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Abstract: The motion of air bubbles within a liquid plays a crucial role in various aspects including
heat transfer and material quality. In the context of non-Newtonian fluids, such as elastoviscoplastic
fluids, the presence of air bubbles significantly influences the viscosity of the liquid. This study
presents the development of an interface-capturing method for multiphase viscoelastic fluid flow
simulations. The proposed algorithm utilizes a geometric volume of fluid (isoAdvector) approach
and incorporates a reconstructed distance function (RDF) to determine interface curvature instead
of relying on volume fraction gradients. Additionally, a piecewise linear interface construction
(PLIC) scheme is employed in conjunction with the RDF-based interface reconstruction for improved
accuracy and robustness. The validation of the multiphase viscoelastic PLIC-RDF isoAdvector (MVP-
RIA) algorithm involved simulations of the buoyancy-driven rise of a bubble in fluids with varying
degrees of rheological complexity. First, the newly developed algorithm was applied to investigate
the buoyancy-driven rise of a bubble in a Newtonian fluid on an unbounded domain. The results
show excellent agreement with experimental and theoretical findings, capturing the bubble shape
and velocity accurately. Next, the algorithm was extended to simulate the buoyancy-driven rise of a
bubble in a viscoelastic shear-thinning fluid described by the Giesekus constitutive model. As the
influence of normal stress surpasses surface tension, the bubble shape undergoes a transition to a
prolate or teardrop shape, often exhibiting a cusp at the bubble tail. This is in contrast to the spherical,
ellipsoidal, or spherical-cap shapes observed in the first case study with a bubble in a Newtonian fluid.
Lastly, the algorithm was employed to study the buoyancy-driven rise of a bubble in an unbounded
elastoviscoplastic medium, modeled using the Saramito–Herschel–Bulkley constitutive equation.
It was observed that in very small air bubbles within the elastoviscoplastic fluid, the dominance
of elasticity and capillary forces restricts the degree of bubble deformation. As the bubble volume
increases, lateral stretching becomes prominent, resulting in the emergence of two tails. Ultimately,
a highly elongated bubble shape with sharper tails is observed. The results show that by applying
the newly developed MVP-RIA algorithm, with a tangible coarser grid compared to the algebraic
VOF method, an accurate solution is achieved. This will open doors to plenty of applications such as
bubble columns in reactors, oil and gas mixtures, 3D printing, polymer processing, etc.

Keywords: geometric interface capturing approach; multiphase viscoelastic flows; OpenFOAM;
elastoviscoplastic fluid

1. Introduction

The movement of individual and multiple gas bubbles within a liquid medium is a
phenomenon that finds widespread relevance across a multitude of disciplines, includ-
ing industrial processes, energy systems, environmental studies, food science, nuclear
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engineering, biological systems, and numerous other applications [1–5]. Extensive efforts
encompassing experimental, numerical, and theoretical approaches have been under-
taken to gain insights into the formation, shape, and dynamics of bubbles within a liquid
medium [6–8]. Acquiring a deep understanding of this phenomenon plays a crucial role
in the design and optimization of gas-liquid contact processes [9]. While previous studies
have primarily focused on Newtonian fluids [10], the prediction of bubble rise becomes
more intricate in complex fluids, where the relationship between strain and stress at the
gas-liquid interface is non-linear. These materials which exhibit non-Newtonian fluid
behavior are widely spread in cosmetics (such as shampoos, gels, and toothpaste), mud,
suspensions, emulsions, slurries, foams, and polymers [10–12].

Viscoelastic fluid flow has garnered significant interest among researchers as a capti-
vating subject within the realm of non-Newtonian fluids [13–17]. In the context of this flow
regime, elasticity plays a crucial role in addition to the main parameters of gravity, gas-
liquid surface tension, and liquid viscosity that dictate bubble rise in Newtonian fluids [18].
A key observation made by Astarita and Apuzzo [19] was that a bubble immersed in a
viscoelastic fluid exhibited a sudden change in velocity when its size approached a critical
volume threshold. The presence of this velocity jump discontinuity significantly amplifies
the bubble velocity, leading to a transition in its shape from a convex configuration to a
teardrop shape. Given the complex nature of viscoelastic fluids, it is highly advantageous
to possess the ability to accurately calculate the progression of interfaces in such flows [20].

Multiple interface tracking methods have been employed for the analysis of viscoelas-
tic multiphase flows. For example, the Front-Tracking Method (FTM), introduced by Un-
verdi and Tryggvason [21], is a Lagrangian approach that employs marker particles to track
the interface within multiphase flows. The FTM provides explicit resolution of the interface,
enabling precise representation of its dynamics and capturing detailed interface behavior
with high accuracy. Sarkar and Schowalter [22] introduced an Alternating-Direction Implicit
(ADI) front-tracking method, employing a finite difference scheme, specifically designed
for simulating viscoelastic droplets in Newtonian fluids. Another paper Xia et al. [23] pro-
posed a front-tracking/finite volume method for simulating the injection and subsequent
cooling of hot polymer materials. In a subsequent study, Xia et al. [24] utilized the same
numerical algorithm to conduct a three-dimensional simulation of fused filament fabrica-
tion. Another example of an interface tracking algorithm is the Marker-And-Cell (MAC)
method [25], which is an Eulerian approach that employs markers to track the interface
while being advected by the fluid flow. The MAC method utilizes a fixed grid to solve
the Navier–Stokes equations, with the interface represented by a collection of markers
that dynamically move in accordance with the fluid flow. Tomé et al. [13] introduced
a numerical method for simulating viscoelastic free surface flow of an Oldroyd-B fluid.
The governing equations were solved using a finite difference method on a staggered
grid, inspired by the MAC method. In addition, a new formulation for computing the
non-Newtonian extra-stress components on rigid boundaries was devised. The capabilities
of the innovative technique were accessed in simulating various unsteady free surface flow
problems. Recently, França et al. [14] focused on simulating the collision of shear-thinning
and viscoelastic binary droplets, specifically addressing the dynamics of a two-dimensional
free surface. To accomplish this, they employed a combination of two methods, FTM and
MAC. This approach allowed for the accurate tracking of the droplets’ movement and the
dynamic behavior of the free surface. By integrating the interface tracking capabilities of
FTM with the grid-based calculations of MAC, França et al. [14] were able to provide valu-
able insights into the collision dynamics of shear-thinning and viscoelastic binary droplets,
shedding light on the intricate interactions between the droplets and the surrounding fluid.
In addition, Fernandes et al. [26] proposed an incompressible non-isothermal finite volume
method to simulate the viscous flow of polymer melts. They specifically focused on the
tracking of free surfaces in non-Newtonian inelastic fluids exhibiting shear-thinning and
shear thickening behavior. The developed numerical method was utilized to accurately
capture the flow characteristics of such fluids for the die-swell problem.
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Despite the MAC method’s ability to accurately capture interface information [27,28],
its computational cost is a significant drawback. This high cost arises from the need to
consider a large number of virtual particles for interface tracking, which can be time-
consuming. As a result, efforts have been made to develop alternative methods that strike
a balance between accuracy and computational efficiency. Having that in mind, interface-
capturing methods are frequently employed in the simulation of viscoelastic multiphase
flows. One example of such a method is the Volume-Of-Fluid (VOF) [29], which defines
the interface by identifying the volume occupied by each fluid with an indicator function.
The VOF method relies on an advection equation to calculate the motion of the interface
by solving for the volume fraction of each fluid. The VOF method has been extended to
simulate non-Newtonian multiphase flows. For example, Fakhari et al. [30] measured the
rheological parameters of three commercial inks for 3D printing, and these parameters
were then fitted using Herschel-Bulkley and Sisko generalized Newtonian fluid models.
Afterwards, two-phase fluid flow simulations of ink delivery in gravure printing using
the VOF method were performed. Dynamic mesh refinement was also used to accurately
capture the movement of the gravure cell. Different length scales and velocities were
considered to assess the suitability of shear-thinning inks for several gravure cell sizes.
Another example of an interface-capturing method is the Level-Set Method (LSM), a widely
employed interface-capturing technique, that computes the interface by evolving a scalar
function known as the level set function [31]. The level set function is defined such that it
is positive inside one fluid and negative inside another fluid, and the interface is the zero
level set of this function. Yu et al. [32] developed an LSM for incompressible, immiscible
two-phase fluid flows, using a finite difference scheme on rectangular grids. The LSM
was employed for simulating viscoelastic ink jetting, where the ink was modeled by the
Oldroyd-B constitutive equation. In addition, Pillapakkam et al. [33] utilized the LSM to
simulate the rise of bubbles in viscoelastic fluids, specifically focusing on determining the
critical bubble volume at which the trailing end cusp emerges. Another paper from Li
and Fangcao [34] studied numerically the polymer melt-filling process by using a coupled
finite volume and LSM. The Immersed Boundary Method (IBM) has also been widely
utilized for interface capturing in multiphase flow simulations [35]. The IBM represents the
interface as an immersed boundary within a fixed grid [35]. This approach allows for the
seamless integration of the interface into the computational domain, enabling efficient and
accurate simulations of complex multiphase flow phenomena. By treating the boundary
as an immersed entity, the IBM provides a flexible and robust framework for capturing
interfaces in numerical simulations. The IBM utilizes a force-based approach to describe
the interaction between the fluid and the immersed boundary. The boundary is typically
represented as a set of discrete points or a continuous surface within the computational
domain. The simplicity and flexibility of the IBM in generating meshes have made it
a popular area of research, leading to the development of various advancements and
novel features in different application domains [36]. Over the years, researchers have
explored and implemented new techniques within the IBM framework to enhance its
capabilities and expand its applicability in a wide range of scientific and engineering
simulations. The IBM has also been used to simulate viscoelastic multiphase flows. One
paper Saadat et al. [15] developed an immersed boundary algorithm using the finite element
method. The algorithm, known as the immersed-finite-element method (IFEM), accurately
determines the forces acting on solid particles. It was combined with the finite element
method to simulate deformable Lagrangian solid particle suspensions on a fixed Eulerian
grid. This combined approach can be applicable for simulating both Newtonian and
viscoelastic fluids. Another paper Fernandes et al. [16] developed a fully resolved numerical
solver for the simulation of solid spheres moving through viscoelastic fluids. The numerical
algorithm was customized to enable the calculation of viscoelastic fluid flow and the
corresponding hydrodynamic loads exerted on the particles. These loads determine the
linear and rotational movements of the particles, which are then fed back to the fluid flow
as moving no-slip boundary conditions applied to the particle surfaces. The Phase Field
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Method (PFM) is an alternative approach widely used for capturing interfaces in multiphase
flows [37,38]. It employs a diffuse interface description, where the interface is represented
by a scalar field that smoothly transitions between different phases [39]. The PFM has
been extended to simulate viscoelastic multiphase flows, e.g., Li et al. [40] presented a
PFM algorithm to simulate the deformation of biofilms, which are characterized with the
Oldroyd-B constitutive equation. Zografos et al. [17] developed a two-phase viscoelastic
solver based on PFM, and applied it to the simulation of an oscillating droplet. Recently,
a unified PFM with two-way coupling for simulating fracture in viscoelastic materials
was proposed by Dammaß et al. [41]. By considering the two-way coupling between the
phase field and the mechanical response, the proposed unified PFM offers a comprehensive
framework for accurately modeling fracture phenomena in viscoelastic materials.

Recently, Roenby et al. [42] introduced a novel geometric VOF method, known as
isoAdvector, specifically designed for the advection of interfaces between two incompress-
ible fluids. The isoAdvector method is implemented in the OpenFOAM computational
fluid dynamics library [43]. However, it is known that at the interface reconstruction phase
of isoAdvector, particularly for unstructured meshes, the adopted isosurface-based ap-
proach can introduce noisy interface orientations. Subsequently, Scheufler and Roenby [44]
developed a computational interface reconstruction scheme based on the calculation of a
reconstructed distance function (RDF), used to determine curvature instead of using the
volume fraction gradient, coupled with a piecewise linear interface construction (PLIC) [45].
This way it is possible to achieve second-order convergence for both interface normal and
position accuracy within cells [44]. This innovative scheme, PLIC-RDF, has been integrated
with the interface advection step of the isoAdvector algorithm, further enhancing the
accuracy and robustness of the method. This integration yields considerably reduced
absolute advection errors, and it is possible to obtain second-order convergence for CFL
numbers of 0.2 and below [44]. The PLIC-RDF isoAdvector method was subjected to
various pure advection cases, demonstrating excellent performance in terms of volume
conservation, interface sharpness, boundedness, and shape preservation [44]. Moreover,
the implementation of the proposed interface reconstruction methods is straightforward
and offers significantly decreased computational expenses compared to contemporary
techniques, such as the algebraic VOF methods [46,47].

In this work, we extend the implementation of the multiphase PLIC-RDF isoAdvector
algorithm to handle viscoelastic fluid flow calculations. The multiphase viscoelastic PLIC-
RDF isoAdvector (MVP-RIA) algorithm was found to be a highly accurate method for
capturing the intricate dynamics of interfaces between different phases. The method is
based on the advection of a scalar function called the iso-surface, which is used to define the
interface. The MVP-RIA algorithm uses an interpolation scheme to update the position of
the iso-surface, which results in high accuracy and reduced numerical diffusion. In addition,
the MVP-RIA algorithm is geometrically flexible and can handle complex topologies of
the interface. Differing from the approach taken by Sun and Tao [48], Ling et al. [49],
and Cao et al. [50], the PLIC-RDF isoAdvector algorithm uses a method of reconstructing
the signed distance function within an interface cell that relies solely on information
obtained from its adjacent points (i.e., cells it shares a vertex with). This approach enables
the efficient implementation and parallelization of the proposed MVP-RIA algorithm,
rendering it suitable for large-scale simulations. To the best of the authors’ knowledge, it is
the first time that geometric PLIC-RDF isoAdvector algorithm is developed for multiphase
viscoelastic and elastoviscoplastic fluid calculations, with more cost-effectiveness and
accuracy compared to the algebraic VOF methods.

This paper is organized as follows. In Section 2, we provide the governing equations
that describe multiphase viscoelastic flows of incompressible immiscible fluids. In Section 3,
the numerical discretization used for solving the governing equations and the solution
procedure of the MVP-RIA algorithm is detailed. In Section 4, we delve into three different
case studies aimed at validating the MVP-RIA approach. First, we examine the buoyancy-
driven rise of a bubble in a Newtonian fluid. Subsequently, the motion of a bubble in
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shear-thinning viscoelastic fluids was investigated. Lastly, we examine the buoyancy-
driven rise of a bubble through an elastoviscoplastic material. The conclusions of the
manuscript are shown in Section 5.

2. Governing Equations

In this study, we investigate an unsteady, laminar, isothermal, viscoelastic, and incom-
pressible two-phase flow. The two fluid phases are assumed to be immiscible, i.e., without
mass transfer across the interface. The governing equations for this flow are the mass
conservation equation (Equation (1)),

∇ · u = 0, (1)

and the balance of linear momentum equation (Equation (2)),

ρ
Du
Dt

= −∇p +∇ · τ+ ρg + fs, (2)

where u is the velocity vector, ρ and p are density and pressure, respectively, Du
Dt is the total

time derivative of the velocity vector, g is the gravity acceleration vector, fs is the surface
tension which will be explained in Section 3, and τ = τS + τP is the stress tensor given by
the sum of Newtonian solvent contribution τS and polymeric contribution τP. The solvent
contribution reads as follows

τS = ηS

(
∇u +∇uT

)
, (3)

where ηS is the Newtonian solvent viscosity and the polymeric contribution τP is computed
using a shear-thinning viscoelastic model given by the Giesekus constitutive equation [51]
or by the elastoviscoplastic model given by the Saramito constitutive equation [52], defined,
respectively, as

λτ
O

P + τP +
αλ

ηP
τP · τP = ηP

(
∇u +∇uT

)
, (4)

e
ελ
ηP

tr(τP)ηPmax
(

0,
σ− τ0

kσn

)1/n
τP + λ

�
τP = ηP

(
∇u +∇uT

)
, (5)

where λ is the fluid relaxation time, α is the mobility parameter responsible for shear-
thinning behavior and quantifies the influence of the polymer chains’ stretch on the fluid’s
viscosity, ηP is the polymeric viscosity, η0 = ηS + ηP is the zero-shear rate viscosity or
total viscosity, ε is the extensibility parameter responsible for the elongational behavior
and stretchability of the polymer chains in the viscoelastic fluid, tr(·) is the trace operator,

max(·) is the maximum operator, σ =
√

τD :τD
2 is the second invariant of the deviatoric

stress tensor τD = τP − tr(τP)
3 I, the colon notation represents the double dot product, I is

the identity tensor, τ0 is the yield stress, k is the consistency index, n is the flow behavior

index and
�
τP is the Gordon-Schowalter derivative given by

�
τP ≡ τ

O
P + ζ(τP ·D + D · τP), (6)

where ζ is the non-affine deformation parameter, D = 1/2
(
∇u +∇uT) is the rate of

deformation tensor and τ
O

P is the upper-convective time derivative of the polymeric extra-
stress tensor defined as

τ
O

P ≡
∂τP
∂t

+ u · ∇τP − τP · ∇u−∇uT · τP. (7)
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Note that a Newtonian fluid can be modelled using λ = 0 and η0 = ηS (no need to solve
Equations (4) or (5) since τP = 0.)

In the continuum formulation, the simulation of high Weissenberg number flows in
viscoelastic fluids is known to pose challenges in numerical convergence. These difficulties
arise due to the exponential growth of stresses near critical points as the Weissenberg num-
ber increases. To address this issue, we adopt the log-conformation approach for computing
the polymeric extra-stress tensor components in this study, following the implementation
in the computational library OpenFOAM. The log-conformation approach, as described
in previous works by Habla et al. [53] and Pimenta and Alves [54], offers a mathematical
framework for effectively handling the complexities associated with viscoelastic flows.
For a more comprehensive understanding of the log-conformation approach, the original
works by Fattal and Kupferman [55] provide detailed explanations. Nevertheless, for the
sake of clarity, the log-conformation approach starts with the definition of the relation
between the positive definite conformation tensor (A) and the polymeric extra-stress ten-
sor (τP). Then, instead of solving the constitutive equation in A, it is reformulated in
terms of the natural logarithm of A, θ = ln(A), leading to an evolution equation for θ.
The Equations (4) and (5) written in terms of the natural logarithm tensor θ can be found
in [56].

In our approach, we treat the two immiscible fluids as a single effective fluid across the
entire domain. The physical properties of this effective fluid are calculated as weighted aver-
ages, taking into account the distribution of the volume fraction of each liquid. The equation
governing the evolution of the volume fraction, denoted by γ, is given by

∂γ

∂t
+∇ · (γu) = 0. (8)

The original VOF method implemented in OpenFOAM (the so-called interFOAM solver)
employed an artificial interface compression term ∇ · [γ(1− γ)ur] [57] in Equation (8) to
ensure the accuracy (sharpness) of the volume fraction field, and the MULES limiter
(Multidimensional Universal Limiter with Explicit Solution) [58], to ensure boundedness
of the volume fraction field. Here, ur is the vector of relative velocity between the two
fluids. Although the interFOAM solver has been extensively employed in the past with
successful results [30,57,59,60], it is known that, under certain conditions [61], the original
VOF method in OpenFOAM may not be effective in preserving the desired sharpness of
the interface. Moreover, the addition of the compressive velocity term is known to produce
numerical artifacts during the interface advection.

On the other hand, the isoAdvector technique introduces innovative concepts in both
the interface reconstruction and advection processes. The reconstruction step employs fast
isosurface calculations to determine the fluid distribution within a grid cell. Meanwhile,
the interface advection step utilizes a unique subdivision of the physical time step into
smaller intervals, allowing for the analytical computation of volume fraction flux through
a cell face. This is performed under the assumption that the interface is moving steadily
across the face during the sub-interval. Details about the PLIC-RDF isoAdvector algorithm
can be found in Roenby et al. [42], Scheufler and Roenby [44] and Gamet et al. [62].

3. Numerical Method

The VOF interface capturing method, initially proposed by Hirt and Nichols [29],
utilizes a scalar function known as the volume fraction to track the interface between two
immiscible fluids. In this representation, γ = 1 corresponds to the region occupied by one
of the fluids (e.g., Fluid A), while γ = 0 corresponds to the presence of another fluid (e.g.,
Fluid B). Along the interface between the two fluids, the value of γ varies continuously
within the range of 0 < γ < 1, indicating the transitional region. To ensure the accuracy
of the numerical computations and to avoid the smearing of the volume fraction field
while keeping it within the range of 0 ≤ γ ≤ 1, special attention is required. For that
purpose, a technique for maintaining sharpness is utilized by adding an artificial interface
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compression term [57]. The MULES limiter is then employed to ensure that the volume
fraction field remains bounded. For additional information on this methodology, refer to
Deshpande et al. [58].

Furthermore, in the VOF interface capturing method, the presence of the interface
between the two fluids is taken into account through the incorporation of surface tension
in the balance of linear momentum equation (Equation (2)). This allows for the modeling
of the interfacial forces that arise due to the surface tension effects, thereby capturing the
behavior of the fluids at the interface more accurately. The surface tension at the interface
generates an additional pressure gradient, resulting in a force, which is evaluated per unit
volume using the continuum surface force (CSF) model [63]. The surface tension force, fs,
is calculated as follows [63,64],

fs = σ

(
∇ ·

(
∇γ

|∇γ|

))
(∇γ), (9)

where σ is the surface tension coefficient, ∇γ = n is the normal vector to the interface [63],
and the term in the middle of Equation (9) is the mean curvature of the free surface.

On the other hand, for the isoAdvector numerical algorithm, a piecewise linear in-
terface construction (PLIC) [44] is employed along with a reconstructed distance function
(RDF) [65] to calculate curvature, instead of using the volume fraction gradient. The itera-
tive residual-based interface reconstruction procedure utilizing a reconstructed distance
function to estimate the local interface position and orientation from the raw volume
fraction data can be described in the following numerical steps:

1. Start by computing the raw volume fraction values for each cell in the computational
domain using the VOF method.

2. Use the raw volume fraction data to generate an initial estimate of the interface
position and orientation using a simple threshold operation. Cells with volume
fraction values above a certain threshold (e.g., 0.5) are labeled as Fluid A, while cells
with volume fraction values below the threshold are labeled as Fluid B.

3. Generate an initial estimate of the distance function from the interface [44]. This
distance function is used to define an initial estimate of the interface normal and
curvature at each cell.

4. Use the initial estimate of the distance function to calculate an RDF that better esti-
mates the local interface position and orientation. Here, the gradient of the RDF is
defined as the difference between the interface normal estimated from the distance
function and the normal estimated from the initial threshold operation.

5. Update the interface position and orientation at each cell using the RDF, and repeat
the previous step until the RDF converges to a desired tolerance.

6. Use the updated interface position and orientation to generate a new estimate of
the distance function and repeat the previous steps until a desired level of accuracy
is achieved.

7. Finally, use the updated interface position and orientation to calculate the interface
curvature and normal at each cell, which can be used in subsequent calculations, such
as interface advection or pressure-velocity coupling.

The numerical solution procedure of the multiphase viscoelastic PLIC-RDF isoAdvec-
tor (MVP-RIA) algorithm is represented in Algorithm 1. The MVP-RIA starts by initializing
the fields (such as the velocity, pressure, viscoelastic stress tensor, and phase volume
fraction (the latter one is performed using the setFields utility from swak4Foam)), setting
the time step (or Courant number), the end time of the simulation and the number of
PIMPLE [66–68] outer correctors (nOuterCorrectors) and pressure correctors (nCorrectors).
The nOuterCorrectors enables iteration through the entire system of equations within a
single time step. The algorithm enters a loop where it updates the face fluxes, updates
the interface geometry using the PLIC-RDF isoAdvector method, computes the new vis-
coelastic stress tensor, computes the linear momentum equation and, lastly, enters a loop
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where nCorrectors sets the number of times it solves the pressure Equation (a Poisson type
equation obtained from the mass conservation equation, Equation (1), and Rhie-Chow [69]
interpolation) and momentum corrector. The PIMPLE outer correctors loop continues until
the solution has converged or the maximum number of iterations has been reached. Finally,
the algorithm outputs the results, including the velocity, pressure, viscoelastic stress tensor,
and interface geometry fields.

Algorithm 1 Multiphase viscoelastic PLIC-RDF isoAdvector (MVP-RIA) algorithm

Require: Mesh, physical properties, boundary conditions, initial conditions
Ensure: Velocity, pressure, viscoelastic stress tensor and interface geometry fields

1: Initialize fields
2: Set time step, ∆t, or Courant number, Co
3: Start time loop and set end time for simulation
4: Set the number of outer correctors, nOuterCorrectors, and pressure correctors,

nCorrectors
5: Set current iteration count n = 1 and pressure correctors count m = 1
6: while not converged or n < nOuterCorrectors (PIMPLE corrector loop) do
7: Compute face fluxes
8: Update interface geometry using PLIC-RDF isoAdvector algorithm
9: Compute viscoelastic stress tensor (Equations (4) or (5))

10: Compute linear momentum equation (Equation (2))
11: while m < nCorrectors (PISO corrector loop) do
12: Solve the pressure equation and momentum corrector
13: Increment iteration count m
14: end while
15: Increment iteration count n
16: end while
17: Output results

Second-order discretization schemes were employed for all calculations performed in
OpenFOAM. Specifically, for the transient terms, the implicit Crank-Nicolson scheme was
employed. For the gradient terms, the Gauss linear scheme was used, because only hexahe-
dral meshes were constructed. In addition, the Laplace operators were discretized using
the Gauss linear corrected scheme. Lastly, the advection terms in the linear momentum
equation were discretized with the Gauss limitedlinearV1 scheme, which is specialized
for vector fields and reduces to an upwind scheme in regions of strong velocity gradient,
and the advection terms in the viscoelastic constitutive equations were discretized using the
CUBISTA [70] scheme with component-wise and deferred correction implementation [54].

For the solution of the linear system of equations resultant from the discretized field
equations, the following solvers were used: the generalized Geometric-Algebraic Multi-
Grid (GAMG) linear solver [71] was employed for the discretized pressure equation (with
tolerance equal to 10−10 and relative tolerance equal to 0.01), while the velocity and poly-
meric stress tensor linear systems are solved using BiCGstab with an Incomplete Lower-
Upper (ILU) preconditioning (with tolerance equal to 10−8 and relative tolerance equal to
0) [72,73].

Following Gamet et al. [62], the simulations employed constant time steps with an average
Courant number of 0.2 to keep the discretization errors resulting from the time scheme at a min-
imal level. For the PIMPLE algorithm configuration, we used nCorrectors = 3, which corrected
the pressure field three times in the PISO corrector loop, and
nOuterCorrectors = 5, ensuring five iterations of the pressure-momentum-stress coupling
within a single time step.
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4. Validation Case Studies
4.1. Buoyancy-Driven Rise of a Bubble in a Newtonian Fluid

We examine the case study presented in Tsamopoulos et al. [7], which focuses on
the buoyancy-driven rise of a bubble in a Newtonian fluid on an unbounded domain.
The domain has a width of W = 5 d in the x direction, where d represents the initial
diameter of the bubble, and a height of H = 15 d in the y direction (see Figure 1). A uniform
square mesh with Nx = 200 cells in x direction, and Ny = 600 cells in y direction is
generated, covering the initial bubble diameter with 40× 40 cells. This domain and mesh
are generated using the blockMesh utility. Figure 1 displays a sketch of the geometry and
boundary conditions used for the simulation of the buoyancy-driven rise of a bubble in a
Newtonian fluid. The boundary conditions at the top, bottom, left and right patches are of
type cyclic for all the fields considered. The front and back boundaries of the domain are
empty patches to be able to perform two-dimensional simulations. The bubble is initially
located at a distance equal to 2 d from the domain’s bottom, left, and right boundaries.

Figure 1. The geometry and boundary conditions for the buoyancy-driven rise of a bubble in a
Newtonian fluid.

For this case study, the dimensionless groups that arise from the governing equations
are the Archimedes number, Ar = ρ2gR3/η2

S, and the Bond number, Bo = ρgR2/σ, often
called the Eötvös number, with R = d/2 being the initial bubble radius. From Ar and Bo
dimensionless numbers it is possible to define the Morton (Mo) number, which relies solely
on the physical properties of each liquid,

Mo =
Bo3

Ar2 =
gη4

S
ρσ3 . (10)



Polymers 2023, 15, 3437 10 of 26

Table 1 presents the fluid properties of liquids B-1 and B-2, which are used to describe
the surrounding fluid (Fluid B) of the bubble. The corresponding values of Mo for B-1 and
B-2 are 2.174× 10−7 and 3.769× 10−4, respectively. Fluid A, which represents the bubble,
is defined by the dynamic viscosity and density properties of air.

Table 1. Fluid properties for simulation of the buoyancy-driven rise of a bubble in a Newtonian fluid.

Fluid Dynamic Viscosity Density Surface Tension Morton Number
ηS (Ns/m2) ρ (kg/m3) σ (N/m) Mo = gη4

S/ρσ3

B-1 9.45× 10−3 1153.8 0.06782 2.174× 10−7

B-2 6.01× 10−2 1208.5 0.06550 3.769× 10−4

A 1.48× 10−5 1

Figure 2 illustrates the comparison of our calculated rise velocity U∗ as a function
of bubble diameter d with experimental and numerical data available in the scientific
literature [6,7]. Each data set corresponds to two different values of Mo number. In general,
the simulations’ result for the lower Mo number follows the same trend shown by Max-
worthy et al. [6]. The bubble velocity enhances as the bubble enlarges, while for the bubble
diameters of d > 4 mm, the bubble slows down with growth in size. In this case of the
lowest Mo number, discrepancies from the Tsamopoulos et al. [7] results are found at larger
bubbles. The reason for this difference can be explained by the fact that the maximum in
the bubble velocity vs. bubble diameter corresponds to the minimum in a drag coefficient
vs. Reynolds number curve that has been reported for these and other low-Mo fluids in
the literature [6]. The simulations related to the larger Mo number, which corresponds to
the more viscous fluid, predicted the bubble velocity in very good agreement with both
experiments by Maxworthy et al. [6] and simulations by Tsamopoulos et al. [7] for all the
bubble diameters.

Figure 2. Comparison of our predicted bubble rise velocity with experimental data reported by
Maxworthy et al. [6] and numerical simulation results by Tsamopoulos et al. [7]. The comparison
is performed for two selected values of Mo number, representing different flow conditions in a
Newtonian liquid.

Figure 3 illustrates the contour plots of the steady-state bubble volume fraction within
the Newtonian liquid for two distinct diameters, specifically, d = 0.7 mm and d = 6 mm,
along with the corresponding two Mo numbers. As expected, the smaller bubbles, having
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low values of Ar and Bo, are perfectly spherical. As Ar and Bo dimensionless numbers
rise, the effect of gravitational and inertia forces appears which affects the bubble shape.
As the bubble diameter increases, Ar also enhances, and for Ar = 107, the bubble changes
from spherical to oblate-spheroid, as it can be seen in Figure 3 (the case with d = 6 mm,
Mo = 3.769× 10−4). When Ar increases even more, the bubble shape turns to a more
complex oblate, having flat front and back sides, with an indentation of the front side, as it
is shown in Figure 3 (the case with d = 6 mm, Mo = 2.174× 10−7). The bubble shape in
all the cases is in good agreement with the Newtonian cases displayed and discussed by
Tsamopoulos et al. [7].
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Ar= 6.27
Bo= 0.020

d= 0.7 mm

Mo= 2.174× 10−7
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Ar= 0.17
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Figure 3. Contour plots of the fluid’s volume fraction for Mo = 2.174 × 10−7 (left) and
Mo = 3.769× 10−4 (right) with d = 0.7 mm (top) and d = 6 mm (bottom).
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4.2. Buoyancy-Driven Rise of a Bubble through a Viscoelastic Shear-Thinning Fluid

In this section, we focus on the buoyancy-driven rise of a bubble through a viscoelastic
shear-thinning fluid on a bounded domain. Figure 4 presents a schematic representation
of the computational domain used for simulating the buoyancy-driven rise of a bubble
through a viscoelastic shear-thinning fluid. In the simulations, the dimensions of the
domain are fixed with a constant height H and width W. Specifically, H is equal to 2W and
measures 16 cm. The mesh resolution for each simulation is chosen such that the initial
diameter of the bubble is covered by 80 cells in both the x and y directions. In addition to
the domain size, the boundary conditions employed in this case are distinct from those
used in the buoyancy-driven rise of a bubble through a Newtonian fluid presented in
Section 4.1. As depicted in Figure 4, the bottom, left, and right boundaries are treated as
solid walls, where a fixed value velocity boundary condition of zero is applied, a zeroGradient
pressure condition is enforced and a linear extrapolation of the polymeric stress components
to the wall is carried out. On the other hand, the top boundary is subjected to a zeroGradient
condition for both the velocity and polymeric stress components, and a fixed value pressure
condition of zero. Furthermore, the fluid’s volume fraction α is subjected to a zeroGradient
boundary condition at all the four boundaries.

Figure 4. The geometry and boundary conditions for the buoyancy-driven rise of a bubble through a
viscoelastic shear-thinning fluid.

Table 2 presents the fluid properties of fluids A and B used in the simulation of the
buoyancy-driven rise of a bubble through a viscoelastic shear-thinning fluid. The viscoelas-
tic fluid B is modeled using the Giesekus constitutive equation and fluid A is defined with
dynamic viscosity and density properties similar to those of air. These properties closely
resemble those utilized in the case study conducted by Ji et al. [9].
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Table 2. Fluid properties for simulation of the buoyancy-driven rise of a bubble in a viscoelastic
shear-thinning fluid.

Fluid Solvent Viscosity Polymer Viscosity Density Surface Tension Relaxation Time Mobility Factor
ηs (Ns/m2) ηp (Ns/m2) ρ (kg/m3) σ (N/m) λ (s) α

B 1.0× 10−3 1.511 1000.90 0.076 0.207 0.6

A 1.7× 10−5 1.25

In this case study, two of the dimensionless groups which emerge from the governing
equations are the Reynolds number, which is the ratio of the inertia forces to the viscous
forces, Re = ρBU∗d/η0; and the Weissenberg number, that is the magnitude of elastic forces
with respect to the viscous forces, Wi = λU∗/R, in which λ is the relaxation time, and the
bubble terminal velocity over the bubble radius (U∗/R) is the characteristic shear rate [9].

Multiple simulations were conducted using the newly developed MVP-RIA algorithm,
spanning a range of initial bubble volumes (Vb) from 10 mm3 to 400 mm3. This range
encompasses both the subcritical bubble volume of 40 mm3 and the supercritical bubble
volume of 50 mm3, with the velocity transition occurring in between. This specific volume
range is referred to as the bubble critical volume. Figure 5 depicts the steady-state terminal
velocity U∗ of the bubble as a function of the initial bubble volume Vb. The simulations in
this study were conducted with the newly developed MVP-RIA algorithm, and the results
obtained were compared with the simulations conducted by Ji et al. [9] using the VOF
method, as well as with experimental data reported by Pilz and Brenn [74]. The results
achieved using the newly developed algorithm exhibit excellent agreement with both the
VOF method and the experimental data.

Figure 5. Comparison of our predicted bubble rise velocity with experimental data reported by Pilz
and Brenn [74] and numerical simulation results by Ji et al. [9]. The comparison is conducted for
various initial bubble volumes as they ascend through a shear-thinning viscoelastic fluid described
by the Giesekus constitutive model.

In the case of Newtonian fluids, the dominant forces that influence the shape of a
bubble are viscosity, surface tension, and inertia. These forces collectively lead to the for-
mation of spherical, ellipsoidal, or spherical-cap bubble shapes [9,75,76]. The deformation
of bubbles in viscoelastic fluids is primarily driven by the effects of viscoelasticity. Figure 6
illustrates the impact of the initial bubble volume on the resulting bubble shape in a steady
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state. Contour plots of the fluid volume fraction are presented for simulations with different
initial bubble volumes, namely Vb = 40, 50, 100, and 400 mm3. The bubble shape at the
subcritical volume is prolate, while at the supercritical volume, it is an inverted teardrop
with a cusp [9]. In viscoelastic fluids, when the normal stress is relatively small compared
to the surface tension, the bubble shape remains spherical, similar to that observed in New-
tonian fluids. As the normal stress becomes dominant over the surface tension, the bubble
shape transitions to a prolate or teardrop shape, and a cusp may appear at the tail of the
bubble [9].
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Figure 6. Contour plots of the fluid’s volume fraction for initial bubble volumes of Vb = 40, 50, 100
and 400 mm3 as they ascend through a shear-thinning viscoelastic fluid described by the Giesekus
constitutive model.

In viscoelastic fluids, such as polymers, the presence of polymeric macromolecules
results in entanglements between them. When the fluid flows, these macromolecules are
extended in the direction of the flow, generating elastic stress. This elastic stress tends
to relax when the fluid flow comes to cease. Therefore, the normal viscoelastic stress is
closely connected to the conformation of polymeric macromolecules. The magnitude of
the natural logarithm of the conformational tensor θ provides a measure of the extent of
deformation of the polymeric macromolecules [9,77,78]. Figure 7 illustrates the contour
plots of the natural logarithm θ of the conformation tensor for different bubble volumes,
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including the subcritical volume Vb = 40, supercritical volume Vb = 50, as well as higher
volumes of Vb = 100 and 400 mm3. The magnitude of θ is highest in the front side of
the bubble and the wake region at the back, showing a uniform distribution in the front
side, indicating compression and attachment of polymeric macromolecules in that region.
Conversely, in the back of the bubble, the polymeric macromolecules are extended toward
the tail end. These findings align with the simulations conducted by Ji et al. [9]. The value
of θ in the subcritical bubble volume is lower compared to the supercritical bubble volume,
indicating that the polymeric macromolecules experience greater stretching in the wake
region of the supercritical bubble volume.
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Figure 7. Contour plots illustrating the magnitude of the natural logarithm θ of the conforma-
tion tensor are presented for various initial bubble volumes, including (a) Vb = 40, (b) Vb = 50,
(c) Vb = 100, and (d) Vb = 400 mm3, when they ascend through a shear-thinning viscoelastic fluid
described by the Giesekus constitutive model.
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4.3. Buoyancy-Driven Rise of a Bubble through an Elastoviscoplastic Fluid

In this section, we investigate the buoyancy-driven rise of a bubble with volume Vb,
which begins to move from a stationary position within an unbounded elastoviscoplastic
medium and reaches a steady-state terminal velocity U∗. The dimensions of the compu-
tational domain and boundary conditions employed in this study are similar to the ones
shown in Figure 1, with the additional conditions for the polymeric extra-stress tensor.

For the description of the elastoviscoplastic material, we used the same parameters
described in Moschopoulos et al. [79], where the Saramito–Herschel–Bulkley constitutive
model [52] is used to characterize the rheology of Fluid B. For all the simulations conducted
in this study, an aqueous Carbopol solution with a concentration of 0.1% was employed.
The dimensionless numbers that arise for this problem are the Archimedes number (Ar),
measuring the ratio of gravity force to the viscous force, the Bond number (Bo), being the
ratio of gravity force to capillarity force, the Bingham number (Bn), given by the ratio of
yield stress to gravity force, and lastly, the elastogravity number (Eg), which is the ratio of
gravity force over elasticity force. These non-dimensional numbers are defined as

Ar =
ρgRe f f

k


√

gRe f f

Re f f

n , Bo =
ρgR2

e f f

σ
, Bn =

τ0

ρgRe f f
, Eg =

ρgRe f f

G
, (11)

where G is the elastic modulus of the material and Re f f is the effective bubble radii defined
as Re f f = (3Vb/4π)1/3. This study encompasses four scenarios characterized by different
effective bubble radii, namely 0.004, 0.0083, 0.0107, and 0.0163 m, as outlined in Table 3.

Table 3. Dimensionless numbers employed for the simulation of the buoyancy-driven rise of a bubble
through an elastoviscoplastic fluid.

Re f f [m] Ar Bn Bo Eg

0.004 3.610 0.119 2.150 0.971
0.0083 8.929 0.057 9.347 2.024
0.0107 12.090 0.044 15.385 2.597
0.0163 20.410 0.029 35.704 3.956

Figure 8 illustrates the steady-state terminal velocity U∗ of an air bubble rising through
an elastoviscoplastic fluid for different effective bubble radius Re f f . The plot includes
experimental data from Lopez et al. [80], results from the Arbitrary Lagrangian-Eulerian
(ALE) simulations performed by Moschopoulos et al. [79], and our MVP-RIA calculations.
The terminal velocity of the air bubble in both simulations exhibits a close agreement.
For effective bubble radii Re f f < 0.008 m, both simulations demonstrate higher bubble
velocities with a concave shape function. In contrast, the experimental results show an
almost linear bubble bulk velocity. For a detailed explanation of the larger deviations
between the experimental and predicted terminal velocity of smaller bubbles the reader
is referred to Moschopoulos et al. [79], see Section 5.3 therein. The steady-state bubble
velocity of the simulations and the experiment intersect at Re f f ≈ 0.008 m, and thereafter
the experiment and the simulations are in good agreement, both have a linear trend with
respect to Re f f .
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Figure 8. Bubble steady-state velocity U∗ as a function of the bubble initial radius Re f f . The dot-
dashed line represent the results obtained with our MVP-RIA algorithm, the dashed line represent the
results obtained with the ALE algorithm from Moschopoulos et al. [79] while the symbols represent
the experimental data from Lopez et al. [80].

The experimental steady-state bubble shape is depicted in black and white in
Figures 9a–11a, as reported by Lopez et al. [80] for three different effective bubble radii,
specifically, Re f f = 0.004, 0.0107, and 0.0163 m. In addition, the numerically predicted
bubble shape by Moschopoulos et al. [79] is superimposed with a red line. On the bottom of
each figure (panels (b)), the numerically predicted air bubble shape obtained using the MVP-
RIA algorithm developed in this study is represented by a solid black line. The contour
plots of the natural logarithm θ of the conformation tensor are also displayed.

The steady-state bubble shape for the case with Re f f = 0.004 m exhibits a similar
appearance in the experiment conducted by Lopez et al. [80], the ALE simulation by
Moschopoulos et al. [79] (Figure 9a), and our MVP-RIA simulation (Figure 9b). For this par-
ticular case, the air bubble in the elastoviscoplastic fluid exhibits an elongated shape along
the axial coordinate, resembling a reverse teardrop shape with a gentle tip. The dominance
of elasticity and capillary forces in very small air bubbles within the elastoviscoplastic fluid
restricts the extent of bubble deformation. The contour plot of the magnitude of the natural
logarithm θ in Figure 9b indicates that in the front side of the bubble, there is also a uniform
distribution of this quantity with a value larger than the mean. The maximum value of θ
appears at the bubble tail end. The minimum values of θ are in a relatively large area at the
bubble sides, closer to its end tail.
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(a)

Journal of Non-Newtonian Fluid Mechanics 297 (2021) 104670

6

shown that the unyielded region around the bubble does not extend 
more than five bubble-radii, and no such oscillations are reported, 
supporting the assumption of negligible wall effects. To understand the 

cause of this phenomenon, one must consider that the SHB model (and 
any other elastoviscoplastic model based on the max function) reduces 
in the unyielded area to a Neo-Hookean solid model, which does not 

Fig. 2. (a) Steady shear stress (̃τxy) versus shear rate, ̃γ̇(s− 1). Symbols represent the experimental data, while lines represent the model predictions. (b) Prediction of 
the steady first biaxial elongational viscosity η̃e versus extension rate ̃̇ε(s− 1). 

Fig. 3. For a bubble with R̃eff = 0.004 m in 
the 0.1% Carbopol solution, comparison be-
tween (a) the steady-state experimental shape 
by LNS with our prediction indicated by the 
continuous red line. (b) The yielded/unyielded 
areas are depicted by red/blue color, respec-
tively. (c) Contours of the stress components, τrz 

(right half) and the τzz (left half). The respective 
color map accompanies each part. (For inter-
pretation of the references to color in this figure 
legend, the reader is referred to the web version 
of this article).   
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Figure 9. (a) Experimental bubble shape by Lopez et al. [80] (black and white), and the numerical
simulation of Moschopoulos et al. [79] (red line), (b) Contour plots of the natural logarithm θ of the
conformation tensor for Re f f = 0.004 m obtained with the newly developed MVP-RIA algorithm.

For the case of the bubble effective radius equal to Re f f = 0.0107 m, the bubble shape
forms a spherical-cap shape. In this case, the bubble is stretched laterally, and two tails
emerge. The contour plot of the magnitude of the natural logarithmic θ in Figure 10b shows
that the maximum value occurs at the two tails of the bubble, and the minimum value
of |θ| is being transferred from the bubble sides to the back side of the bubble in the area
between the two tails.
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small stresses indicate that inertia indeed overcomes shear and exten-
sional stresses. The deviation between experimental and predicted 
bubble shapes disappears when the bubble radius increases further, as 
discussed below. 

In the same 0.1% Carbopol solution, increasing the bubble radius to 
R̃eff = 0.0107 m results in Ar = 12.09,Bn = 0.044,Bo = 15.385,Eg =

2.597 and to R̃eff = 0.0163 m results in Ar = 20.41, Bn = 0.029, Bo =
35.704, Eg = 3.956. Fig. 6 demonstrates the very good agreement be-
tween the experimentally observed and numerically predicted bubble 
shapes, which are all of the spherical cap type. Note that the indentation 
in the rear of the bubble is not visible in the side photographs by LNS, 
but it is visualized by the dashed line we have drawn from the left to the 
right tip in the predicted shapes in the right panels. Considering the 
results shown in Figs. 5 and 6, we conclude that our simulations un-
derestimate somewhat the elastic response of the material. Thus, inertia 
overtakes elasticity for smaller bubble sizes than it should, producing 
the oblate shape (Fig. 5(b)) for smaller bubbles. We attribute this de-
viation to the lack of rheological data in elongational flow, under-
estimating the elastic nature of the material. 

The increase of inertia effects with R̃eff is clear from the definition of 

Ar in Eq. (4). However, the decrease of elastic effects cannot be deduced 
directly from Eg, because according to its definition in Eq. (4) it increases 
with R̃eff . To clarify why elasticity fades away when the bubble radius 
increases, we should examine a dimensionless number that relates better 
with it. To this end, we define the Weissenberg number, which is the 
product of the material relaxation time (=viscosity/elastic modulus) 
with a characteristic strain rate, as follows: 
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k̃
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5.2.2. Comparison with bubble shapes reported by PZF 
Next, we focus our attention on the 0.1% Carbopol solution used by 

PZF. Based on its rheological parameters a bubble of radius R̃eff =

0.0086 m results in the following values of the dimensionless numbers: 
Ar = 5.714, Bn = 0.054, Bo = 10.461, Eg = 2.027. Fig. 7(a) shows the 
predicted bubble shape superimposed on the experimental image 

Fig. 6. Comparison of the side views of the bubble observed by LNS (left panels) with our predicted sections by the red line. The right panels depict the same 
predictions with an added line to assist in realizing the side view of the experiments. Here R̃eff = 0.0107 m (top panels) and R̃eff = 0.0163 m (bottom panels). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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Figure 10. (a) Experimental bubble shape by Lopez et al. [80] (black and white), and the numerical
simulation of Moschopoulos et al. [79] (red line), (b) Contour plots of the natural logarithm θ of the
conformation tensor for Re f f = 0.0107 m obtained with the newly developed MVP-RIA algorithm.

In the case of the highest effective radius Re f f = 0.0107 m, we can observe a more
laterally stretched bubble with two sharper tails, as shown in Figure 11. The trend is
similar in the experiment [80], the ALE simulation [79], and with our MVP-RIA algorithm,
although the latter shows a more arc-shaped bubble, with sharper tails. Here, we observed a
more uniform area with the same value of |θ| around the bubble, while the region showing
the maximum value of |θ| has shrunk into small spots near the two sharp tails, and the
minimum |θ| region is in the inner lateral sides of the two tails.
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small stresses indicate that inertia indeed overcomes shear and exten-
sional stresses. The deviation between experimental and predicted 
bubble shapes disappears when the bubble radius increases further, as 
discussed below. 

In the same 0.1% Carbopol solution, increasing the bubble radius to 
R̃eff = 0.0107 m results in Ar = 12.09,Bn = 0.044,Bo = 15.385,Eg =

2.597 and to R̃eff = 0.0163 m results in Ar = 20.41, Bn = 0.029, Bo =
35.704, Eg = 3.956. Fig. 6 demonstrates the very good agreement be-
tween the experimentally observed and numerically predicted bubble 
shapes, which are all of the spherical cap type. Note that the indentation 
in the rear of the bubble is not visible in the side photographs by LNS, 
but it is visualized by the dashed line we have drawn from the left to the 
right tip in the predicted shapes in the right panels. Considering the 
results shown in Figs. 5 and 6, we conclude that our simulations un-
derestimate somewhat the elastic response of the material. Thus, inertia 
overtakes elasticity for smaller bubble sizes than it should, producing 
the oblate shape (Fig. 5(b)) for smaller bubbles. We attribute this de-
viation to the lack of rheological data in elongational flow, under-
estimating the elastic nature of the material. 

The increase of inertia effects with R̃eff is clear from the definition of 

Ar in Eq. (4). However, the decrease of elastic effects cannot be deduced 
directly from Eg, because according to its definition in Eq. (4) it increases 
with R̃eff . To clarify why elasticity fades away when the bubble radius 
increases, we should examine a dimensionless number that relates better 
with it. To this end, we define the Weissenberg number, which is the 
product of the material relaxation time (=viscosity/elastic modulus) 
with a characteristic strain rate, as follows: 
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5.2.2. Comparison with bubble shapes reported by PZF 
Next, we focus our attention on the 0.1% Carbopol solution used by 

PZF. Based on its rheological parameters a bubble of radius R̃eff =

0.0086 m results in the following values of the dimensionless numbers: 
Ar = 5.714, Bn = 0.054, Bo = 10.461, Eg = 2.027. Fig. 7(a) shows the 
predicted bubble shape superimposed on the experimental image 

Fig. 6. Comparison of the side views of the bubble observed by LNS (left panels) with our predicted sections by the red line. The right panels depict the same 
predictions with an added line to assist in realizing the side view of the experiments. Here R̃eff = 0.0107 m (top panels) and R̃eff = 0.0163 m (bottom panels). 
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Figure 11. (a) Experimental bubble shape by Lopez et al. [80] (black and white), and the numerical
simulation of Moschopoulos et al. [79] (red line), (b) Contour plots of the natural logarithm θ of the
conformation tensor for Re f f = 0.0163 m obtained with the newly developed MVP-RIA algorithm.

Lastly, the disparities observed in the bubble contour shape obtained through the nu-
merical models, when contrasted with the experimental counterparts in Figures 10 and 11,
have been attributed by Moschopoulos et al. [79] (as discussed in Section 5.2.1 of their work)
to the absence of rheological data pertaining to elongational flow. This absence leads to an
underestimation of the material’s elastic behavior.

5. Conclusions

In conclusion, the motion of air bubbles within a liquid has been shown to have signif-
icant implications in various aspects, specifically, bubbles affect the viscosity, flow behavior,
and overall rheological properties of non-Newtonian fluids, particularly elastoviscoplastic
fluids. This study introduces a novel interface-capturing method specifically designed for
multiphase viscoelastic fluid flow simulations. The developed algorithm combines the geo-
metric volume of fluid (isoAdvector) approach with a reconstructed distance function (RDF)
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to accurately determine interface curvature. To further enhance accuracy and robustness,
a piecewise linear interface construction (PLIC) scheme is incorporated in conjunction with
the RDF-based interface reconstruction. The proposed method offers improved capabilities
for capturing interfaces in complex viscoelastic fluid flow scenarios, providing a valuable
tool for studying and analyzing multiphase systems involving non-Newtonian fluids.

The multiphase viscoelastic PLIC-RDF isoAdvector (MVP-RIA) algorithm has been
successfully validated through simulations of the buoyancy-driven rise of a bubble in fluids
with diverse rheological characteristics. The algorithm was initially employed to investi-
gate the behavior of a bubble rising in a Newtonian fluid within an unbounded domain.
The results obtained from these simulations exhibit remarkable agreement with experimen-
tal data, providing accurate predictions of the bubble shape and velocity. Subsequently,
by incorporating the effects of viscoelasticity, shear-thinning behavior, and elastoviscoplas-
ticity, the MVP-RIA algorithm opens up new possibilities for exploring the influence of
rheological complexity on bubble dynamics. The MVP-RIA algorithm was further extended
to investigate the buoyancy-driven rise of a bubble in a viscoelastic shear-thinning fluid
utilizing the Giesekus constitutive model. The simulations revealed a remarkable change in
the bubble shape as the influence of normal stress became dominant over surface tension.
Specifically, the bubble shape transitioned from a spherical, ellipsoidal, or spherical-cap
shape observed in the Newtonian fluid case to a prolate or teardrop shape, often charac-
terized by a cusp at the bubble tail. This observation highlights the significant impact of
viscoelasticity on the deformation behavior of bubbles in non-Newtonian fluids. The pres-
ence of viscoelasticity introduces additional forces and rheological complexities, leading
to distinct bubble shapes and dynamics compared to Newtonian fluids. The ability of the
MVP-RIA algorithm to accurately capture these complex phenomena demonstrates its
effectiveness in simulating the behavior of bubbles in viscoelastic shear-thinning fluids.
In the final phase of our study, the MVP-RIA algorithm was utilized to investigate the
buoyancy-driven rise of a bubble in an unbounded elastoviscoplastic medium, employing
the Saramito–Herschel–Bulkley constitutive equation. For very small air bubbles immersed
in the elastoviscoplastic fluid, the dominance of elasticity and capillary forces imposes
limitations on the extent of bubble deformation. Consequently, the deformation is primarily
confined to the axial direction, resulting in a stretched, reverse teardrop shape with a mild
tip along its trajectory. However, as the bubble volume increases, lateral stretching becomes
more pronounced, leading to the emergence of two tails. This evolution ultimately gives
rise to a highly elongated bubble shape with sharper tails.

The successful validation of the MVP-RIA algorithm paves the way for future investi-
gations into a wide range of practical applications, including industrial processes, materials
engineering, and biomedical research.
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Abbreviations
The following abbreviations are used in this manuscript:

ADI Alternating-Direction Implicit
ALE Arbitrary Lagrangian Eulerian
BiCGStab Bi-Conjugate Gradient-Stable Algorithm
CSF Continuum Surface Force

CUBISTA
Convergent and Universally Bounded Interpolation Scheme
for the Treatment of Advection

FTM Front-Tracking Method
GAMG Geometric-Algebraic Multi-Grid
IBM Immersed Boundary Method
IFEM Immersed-Finite-Element Method
ILU Incomplete Lower-Upper
LSM Level-Set Method
MAC Marker-And-Cell
MULES Multidimensional Universal Limiter with Explicit Solution
MVP-RIA Multiphase Viscoelastic PLIC-RDF isoAdvector
OpenFOAM Open Source Field Operation and Manipulation
PFM Phase Field Method
PIMPLE Mixture of PISO and SIMPLE
PISO Pressure Implicit with Splitting of Operator
PLIC Piecewise Linear Interface Construction
RDF Reconstructed Distance Function
SIMPLE Semi-Implicit Method for Pressure Linked Equations
VOF Volume-Of-Fluid
Nomenclature
Physical and mathematical quantities
u Velocity vector
ρ Density
p Pressure
g Gravity acceleration
fs Surface tension force
τ Stress tensor
τS Newtonian (Solvent) stress tensor
τP Polymeric extra-stress tensor
ηS Solvent dynamic viscosity
ηP Polymeric dynamic viscosity
α Mobility parameter
λ Relaxation factor, relaxation time
ε Extensibility parameter
σD Deviatoric part of stress tensor
σ Second invariant of the deviatoric stress tensor
I Identity tensor
τ0 Yield stress
�
τP Gordon-Schowalter derivative
ζ Non-affine deformation parameter
τ
O

P Upper-convective time derivative of the polymeric extra-stress tensor
A Conformation tensor
γ Volume fraction
ur Relative velocity vector of two fluids
σ Surface tension coefficient
U∗ Calculated rise velocity
θ Natural logarithm of the conformation tensor
k Consistency index
n Shear-thinning exponent
G Elastic modulus of the material



Polymers 2023, 15, 3437 23 of 26

Geometrical parameters
W Domain width
H Domain height
d Initial bubble diameter
R Initial bubble radius
Vb Initial bubble volume
Re f f Effective bubble radii
Non-dimensional numbers
Ar Archimedes number
Bo Bond (Eötvös) number
Mo Morton number
Re Reynolds number
Wi Weissenberg number
Bn Bingham number
Eg Elastogravity number
Operators
∇ Gradient
∇. Divergence
D(.)
Dt

Total time derivative

tr(.) Trace operator
max(., .) Maximum operator
(.)T Transpose operator
: Double dot product
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