous skele-
tons has become an important area of research, as it is believed to be an energy-saving,
accessible, and environmentally-friendly method for capturing and utilizing CO2. By
altering the skeleton configuration, stimuli-responsive porous materials are an effective
way to regulate CO2 sorption. Some porous functional materials have response properties
to various external stimuli, including pH value [37], temperature [38], and light [39]. Light
is a readily available source of renewable energy on Earth, and the introduction of light-
responsive groups can alter the structures of porous materials [40]. Recently, metal-organic
frameworks (MOFs) as a class of porous organic-inorganic hybrid materials have been
utilized in a variety of applications [41–43], particularly photoresponsive MOFs for CO2
sorption [44,45]. However, MOFs’ poor stability severely restricts their application. POPs
are more stable than MOFs and thus provide an excellent platform for light-responsive
CO2 capture. For high-performance CO2 sorption, photoresponsive functional groups
are the most important factor in the construction of POPs. Azobenzene is considered one
of the readily available and light-sensitive groups. To date, azobenzene-functionalized
light-responsive POPs with good photocontrol performance have attracted considerable
interest in CO2 capture [46,47]. Due to the exceptional photoelectric properties of carbazole
and light-responsive azobenzene, carbazole-based POPs with azobenzene fragments serve
as a platform for realizing light-responsive CO2 sorption.

Based on our previous reports [48,49], we design and develop a carbazole-based
azo-functionalized POP (JJU-2) by coupling 1,3,5-tris(9H-carbazole-9-yl) benzene (TCB)
and azobenzene (AB) (Scheme 1). High stability, a large surface area, and well-developed
pores characterize the prepared sample. In the meantime, the porous skeleton contains
azo functional groups as a light-responsive sensitive component, resulting in stimuli-
responsive CO2 sorption through cis and trans structure transformations under ultraviolet
(UV) irradiation and heat treatments. Furthermore, the controlled CO2 sorption/release
can be recycled at least three times without difficulty.
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Scheme 1. The synthetic process of JJU-2.

2. Materials and Methods
2.1. Materials and General Methods

Unpurified chemicals were purchased and utilized. UV-Vis spectroscopy was carried
out using a Mapada V-1200 (Shanghai Meipuda Instrument Co., Ltd., Shanghai, China).
Using ZF-1A ultraviolet analyzer, trans-cis transformations were carried out (JIAPENG,
Shanghai, China). IFS 66V/S Fourier transform infrared spectrometer was utilized to collect
FT-IR spectra (Bruker Corporation, Rheinstetten, Germany). The 13C solid NMR spectrum
is performed on a Bruker AV-400-WB instrument (Bruker Corporation, Bill Erica, MA,
USA). Rigaku D/MAX 2550 diffractometer records PXRD patterns (Rigaku, Tokyo, Japan)
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with Cu-Kα (λ = 1.5418 Å) at 50 kV, 200 mA with a 2θ range of 4–40◦ at room temperature.
The SEM images were acquired utilizing a MIRA-3 LMU scanning electron microscope
(Tescan, Brno, Czech Republic). tecnai G2F20 S-TWIN was used to collect the TEM image
(FEI, Hillsboro, WA, USA). The TGA curve was assessed using a PerkinElmer STA6000
thermal analyzer (PERKINELMER, Waltham, MA, USA) in the air. Gas sorptions were
performed on Micromeritics before 2020 (Micromeritics Instrument Corporation, Norcross,
GA, USA).

2.2. Synthesis of JJU-2

In a 100 mL round-bottom flask, 1,3,5-tris(9H-carbazole-9-yl) benzene (229 mg, 0.4 mmol,
1 eq), azobenzene (583 mg, 3.2 mmol, 8 eq), and FeCl3 (583 mg, 3.6 mmol, 9 eq) were added,
followed by three cycles of vacuuming and inserting with N2. Then, 20 mL of dried CHCl3
was added to the reaction system using a syringe. The reaction was heated at 80 ◦C for 24 h
in an N2 atmosphere. After the mixture cooled to room temperature, it was filtered to obtain
the crude product. The product was further washed with HCl (0.3 M) aqueous solution,
distilled water, methanol, and dichloromethane in order to remove unreacted monomers and
catalyst residues. The product was dried under vacuum for 6 h at 60 ◦C to produce JJU-2
(orange solid powder, 463 mg, yield of 57%).

3. Results
3.1. Structural Description

The UV-visible adsorption spectra of azobenzene in dichloromethane exhibit a typical
trans and cis isomerization transformation with obvious π→π* absorption peaks, such as a
strong peak at 319 nm and a weak peak at 435 nm (Figure 1a). To examine the successful
polymerization of organic monomers and the structure of POPs, Fourier transform infrared
(FT-IR) spectra are measured (Figure 1b). By comparing the FT-IR spectra of the initial
monomers and JJU-2, the characteristic absorption peaks are summarized as follows:
(a) there is an obvious absorption peak at 3000 cm−1, which is mainly attributed to the
C–H stretching vibration of the hydrogen atom in phenyl ring; (b) the C–H deformation
vibration peaks (760–660 cm–1) of four adjacent hydrogen atoms on the carbazolyl 1,
2-diXsubstituted phenyl ring is obviously weakened because the number of adjacent
hydrogen atoms decreases from four to three; (c) some peaks in the range of 800–690 cm−1

belong to the C–H deformation vibration of ring hydrogen atoms of the 1,2-disubstituted
phenyl ring of the carbazole group; (d) the peaks around 1300 cm−1 corresponds to the
–C–N–bond between the aromatic ring and the azobenzene group; (e) FTIR bands located
at 1458 cm−1 belongs to -N=N- stretching vibration in the azo-functional group in JJU-2,
which confirms the successful synthesis of azo-linked POPs [50]. The 13C solid-state NMR
measurement is then used to examine the structure of the POP of interest (Figure 1c). Due
to the presence of aromatic carbon atoms in the benzene ring, the 13C solid-state NMR
spectrum of JJU-2 exhibits three main peaks between 100 and 150 ppm. Notably, a high
peak is observed at 123 ppm, which is attributable to unsubstituted phenyl carbon atoms,
whereas two weak signals at 108 and 139 ppm are primarily attributable to substituted
phenyl carbon atoms [51]. It further verifies the preparation of the JJU-2 target. As shown
in Figure 1d, the thermogravimetric analysis (TGA) curve was measured in air at a heating
rate of 10 ◦C min−1. The first weight loss of the as-synthesized JJU-2 is about ~3.1% before
~330 ◦C, which may be attributed to the adsorbed water and other solvent molecules
as the previous similar reports [52,53]. At higher temperatures, the skeleton gradually
decomposes because of the oxygen reactions of C, N, and H elements in the air. The TGA
curve confirms the good thermal stability of as-synthesized samples.

In addition, powder X-ray diffraction (PXRD) of as-synthesized POP reveals no diffrac-
tion peaks, indicating that as-synthesized JJU-2 is an amorphous solid material (Figure 2a).
Using a scanning electron microscope (SEM) and transmission electron microscope (TEM),
it is possible to observe the morphology and microstructure of JJU-2. The SEM image
reveals that the prepared POP is an irregular crosslinked solid (Figure 2b). Moreover, the
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TEM images of JJU-2 demonstrate that the synthesized POP has a disordered, worm-like
porous structure (Figure 2c–e).
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3.2. Gas Sorption Properties

In order to examine the internal pores, synthesized JJU-2 is immersed in dichloromethane
for two days and then activated at 150 ◦C for ten hours under a vacuum. The N2 sorption
isotherms of the initial sample were measured at 77 K, and after 5 h of UV irradiation, they
were measured at 77 K once more. As depicted in Figure 3a, the majority of the curves
exhibited a type I isotherm with a substantial capillary N2 uptake in the low P/P0 region. It
confirms that JJU-1 is microporous. The desorption curves of both materials showed little
hysteresis due to the diffusional limitation of adsorbed N2 molecules in restricted micro-
pores [54]. The sample surface areas are computed using the Langmuir and BET models,
which are summarized in Table 1. Figure 3a and Table 2 demonstrate BET surface area plots.
After 5 h of UV light irradiation, the surface area of the resultant material is smaller than that
of the initial material. The NLDFT is utilized to determine the pore size distribution curves
for both samples. After UV irradiation, the pore size distributions are between 0.50 nm
and 1.27 nm, with a gradual decrease (Figure 3b). Similarly, the pore volumes of materials
also undergo a change. Light-responsive azobenzene in the porous skeleton is primarily
responsible for the pore change.
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Table 1. Gas sorption properties for JJU-2.

POP
Materials

SABET
a

[m2 g−1]
SALangmuir

b

[m2 g−1]

Peak Pore
Sizes
[nm]

VTotal
c

[cm3 g−1]
CO2 Uptake

[cm3 g−1]
Qst CO2

[kJ mol−1]

273 K 298 K

Initial 888.1 1002.7 0.27, 1.5 0.60 68.7 37.1 29.0
UV 5 h 864.6 976.3 0.27, 1.5 0.59 63.2 34.4 26.5

Surface areas calculated from BET a and Langmuir b models; c The total pore volume calculated at P/P0 = 0.97.

Table 2. BET surface areas of JJU-2.

POP
Materials

BET
[m2 g−1]

Slope
[g cm−3]

Y-
Intercept
[g cm−3]

C Qm
[cm3 g−1]

Correlation
Coeffi-
cient

Initial 888.1 0.004890 0.000011 450.072216 204.0409 0.999997
UV 5 h 864.6 0.005023 0.000011 439.286920 198.6445 0.999998

Based on previous research, the trans/cis isomerization of azobenzene can result
in different geometric and dipole variations [55–57]. The dynamic structural changes of
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as-synthesized POP can be used as a light-responsive CO2 adsorbent under mild conditions;
therefore, the CO2 sorption isotherms are carried out at 273 and 298 K, respectively, under
1 atmosphere. The initial POP has a strong capacity for CO2 sorption, with a maximum
absorption of 68 cm3 g−1 at 273 K and 37 cm3 g−1 at 298 K and 1 atm (Figure 4a). Notably,
after 5 h of UV irradiation, JJU-2 exhibits different CO2 sorption behaviors due to the
trans/cis isomerization of azobenzene in its porous structure. As shown in Figure 4b, the
CO2 sorption amount decreases to 62 cm3 g−1 at 273 K and 34 cm3 g−1 at 298 K. Similar to
the previous reports [58–60], the hysteresis of the CO2 desorption is mainly ascribed to the
electronic attraction between adsorbed and desorbed CO2 molecules, and the interaction
between the porous skeleton and CO2. Meanwhile, it is probably caused by the pore
window and pore expansion in POPs.
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Using CO2 adsorption at 273 and 298 K, the CO2 adsorption enthalpy (Qst) can
be calculated to determine the interaction force between CO2 and the skeleton of JJU-2
(Figure 4c,d). The calculated CO2 Qst value of the initial sample is as high as 29.0 kJ mol−1,
but after 5 h of UV irradiation, the value decreases to 26.5 kJ mol−1, proving the trans/cis
structure transformation of JJU-2 (Figure 4e). Table 3 provides samples of representative
materials [48,49,61–70].

According to the porous structure of initial and UV-treated samples, the decreased
micropore volume may be the main reason for reducing the CO2 adsorption capacity
of JJU-2 after irradiating by UV light. Reversible circularity is another vital factor for
stimulus-responsive CO2 sorption porous materials. As illustrated in Figure 5a–e and
Table 4, the CO2 adsorption isotherms of JJU-2 are repeatedly measured for three cycles
after UV irradiation and thermal regeneration, which exhibits that the as-synthesized JJU-2
has good light- and thermal-responsive circularity for adsorbing CO2 at 273 K under 1 atm
under the controllable external stimulation.
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Table 3. Summary of CO2 uptake and Qst value for some reported porous materials.

Materials BET
[m2 g−1]

VTotal
[cm3 g−1]

CO2 Uptake
(cm3 g−1)

(273 K, 1 Bar)

Qst CO2
(kJ mol−1) Ref.

JJU-1 467 0.31 45.3 27.1 [48]

JJU-1-UV 469 0.34 40.1 33.1 [48]

POF-Initial 571 0.49 46.2 26.7 [49]

POF-1stUV 549 0.48 41.6 29.7 [49]

Azo-MOP-1 456 0.48 49.6 - [61]

PAF-36 325 0.25 28.6 27.0 [62]

PAF-36-UV 385 0.27 31.2 28.4 [62]

PAF-37 443 0.27 26.3 36.8 [62]

PAF-37-UV 456 0.28 29.6 40.7 [62]

TAP-1 474 0.74 48.4 35.6 [63]

azo-COP-1 608 0.39 54.7 29.3 [64]

azo-COP-2 703 0.42 56.2 24.8 [64]

Azo-POF-1 712 - 66.7 27.5 [65]

Azo-POF-2 439 - 43.0 26.6 [65]

ALP-4 862 0.50 41.2 28.2 [66]

PCN-250-Fe3
(II/III) 1619 - 133.66 - [67]

PCN-250-Fe3
(III) 1598 - 50.81 - [67]

PCN-250-Al3 1874 - 170.48 - [67]

PCN-250-Sc3 1321 - 101.31 - [67]

PCN-250-In3 1224 - 108.15 - [67]

MS 1015 0.96 - - [68]

DAL(1)@MS 627 0.46 - - [68]

DAL(2)@MS 589 0.40 50 - [68]

DAL(2)@MS
UV - - 33 - [68]

DAL(3)@MS 512 0.31 - - [68]

BCzMB@PON 865 - 90.048 31.96 [69]

TPA@PON 829 - 86.24 37.98 [69]

CZ@PON 592 - 96.544 42.01 [69]

HMC-1 855 0.2968 235.2
(273 K, 3 bar) - [70]

HMC-2 425 0.1920 306.88
(273 K, 3 bar) - [70]

HMC-3 526 0.1618 318.08
(273 K, 3 bar) - [70]

JJU-2 888.1 0.60 68.7 29.0 This Work

JJU-2-UV 864.6 0.59 63.2 26.5 This Work
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Figure 5. (a–d) The CO2 adsorption isotherms of initial JJU-2 and JJU-2 after UV irradiation for
3 cycles; (d) the cyclic responsiveness of JJU-2 after UV irradiation and heat treatments; (e) the
reversibility of JJU-2 after UV and heat treatment for three cycles.

Table 4. The CO2 maximum adsorption amounts for JJU-2 at 273 K and 1 bar.

JJU-2 CO2 Uptake [cm3 g−1]

Initial 68.7
1st UV 63.2

1st Heat 64.8
2nd UV 59.3

2nd Heat 64.1
3rd UV 60.8

3rd Heat 63.1

4. Conclusions

In conclusion, an Azo-Functionalized POP is designed and synthesized via an oxida-
tive coupling method. The porous structure and light-responsive properties of this POP
material are investigated in depth. In POPs, UV irradiation and thermal regeneration can
specifically affect the trans/cis transition of azo groups. Under UV irradiation, the capacity
for CO2 sorption decreases by 8%. In the meantime, this stimuli-responsive POP can revert
to its original structure following thermal regeneration. According to recycling tests, the
CO2 adsorption performance of this synthesized POP can be recycled at least three times
via UV irradiation and thermal regeneration. This study aims to provide a method for
constructing POPs with CO2 adsorption that are reversibly stimulated.
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