
Citation: Mugo, S.M.; Lu, W.;

Robertson, S. Anthraquinone-

Polyaniline-Integrated Textile

Platforms for In Situ Electrochemical

Production of Hydrogen Peroxide for

Microbial Deactivation. Polymers

2023, 15, 2859. https://doi.org/

10.3390/polym15132859

Academic Editor: Bin Zhao

Received: 30 May 2023

Revised: 22 June 2023

Accepted: 26 June 2023

Published: 28 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Anthraquinone-Polyaniline-Integrated Textile Platforms for In
Situ Electrochemical Production of Hydrogen Peroxide for
Microbial Deactivation
Samuel M. Mugo * , Weihao Lu and Scott Robertson

Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, AB T5J 4S2, Canada
* Correspondence: mugos@macewan.ca; Tel.: +1-780-633-3493; Fax: +1-780-497-5655

Abstract: Hydrogen peroxide (H2O2) is a versatile and effective disinfectant against common
pathogenic bacteria such as Escherichia coli (E. coli). Electrochemical H2O2 generation has been studied
in the past, but a lack of studies exists on miniaturized electrochemical platforms for the on-demand
synthesis of H2O2 for antibacterial applications. In this article, a chemically modified cotton textile
platform capable of in situ H2O2 production is demonstrated for E. coli deactivation. The cotton textile
was modified by layer-by-layer coating with conductive carbon nanotubes/cellulose nanocrystals
(CNT/CNC) and a polymer of polyaniline (PANI) decorated with anthraquinone (AQ), designated
as the AQ@PANI@CNT/CNC@textile antibacterial patch. The AQ@PANI@CNT/CNC@textile an-
tibacterial textile patch H2O2 production capabilities were evaluated using both electrochemical
and colorimetric methods. The AQ@PANI@CNT/CNC@textile antibacterial patch electrochemically
produced H2O2 concentrations up to 209± 25 µM over a 40 min period and displayed a log reduction
of 3.32 for E. coli over a period of 2 h. The AQ@PANI@CNT/CNC@textile antibacterial patch offers
promise for use as a self-disinfecting pathogen control platform.

Keywords: electrocatalytic H2O2 production; E. coli deactivation; anthraquinone-polyaniline-integrated
antibacterial textile patch

1. Introduction

Hydrogen peroxide (H2O2) is an environmentally friendly oxidant used in a wide
range of applications, including energy production, chemical synthesis, wastewater treat-
ment, and bioremediation [1,2]. Additionally, it may act as a bacterial and viral pathogenic
disinfectant [3,4]. As a disinfectant, H2O2 causes the oxidation of proteins, cleavage of
nucleic acids, and dissociation of the 70S ribosomal subunits and denatures a pathogens
cell wall [4]. Due to the 2020 COVID-19 pandemic, there is renewed interest in the use of
H2O2 for the deactivation of pathogens. For example, some studies have examined the
usage of H2O2 for the sterilization and reuse of personal protective equipment (PPE) to
address global shortages and for environmental conservation motivations [5–8]. However,
sterilized surgical masks and respirators must adhere to strict FDA guidelines of having a
log reduction of ≥3 of both 2 g positive and 2 g negative vegetative bacteria [8]. Recent
studies report that 0.5% H2O2 cooling aerosol sprays were found to be highly effective
in reducing the viral coronavirus load on used face masks [9,10]. Because of its inherent
disinfectant capabilities, the development of new methods for on-demand H2O2 production
is an important area of research.

The standard method of H2O2 production includes a complex anthraquinone (AQ)-
based process [11]. In this process, AQ undergoes hydrogenation and oxidation in the
presence of a nickel or palladium catalyst, yielding H2O2 as a byproduct, which is then
distilled and concentrated [1,11]. However, this process requires a high energy input,
produces large amounts of waste, presents the risk of explosions, and is not suitable for
producing small, on-demand quantities of H2O2 for integration into PPE [11]. To overcome
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these drawbacks, electrochemical methods for H2O2 production have been explored. For
instance, electrochemical technologies have utilized metal catalysts, such as platinum, to
produce H2O2 [1]. Additionally, Xue et al. developed a carbon- and nitrogen-doped TiO2
electrode capable of converting H2O into H2O2 at a rate of 0.29 µmol·L−1·cm−2·h−1, with a
faradaic efficiency of 8% [2]. In a different approach, an electrocatalyst comprising polyani-
line (PANI) and AQ has been developed to catalyze the reduction of O2 into H2O2 [12].
Utilizing an electrosynthesis flow cell, H2O2 was generated at a rate of 1.80 mol·g−1·hr−1,
with a faradaic efficiency of 95.8%, making their platform a promising new technology [12].

Both PANI and AQ are capable of generating H2O2 on the cathode when immersed in
an electrochemical cell [12,13]. When PANI is oxidized from its leucoemeraldine form to its
emeraldine form, it electrocatalyzes the reduction of oxygen via a 2e− oxygen reduction
reaction (ORR) transition, shown in Equations (1) and (2) [12,13].

(PANI)ox + 2nH+ + 2ne− → (PANI)red, (1)

(PANI)red + nO2 → (PANI)ox + nH2O2, (2)

A 2e− ORR may also be catalyzed via AQ, and this reaction is a more kinetically
favorable pathway than that afforded via PANI [14,15]. At the cathode, AQ reduces to
its semiquinone form, which then catalyzes the reduction of oxygen to the superoxide
anion radical (O2

·−), which becomes protonated to form H2O2 (Figure 1) [14,15]. It is
hypothesized that the integration of AQ into the PANI network will likely dramatically
enhance the efficiency of H2O2 production [14,15].
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Figure 1. Reaction scheme for AQ- and PANI-catalyzed H2O2 production.

While effective, metal electrocatalysts are susceptible to anodic degradation and may
require regeneration between uses [2]. Furthermore, the creation and integration of a minia-
turized electrochemical H2O2-producing device for bacterial and viral disinfection remain
a challenge. This study demonstrates a layer-by-layer (LbL) assembly of a cotton textile
substrate integrated with layers of conductive carbon nanotube (CNT)/cellulose nanocrys-
tal (CNC) composite and PANI decorated with AQ (AQ@PANI@CNT/CNC@textile). The
AQ@PANI@CNT/CNC@textile platform has been successfully tested for electrochemical pro-
duction of H2O2 for E. coli deactivation. The H2O2 production capabilities of the
AQ@PANI@CNT/CNC@textile antibacterial patch were quantified using cyclic voltammetry
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(CV) and colorimetric methods. The H2O2-generating AQ@PANI@CNT/CNC@textile holds
promise for potential integration into masks or other wearable devices for in situ disinfection.

2. Experimental
2.1. Materials

Ammonium peroxydisulfate (APS), 3-(trimethoxysilyl)propyl methacrylate (TPM),
methanol, silver nanoparticles, 2,6-diaminoanthraquinone, sodium hypochlorite, dimethyl-
sulfoxide (DMSO), LB broth with agar (Lennox), potassium ferricyanide, sodium acetate
trihydrate, 4-aminoantipyrine, phenol, acetic acid, horseradish peroxidase, E. coli K-12 (Z-),
tryptic soy agar, saline solution, and barium chloride were procured from Sigma Aldrich,
Oakville, ON, Canada. Sulfuric acid, 30% H2O2, aniline, dipotassium phosphate, and
monopotassium phosphate were purchased from Fisher Scientific, Denver, CO, USA. Car-
boxylic acid-functionalized multiwalled carbon nanotubes (CNT) (OD: 4–6 nm. 98%) were
bought from TimesNano, China. Cellulose nanocrystals (CNC) were donated by Alberta
Innovates, Canada. Stainless steel hypodermic needles (0.7 mm × 40 mm, inner diameter
0.5 ± 0.1 mm) and textile bandages were bought from a local pharmacy in Edmonton,
Alberta. Copper tape was purchased from 3M (Milton, ON, Canada). All reagents were of
analytical reagent grade. All aqueous solutions were prepared using 18.2 MΩ deionized
(DI) Milli-Q water.

2.2. CNT/CNC H2O2 Sensor Electrode Fabrication

The CNT/CNC sensor electrode for H2O2 detection and the CNT/CNC/Ag (Ag/AgCl)
reference needle were fabricated as described previously [16,17]. Briefly, stainless steel
hypodermic needles were oxidized via immersion in piranha solution consisting of concen-
trated H2SO4 and 30% H2O2 in a 1:1 (v/v) ratio for 4 h, then washed with DI water and air
dried. The oxidized needles were then silylated via immersion in a solution comprising
3-(trimethoxysilyl) propyl methacrylate (TPM)/DI water/methanol (2:1:8 v/v/v) for 4 hrs,
then washed with DI water and air dried. To fabricate the CNT/CNC sensor electrode,
the silylated needles were infused with a homogenous suspension comprising 1 mg·mL−1

CNT/4 mg·mL−1 CNC at a flow rate of 15 µL·min−1 at 80 ◦C. Homogenous CNT/CNC
suspensions were first prepared by sonicating 1 mg·mL−1 CNT/4 mg·mL−1 CNC in DI
water for 3 h [17]. To fabricate the in-house Ag/AgCl reference needle, silylated needles
were infused with a 1 mg·mL−1 CNT/4 mg·mL−1 CNC/5 mg·mL−1 Ag nanoparticle
suspension (in DI water) at a flow rate of 15 µL·min−1. The needles were then immersed
in 2 mL of sodium hypochlorite bleach overnight at room temperature and rinsed with
DI water.

2.3. AQ@PANI@CNT/CNC@Textile Antibacterial Patch Fabrication

To fabricate the antibacterial patch, an 8× 8 cm cotton textile obtained from a local store
was drop cast with 8 mL of a 1 mg·mL−1 CNT/4 mg·mL−1 CNC suspension and dried on a
hot plate at 50 ◦C. The PANI microparticles were produced by mixing 50 mL of 0.2 M aniline
(in 1 M H2SO4) and 50 mL of 0.25 M APS initiator in an ice bath at 4 ◦C. The resulting PANI
microparticle suspension was then centrifuged (4000 rpm, 15 min) and rinsed with DI water
three times before being dried in a dehydrator at 70 ◦C. A 20 mg·mL−1 solution comprising
dried PANI microparticles (in DI water) was sonicated for 3 h to create a homogenous
suspension. A total of 8 mL of the 20 mg·mL−1 PANI suspension was drop cast onto the
CNT/CNC@textile patch and air dried. Lastly, the PANI@CNT/CNC@textile patch was cut
into 4 × 4 cm squares. To integrate AQ into the PANI@CNT/CNC@textile patches, 1.5 mL
of 0.5 M 2,6-diaminoanthraquinone (in DMSO) was drop cast onto the patch surface and
air dried to yield the AQ@PANI@CNT/CNC@textile antibacterial patches. The AQ was
similarly drop cast onto the CNT/CNC@textile patches to yield AQ@CNT/CNC@textile
patches. After air drying, the patches were gently rinsed in a beaker of DI water to remove
any excess AQ. A 0.3 × 1.0 cm strip of copper tape was wrapped around one corner of each
patch to serve as an electrical connection.
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2.4. Characterization of AQ@PANI@CNT/CNC@Textile Antibacterial Patch

Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM),
electrochemical impedance spectroscopy (EIS), voltammetric, and Raman spectroscopy
techniques were used to characterize the AQ@PANI@CNT/CNC@textile antibacterial
patch. FTIR spectra were recorded using a Bruker Tensor 27 FTIR instrument fitted with
diamond attenuated total reflectance (ATR). SEM images were acquired from a Zeiss Sigma
300 VP field emission SEM. EIS was performed by immersing different patches in 25
mM potassium ferricyanide (in 0.1 M KCl) as a standard redox probe in a three-electrode
electrochemical cell, with an in-house fabricated Ag/AgCl reference needle, and a platinum
counter electrode. EIS data were acquired in the frequency range of 20.0 Hz–1 MHz at 6.00
mV of sinusoidal amplitude. CV was used to determine the electroactive surface area of the
different patches. The CV was performed by immersing each patch in 25 mM potassium
ferricyanide (in 0.1 M KCl) in a three-electrode electrochemical cell, using an Ag/AgCl
reference needle and a platinum counter electrode. A Palmsens 4 potentiostat equipped
with PSTrace software was used for all electrochemical measurements.

2.5. In Situ Electrochemical Generation of H2O2, and Electrochemical and Colorimetric
Quantification

To electrochemically generate H2O2, antibacterial patches were immersed in 10 mL of
0.1 M phosphate buffer (pH 7.0) electrolyte in a three-electrode cell comprising a platinum
counter electrode and an Ag/AgCl reference needle for CV application (−1.0 to 1.0 V,
0.25 V·s−1).

The H2O2 was electrochemically detected using CV (−1.0 to 1.0 V, 0.1 V·s−1) acquired
from a CNT/CNC needle sensor running separately within the H2O2 generation cell.
The H2O2 detection cell comprised a three-electrode system, with a platinum wire and
Ag/AgCl reference needle acting as the counter and reference electrodes, respectively.
Faradaic capacitance was determined from the CVs acquired using the CNT/CNC needle
sensor and was calculated by averaging the cathodic current within the− 0.50 to 0 V voltage
range and dividing it by the scan rate. The ∆capacitance was determined by subtracting the
capacitance generated from the blank from that generated from the sample and dividing it
by capacitance of the blank.

A colorimetric method was also used to detect H2O2 generation. Briefly, the colorimet-
ric reagent was prepared by combining 0.3681 g of sodium acetate trihydrate, 0.0102 g of
4-aminoantipyrine, 0.0047 g of phenol, 29.4 µL of glacial acetic acid, and D.I water to make
50 mL of solution. In a cuvette, 2 mL of the colorimetric reagent was mixed with 10 µL
of 1.1 mg/mL horseradish peroxidase dissolved in D.I water, 500 µL of electrolyte, and
brought to a volume of 3 mL using 490 µL of DI water [18]. The absorbance at 505 nm was
measured in triplicate using a LabQuest spectrophotometer.

2.6. E. coli Deactivation Test Using the Antibacterial Patches

Different antibacterial patch designs were tested for their ability to deactivate E. coli.
E. coli K-12 (Z-) cells were streaked on tryptic soy agar (TSA) and incubated at 37 ◦C for
24 h. Single E. coli colonies were suspended in 0.85% (w/v) sterile saline, and the turbidity
was adjusted to match a 0.5 McFarland standard, resulting in a bacterial suspension of
approximately 108 cells·mL−1. The bacterial suspension was then diluted by combining
2.5 mL suspension with 2.5 mL of sterile saline. To incorporate E. coli into the antibacterial
patch network for the deactivation test, 500 µL of dilute bacterial suspension was drop-
casted onto the patch surface. CV (−1.0 to 1.0 V, 0.25 V·s−1) was subsequently performed
via immersion in 10 mL of 0.1 M phosphate buffer under the same conditions used for
electrochemical H2O2 generation. A total of 10 µL of phosphate buffer was drawn at
various points in time (0, 5, 11, 16, 21, 27, 32, 60, 80, and 120 min), suspended in 990 µL of
sterile water, and then serially diluted in a 1:9 ratio five times. The final diluted suspension
was then cultured on LB agar and incubated at 37 ◦C for 16 h. Bacterial growth was visually
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evaluated by counting the number of colonies formed on the LB agar plate after the 16 h
incubation period.

3. Results and Discussion
3.1. Morphological Characterization of Antibacterial Textile Patches

The surface morphologies of the various patches prior to and after E. coli integration
were examined using SEM. The CNT/CNC@textile patch, shown in Figure 2a, shows
evidence of the nanoporous and stable fiber network characteristic of the overlapping
nanofiber structure of the cotton textile and CNT/CNC composite. The addition of PANI
to the CNT/CNC@textile enhances patch rigidity. As shown in Figure 2b, the PANI
microparticles are distributed on the CNT/CNC and textile fiber network. Figure 2c,d
show the AQ@CNT/CNC@textile and the AQ@PANI@CNT/CNC@textile patches fol-
lowing the incorporation of E. coli cells, respectively. AQ is visualized as tiny crys-
tals coated on the surface of the CNT/CNC fiber network, while E. coli cells appear as
rounded cylinders (Figure 2c,d). Visually, the density of E. coli cells was higher in the
AQ@PANI@CNT/CNC@textile patch, which provides evidence that the integration of the
porous PANI coating can trap more bacteria.

Figure 2. SEM images for (a) CNT/CNC@textile, (b) PANI@CNT/CNC@textile,
(c) AQ@CNT/CNC@textile patch after E. coli incorporation, and (d) AQ@PANI@CNT/CNC@textile
patch after E. coli incorporation.

To confirm the success of the LbL patch assembly, FTIR was acquired at various stages
during AQ@PANI@CNT/CNC@textile antibacterial patch fabrication. FTIR spectra from
the CNT/CNC@textile patch showed peaks at 1091, 1714, 2910, and 3423 cm−1 (Figure 3),
which can be attributed to C-O stretching, C=O stretching, and C-H stretching of the carboxy
groups attached to the walls of the functionalized CNTs, and OH stretching of carboxylic
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acid group, respectively [19,20]. The addition of the PANI layer to the CNT/CNC@textile
patch results in two new peaks at 1495 and 1583 cm−1 (Figure 3), which represent the C=C
stretching vibrations of the benzenoid and quinoid rings of PANI [21]. Spectra acquired
from the AQ@PANI@CNT/CNC@textile antibacterial patch show an additional peak at
1567 cm−1, which can be attributed to the anthraquinone ring, as well as peaks around
3330, and 3417 cm−1 (Figure 3), which are indicative of the symmetric and asymmetric
stretching vibrations of NH2 group [22].
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3.2. Electrochemical Characterization of Antibacterial Patches

Different patches were characterized via EIS using 25 mM potassium ferricyanide
(in 0.1 M KCl) as the standard redox probe. The Nyquist plots from EIS analysis and
associated circuit fittings are shown in Figure 4a and Figure S1, respectively. A low
electron transfer resistance (Rct) is desirable for high patch conductivity and effective signal
transduction for H2O2 generation [16]. The Rct values determined from the circuit fittings
(Figure S1) for the CNT/CNC@textile, PANI@CNT/CNC@textile, AQ@CNT/CNC@textile,
and AQ@PANI@CNT/CNC@textile patches are shown in Table 1. The integration of
either PANI or AQ to the CNT/CNC@textile patches greatly reduced the Rct, indicative
of increased electrical conductivity. When combined, the AQ@PANI@CNT/CNC@textile
antibacterial patch demonstrates a reduced Rct compared to the AQ@CNT/CNC@textile
patch, owing to the enhanced conductivity afforded to it via the PANI integration. A lower
Rct is advantageous for the AQ@PANI@CNT/CNC@textile patches, as it likely results in
more effective H2O2 production via enhanced electrical signal transduction.

Table 1. Electrochemical characteristics of CNT/CNC@textile, PANI@CNT/CNC@textile,
AQ@CNT/CNC@textile, and AQ@PANI@CNT/CNC@textile patches.

Patch Type Rct (Ω) Electroactive Surface Area (cm2)

CNT/CNC@textile 1.63 × 104 13.3
PANI@CNT/CNC@textile 1.45 × 103 24.7
AQ@CNT/CNC@textile 5.13 × 103 10.8

AQ@PANI@CNT/CNC@textile 4.65 × 103 16.5
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The electroactive surface areas of the different patches were determined by run-
ning CV of the redox couple 25 mM potassium ferricyanide (in 0.1 M KCl) at differ-
ent scan rates (0.025, 0.03, 0.04, 0.05, 0.1, 0.2 and 0.3 V·s−1) and invoking the Randles–
Sevcik equation (Figure 4b) [23]. The electroactive surface areas of the CNT/CNC@textile,
PANI@CNT/CNC@textile, AQ@CNT/CNC@textile, and AQ@PANI@CNT/CNC@textile
patches are shown in Table 1. The addition of the PANI layer resulted in an increase in the
electroactive surface area of the textile patches relative to their non-PANI-integrated counter-
parts. A high electroactive surface area is desirable for an effective electrochemical platform
and lends well to affording a higher capacity for bacterial adsorption. The addition of AQ
only slightly reduced the electroactive surface area of the PANI@CNT/CNC@textile patches.

3.3. Electrochemical and Colorimetric Quantification of Antibacterial Textile Patch
H2O2 Production

Two three-electrode cells were utilized to produce and quantify the H2O2 generated
from various chemically modified patches. In the H2O2 generation cell, the patches acted
as the working electrode for CV application in phosphate buffer. For the H2O2 detection
system, a CNT/CNC sensor electrode was used as the working electrode for CV acquisition
in the same electrochemical cell using a different potentiostat [17]. Representative CVs taken
from CNT/CNC@textile, PANI@CNT/CNC@textile, and AQ@PANI@CNT/CNC@textile
patches acquired during the electrochemical catalysis of H2O2 are shown in Figure S2.

For the capacitive quantification of H2O2, a calibration curve in the range of 0–400 µM
H2O2 was used (Figure S3), where the ∆capacitance was determined using the cathodic
peak current found within the−0.5 to 0 V range. Evidently, the CNT/CNC sensor electrode
used for H2O2 detection is reliable, displaying a calibration sensitivity of 0.00202 µF·µM−1

(Figure S3b), with an LOD of 45.4 µM. CVs acquired using the CNT/CNC sensor electrode
during H2O2 production from the various patches and the resulting plots of the time trend
of ∆capacitance are shown in Figures S4 and S5, respectively. No H2O2 was produced
via the CNT/CNC@textile patch, evident by the poor linear signal response (R2 = 0.0564)
(Figure S5). H2O2 production rates determined by capacitive quantification were 4.19 and
7.20 µM·min−1 for the PANI@CNT/CNC@textile and AQ@PANI@CNT/CNC@textile
patches, respectively (Figure 5a). Additionally, the total concentration of H2O2 gener-
ated from the PANI@CNT/CNC@textile and AQ@PANI@CNT/CNC@textile patches after
32 min of CV application was 173 and 209 µM, respectively (Figure 5a).
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A colorimetric assay was used as an additional method to quantify H2O2 produc-
tion [18]. The presence of H2O2 was indicated by the absorbance peak at 505 nm, and this
detection method had a calibration sensitivity of 4.53× 10−4 µM−1 (Figure S6), with a LOD
of 59.5 µM. The resulting absorption spectra and timed trends in absorbance (@ 505 nm)
for H2O2 generation from AQ@PANI@CNT/CNC@textile and PANI@CNT/CNC@textile
patches are shown in Figures S7 and S8, respectively. Using the colorimetric assay,
the PANI@CNT/CNC@textile patch produced H2O2 at a rate of 1.01 µM·min−1 (Fig-
ure 5b). For the AQ@PANI@CNT/CNC@textile patch, H2O2 production occurred very
slowly in the first 16 min before increasing linearly at a rate of 9.54 µM·min−1. The total
concentration of H2O2 after 32 min of CV application was determined to be 36.8 and
143 µM for PANI@CNT/CNC@textile and AQ@PANI@CNT/CNC@textile patches, re-
spectively (Figure 5b). Both quantification methods indicate that the integration of AQ
into PANI@CNT/CNC@textile patches improves both the rate of and total H2O2 produc-
tion (Figure 5). However, capacitive detection is likely more accurate due to a higher
calibration sensitivity.

Mechanistically, H2O2 is generated from O2 via a 2e− ORR assisted by the
AQ@PANI@CNT/CNC@textile antibacterial patch [1]. AQ acts as the primary catalyst
for the OOR reaction, while PANI acts as a conductive surface for the attachment of
AQ and contributes additional catalytic activity [1]. Therefore, the greater rates of H2O2
production for the AQ@PANI@CNT/CNC@textile antibacterial patches relative to the
PANI@CNT/CNC@textile can be attributed to the enhanced catalytic activity imparted
by the AQ layer [1]. Generally, the AQ@PANI@CNT/CNC@textile patch produces ei-
ther lower or similar amounts of H2O2 compared to other methods (Table 2). However,
the AQ@PANI@CNT/CNC@textile patch is flexible, lends well for wearability, and is
an ideal platform for integration into medical PPE for self-disinfection via on-demand
electrochemical H2O2 generation.

Table 2. Comparison of the rate and total concentration of H2O2 produced using various methods in
the literature.

H2O2 Production Method Rate of Production (µM·min−1) Total H2O2 Produced (µM) Reference

Electrochemical production using
H2SO4-anodized graphite felt as a cathode 27.1 3.25 × 103 [24]

Electrochemical production using 13-(4-
nitrophenyl)-5H-dibenzo[b,i]xanthene-

5,7,12,14(13H)-tetraone–modified
carbon electrode

113 1.36 × 104 [25]
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Table 2. Cont.

H2O2 Production Method Rate of Production (µM·min−1) Total H2O2 Produced (µM) Reference

Photocatalytic production using a catalytic
CuBiOS@CuBi2O4 heterojunction

with O-S interpenetration
1.12 202 [26]

Electrochemical production using a
carbon-polytetrafluoroethylene-modified

carbon cloth gas diffusion electrode
141–329 1.41–3.29 × 103 [27]

Electrochemical production using
AQ@PANI@CNT/CNC@textile patch 7.20 209 This work

3.4. Antibacterial Efficacy of AQ@PANI@CNT/CNC@Textile Antibacterial Patch

The ability of the AQ@PANI@CNT/CNC@textile antibacterial patch to deactivate
E. coli bacteria was tested. CV was performed on E. coli-integrated CNT/CNC@textile,
PANI@CNT/CNC@textile, and AQ@PANI@CNT/CNC@textile patches immersed in phos-
phate buffer, and samples taken from the electrochemical cells at various times were
grown on LB agar plates and counted (Figure S9). The CNT/CNC@textile patch showed
very little antibacterial activity, demonstrated by the large number of E. coli colonies
formed from it at any point during CV application (Figure S9). Antibacterial activities of
PANI@CNT/CNC@textile and AQ@PANI@CNT/CNC@textile patches were evaluated nu-
merically using a log reduction (Figure 6), calculated by taking the log of the colony forming
units (CFU) after 0 min of CV application divided by the CFU after a given time of CV ap-
plication. After 2 h of CV application, the E. coli-integrated AQ@PANI@CNT/CNC@textile
antibacterial patch, and the log reduction was 3.32, whereas that of the PANI@CNT/CNC
patch was less than 0.500 (Figure 6). As such, the FDA Tier 3 standard for reusable face
masks (log reduction ≥ 3) [8] is satisfied via the AQ@PANI@CNT/CNC@textile antibacte-
rial patch, and its antibacterial activity correlates with an approximate 99.9% reduction in
E. coli bacteria over 2 h. This suggests that the AQ@PANI@CNT/CNC@textile patch may
be useful for integration into face coverings or masks for enhanced microbe deactivation
and sanitization [28].
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4. Conclusions

The AQ@PANI@CNT/CNC@textile antibacterial patch described in this study pro-
duced H2O2 in amounts up to 209 ± 25 µM. Although this concentration of H2O2 is lower
than that reported in other studies conducted using PANI and AQ electrocatalysts [12],
bacterial deactivation tests showed a log reduction of 3.32 for E. coli after 2 h of electro-
chemical H2O2 generation. These results are indicative of strong antibacterial activity,
and the textile-based antibacterial patch has great potential to be integrated into PPE or
face coverings for enhanced protection against pathogens. Overall, this study outlines a
promising textile-based technology that may be further optimized for controlling various
pathogens in food-safety- and health-related applications.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/polym15132859/s1, Figure S1: EIS circuit fitting for different variations of the fabri-
cated patches: (a) CNT/CNC@textile patch; (b) PANI@CNT/CNC@textile patch; (c) AQ@CNT/CNC@textile
patch; d) AQ@PANI@CNT/CNC@textile antibacterial patch; Figure S2: Overlaid CVs taken using
(a) CNT/CNC@textile; (b) PANI@CNT/CNC@textile; and (c) AQ@PANI@CNT/CNC@textile patches
to stimulate the electrochemical production of H2O2; Figure S3: (a) Overlaid CVs taken using the CNT/CNC
sensor electrode in response to increasing H2O2 concentrations and (b) resulting ∆capacitance vs. H2O2
concentration calibration curve; Figure S4: CVs taken using the CNT/CNC sensor electrode for the elec-
trochemical detection of H2O2 produced from (a) CNT/CNC@textile; (b) PANI@CNT/CNC@textile; and
(c) AQ@PANI@CNT/CNC@textile patches; Figure S5: ∆Capacitance vs. H2O2 generation time plot, and re-
sulting linear equations for (i) CNT/CNC@textile; (ii) PANI@CNT/CNC@textile; and
(iii) AQ@PANI@CNT/CNC@textile patches; Figure S6: (a) Absorption spectra for the colorimetric de-
tection of H2O2 in response to increasing H2O2 concentrations and (b) resulting absorbance (@ 505 nm) vs.
H2O2 concentration calibration curve; Figure S7: Absorption spectra for the colorimetric detection of H2O2
produced from (a) PANI@CNT/CNC@textile; and (b) AQ@PANI@CNT/CNC@textile patches; Figure S8:
Absorbance (@ 505 nm) vs. electrochemical H2O2 generation time plot and resulting linear equations for
(i) PANI@CNT/CNC@textile; and (ii) AQ@PANI@CNT/CNC@textile patches; Figure S9: Camera images of
E. coli colonies taken following various lengths of exposure to H2O2 production from CNT/CNC@textile,
PANI@CNT/CNC@textile, and AQ@PANI@CNT/CNC@textile patches.
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