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Abstract: The molecular models of nitrile–butadiene rubber (NBR) with varied contents of acry-
lonitrile (ACN) were developed and investigated to provide an understanding of the enhancement
mechanisms of ACN. The investigation was conducted using molecular dynamics (MD) simulations
to calculate and predict the mechanical and tribological properties of NBR through the constant strain
method and the shearing model. The MD simulation results showed that the mechanical properties
of NBR showed an increasing trend until the content of ACN reached 40%. The mechanism to
enhance the strength of the rubber by ACN was investigated and analyzed by assessing the binding
energy, radius of gyration, mean square displacement, and free volume. The abrasion rate (AR)
of NBR was calculated using Fe-NBR-Fe models during the friction processes. The wear results
of atomistic simulations indicated that the NBR with 40% ACN content had the best tribological
properties due to the synergy among appropriate polarity, rigidity, and chain length of the NBR
molecules. In addition, the random forest regression model of predicted AR, based on the dataset of
feature parameters extracted by the MD models, was developed to obtain the variable importance for
identifying the highly correlated parameters of AR. The torsion–bend–bend energy was obtained and
used to successfully predict the AR trend on the new NBR models with other acrylonitrile contents.

Keywords: molecular dynamics simulations; acrylonitrile; NBR; mechanical properties; tribological
properties; abrasion rate; RFR; variable importance

1. Introduction

The wear phenomenon of polymer materials has received considerable attention as it
directly affects the reliability, stability, and safety of materials in industrial applications [1–6].
As one of the most attractive matrixes in polymers, nitrile–butadiene rubber (NBR) has
exhibited outstanding wear resistance, chemical resistance, and a wide range of operating
environments [7]. On the other hand, NBR is the most widely used polar rubber in
petroleum industries and mechanical seals due to its moderate cost, good processability,
and easy modification [8,9]. Therefore, the mechanical and tribological properties of NBR
have been investigated by many experimental researchers [10–14]. The most common
method for improving wear resistance of NBR is based on the increasing acrylonitrile
(ACN) content to raise the polarity and rigidity of polymer, thereby enhancing material
mechanical and tribological properties [15,16]. It has to be noted that although the above
experimental studies have acknowledged the best performance of 40% ACN content of
NBR, to the authors’ knowledge, few theoretical or molecular simulation studies have
been identified. In order to guide the NBR modification in tribology applications, studies
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are also significant and useful in determining the enhancement mechanism of NBR as the
optimizing direction from an atomic level.

As an effective tool for studying materials [16–20], molecular dynamics (MD) simu-
lations can calculate the properties of the polymer model at the macro level and provide
details of molecular interactions to explain the mechanisms of action on the atomic scale.
Several themes that emerged from investigators have reported on the physical properties
of polymer composites formed by MD simulations, such as the glass-transition tempera-
ture, mechanical and tribological properties, tribo-chemical properties, thermal properties,
and damping properties [4,21–25]. Data from Li [26,27] suggested that the tribological
properties of polymer composites under the different variables of normal loading and
sliding velocity could be enhanced by the introduction of carbon nanotubes based on MD
simulations, where physical interpretations were provided from microscopic information.
It can be indicated from the above studies and other research [28–30] that the destruction
of materials is more from the transfer of external kinetic energy into the potential energy
of the polymer by the microscopic perspective of simulation analysis. This means that
improving the interaction energy of molecular chains of a polymer is more important for
reducing the potential energy of the polymer.

In the MD simulations, the polymer properties were directly or indirectly determined
according to the system energy by parameterizing the structural features of polymers [31].
The potential energy of a system can be expressed as a sum of valence (or bond), non-bond
interactions, and cross term: Etotal = Evalence + Enon-bond + Ecrossterm [32]. In addition, these
energies can be further subdivided into a dozen specific parameters, such as the bond
energy, the angle energy, the Van der Waals energy, and the bend–torsion–bend energy, etc.
The importance of these specific parameters on influencing the properties of polymers was
often neglected in previous MD theoretical studies due to the large quantity of parameters.
These energies are likely to be key correlation factors in the study and prediction of material
properties [33,34]. The random forest technique is able to simultaneously analyze hundreds
of feature variables [35–39] and produce the ranking of feature importance based on the
predictive model of machine learning. A study by Betina [40] proposed a basic method that
obtained information on the most important variables from the random forest model, and
it was shown to be effective for the distinction of the variables that best contributed to the
discrimination of oils.

Considering all the aforementioned information, the mechanical and tribological
properties of NBR were calculated and analyzed by MD simulations. Thereinto, according
to the universal components of NBR [41], the NBR models considered ACN contents of
20% to 40% with incremental contents of 10%. To determine the atomic mechanisms of
enhancements of ACN, the binding energy, radius of gyration, mean square displacement
(MSD), and free volume were calculated from the NBR system. In addition, the results
and energy values were collected from the MD model for identifying the high correlation
parameters of wear performance in different ACN contents of NBR.

2. Models and Methods
2.1. MD Simulations

MD simulations were performed with Materials Studio 8.0 software. Molecular mod-
eling and dynamic calculation of 4 NBR models were carried out using Amorphous Cell
and Forcite Modules. The COMPASS force field [32], which is an ab initio force field
that can accurately predict the structural characteristics of a wide range of molecules
and polymers, was implemented. These models were constructed as follows: A single
chain consisting of 20 repeat units was built with acrylonitrile (C3H3N) and butadiene
(CH2 = CH − CH = CH2) in 1:4, 3:7, 2:3, and 1:1 allocation ratios [10–14]. The chain
length was measured from the atomic distances between the two ends [18]. Each chain
was individually packed into an empty cell with a size of 4.5 × 3.0 × 3.0 nm3 and periodic
boundary conditions until the cell density reached 0.97 g/cm3 [22]. The molecules in a
cell were built with a Monte Carlo style by minimizing close contacts among atoms whilst
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keeping a realistic distribution of torsion angles. The information of the NBR models is
listed in Table 1.

Table 1. Information about the NBR models.

Item Acrylonitrile and Butadiene
Allocation Ratio

ACN
Content

Chain Length
(Å)

Number of Elements in Single Chain Number of
Total AtomsC H N Double Bond

ACN20 1:4 19.70% 84.33 76 110 4 16 4180

ACN30 3:7 29.61% 80.96 74 104 6 14 4048

ACN40 2:3 39.55% 75.66 72 98 8 12 3916

ACN50 1:1 49.53% 71.74 70 92 10 10 3784

Since the internal energy was too high in the original NBR models, geometry optimiza-
tion was applied, and the conjugate gradient algorithm [42] was adopted with an energy
convergence of 10−5 kcal/mol. The equilibrated structure of the models was obtained
further using the NVT (constant volume, constant temperature) and NPT (constant pres-
sure, constant temperature) ensemble. A 600 ps NVT was conducted under a temperature
of 298 K. On the last snapshot of the NVT trajectory, an NPT ensemble was carried out
for 600 ps at a temperature and pressure of 298 K and 101 KPa. These ensembles were
simulated using the Andersen thermostat [43] and Berendsen barostat [44] with time steps
of 1 fs. Meanwhile, the Ewald and atom-based summation method was applied to calculate
the electrostatic and van der Waals (vdW) interactions with an accuracy of 0.001 kcal/mol
and a cutoff distance of 1.25 nm, respectively.

To investigate the mechanical properties of the models, the constant strain method
was applied to calculate the Young’s modulus (E), bulk modulus (B), and shear modulus
(G). Next, another 200 ps NVT was calculated to obtain the trajectory, in which 4 strains
and a maximum strain (ε) amplitude of 0.003 were applied to compute the moduli. The
elastic constant matrix was estimated by a series of finite difference approximations. In
each Cartesian direction, E = σ/ε was applied, according to the virial stress definition [45].
By combining the Voigt [46] and Reuss [47] methods with Hill’s definition [48], B and G
were estimated by the 6 × 6 stiffness and compliance matrices accordingly.

To predict the tribological properties of NBR, Fe-NBR-Fe models were proposed and
equilibrated by geometry optimization, and the abrasion rate (AR) of NBR was calculated.
Fe atom layers with dimensions 4.5 × 3.0 × 0.86 nm3 were developed and used as the
top and bottom slip planes (the intermediate layer from the equilibrated structure of the
models). A 5-cycle annealing simulation with an initial temperature of 150 K and a mid-
cycle temperature of 350 K was then conducted by a 200 ps NVT. Finally, the confined
shear was realized by applying a sliding speed of 0.1 Å/ps for 500 ps on the upper Fe layer
(up-Fe-layer). After the end of the shearing process, AR = Mleave/Mtotal was applied, where
Mleave and Mtotal represent the number of atoms that leave the NBR matrices during the
friction process and the total number of atoms in the original NBR matrices, respectively. By
simulating the friction process, FN and Ff (the normal and friction forces on the up-Fe-layer)
were obtained, and the AR was measured at the last snapshot of the shearing trajectory.

2.2. Datasets

In order to identify the high correlation parameters of AR, the forest model of pre-
dicting AR needed to be constructed by feature variables of NBR. In this study, the feature
parameters of NBR as the dataset variables, including 27 input variables and AR output
variable, were collected from the MD model. The dataset consisted of 5 parameter modules:
structural parameters, mechanical properties, environmental variables, friction parameters,
and energy parameters. These parameters were derived from the Fe-NBR-Fe model before
the shear process, except the AR and mechanical properties, as clearly demonstrated in
Figure 1 and Table 2.
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Figure 1. Flow chart of the MD simulations and dataset.

Table 2. The dataset of the feature parameters.

Feature Module The Name of Feature Parameters

Structural parameters ACN Content Number of C Number of H Number of N

Mechanical properties E G B

Friction parameters FN Ff AR

Environmental
variables Temperature Pressure Loading Velocity

Energy parameters

(Hamiltonian) (Total valence energy) (Non-bond energy) (Total cross terms energy)

Total kinetic energy Bond energy Van der Waals energy Bend–Bend energy

(Total potential
energy) Angle energy Electrostatic energy Bend–Torsion–Bend energy

Torsion energy Torsion–Bend–Bend energy

Inversion energy Torsion–Stretch energy

Stretch–Bend–Stretch energy

Stretch–Torsion–Stretch
energy

Stretch–Stretch energy
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Thereinto, the specific parameters of energies were obtained from the empirical po-
tential function [31,49,50] of the force field and are summarized by the expressions below.

Hamiltonian = Total kinetic energy + Total potential energy (1)

Etotalpotential = Evalence + Ecrossterm + Enon−bond (2)

Evalence = Ebond + Eangle + Etorsion + Eout−o f−plane + EUrey−Bradley (3)

Ecrossterm = EBend−Bend + EBend−Torsion−Bend + ETorsion−Bend−Bend
+ETorsion−Stretch + EStretch−Bend−Stretch + EStretch−Torsion−Stretch + EStretch−Stretch

(4)

Enon−bond = Evan der Waals + ECoulomb + Ehydrogen bond (5)

To enrich the dataset, the normal loading and sliding velocity were selected as the
feature parameters of the environmental variables to additionally simulate the friction
process on each NBR model. The normal loadings were divided into 11 levels, ranging from
0 to 500 kcal/mol/Å, at a sliding speed of 1.1 Å/ps. The sliding velocities were classified
into 2 levels with gradients of 0.01 Å/ps (0.03–0.09 Å) and 0.1 Å/ps (0.1–1.0 Å). In summary,
112 samples of the friction process were obtained for forming the original dataset.

It is worth noting that the energy parameters were equivalently designed as the
structure descriptors of polymer through MD simulations in this study. The structural
parameters of the dataset were also added to explore whether the structural descriptors
can be further simplified by atomic information of models.

2.3. Identifying the Correlation Parameters of AR

Random forest is one of the most popular supervised machine learning approaches,
and it can be applied to solve a wide range of prediction problems [37] with a high accuracy
compared with other currently used algorithms. Aside from being able to deal with high-
dimensional variables without deleting variables, the method has been highly recognized
for its inherent procedure of producing the variable importance (VI) [38,39]. From the VI of
the prediction model, the importance variables of the AR effect can be initially screened for
identifying the correlation parameters. Hence, the random forest regression (RFR) model
of predicted AR was developed to obtain the VI of feature parameters. According to the
original dataset, different decision trees were constructed to develop the RFR model, as
shown schematically in Figure 2.

First, a new dataset for each tree was established using the bootstrap strategy. Next,
the new dataset was split into a training dataset (approximately 70%, in-bag) and a test
dataset (approximately 30%, out-of-bag). A 4-fold cross validation [51] was then applied to
avoid overfitting in the bag step. The training dataset was divided into 3 training subsets
and a validation subset. To separate the feature variables from the 3 training subsets,
predictive variables were identified within the random selection by the mean squared error
(MSE) criterion and were used to set the nodes during regression tree construction [52].
Additionally, hyperparameters of the separation were optimized by the validation subset.
The final model of the decision tree was formed by 4 separate results.

The whole process of building the RFR model involved iteratively repeating the
growth process of one tree until the total number of trees reached 100 (ntree = 100). The rules
and judgment values from all decision trees were then integrated and averaged. According
to the contribution proportions of the feature variables, the VI was calculated.

The correlation variable of AR from feature parameters was identified by analyzing
the top parameters in VI. The specific analysis is detailed in the RFR results of Section 3.3.
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3. Results and Discussions
3.1. Mechanical Properties

The mechanical properties of NBR were investigated by varying the ACN content.
According to the 2.1 MD simulations, the mechanical modulus of NBR was simulated
3~5 times for each model and reported the property values from the average of 3 times
simulations. As illustrated in Figure 3 and Table 3, E, B, and G values of these models of
3.05 to 3.80, 2.95 to 3.39, and 1.25 to 1.42 GPa, respectively, were obtained with increasing
values of ACN. Compared with the monograph [32], the research also found that increas-
ing the ACN content reinforced the mechanical properties attributed to the polarity and
rigidity of NBR. The polarity atomic nitrogen with an increase of the ACN group enhanced
rubber polarity to increase the interactions of NBR molecular chains. According to the
conformation of polymer chains, the flexibility of NBR molecules with an increase in ACN
were reduced, owing to reduced double bonds and increased side groups. Meanwhile, the
reduced chain length and increased molecular rigidity caused a decrease of entanglement
between the NBR molecular chains.

Table 3. The mechanical properties of NBR.

System Young’s
Modulus (GPa)

Increase
Percentage (%)

Bulk Modulus
(GPa)

Increase
Percentage (%)

Shear Modulus
(GPa)

Increase
Percentage (%)

ACN20 3.05 0.00 2.95 0.00 1.25 0.00

ACN30 3.32 8.85 2.83 −4.07 1.33 6.40

ACN40 3.77 23.61 3.27 10.85 1.52 21.60

ACN50 3.80 24.59 3.39 14.92 1.42 13.60

In this study, these moduli approximately showed an increasing trend until the content
of ACN reached 40%. In addition to the Bulk modulus, the Young’s and shear moduli
of ACN 50 were only slightly increased and decreased compared to ACN 40. Overall,
ACN enhanced NBR mechanical properties and showed a turning point at 40% content. A
possible explanation for this is that 40% ACN represents a turning point for the dominant
role of the reinforcing effect in NBR. The increasing polarity and rigidity of NBR with an



Polymers 2023, 15, 3799 7 of 18

increased ACN content enhanced the interactions of NBR molecular chains until the strong
rigidity of NBR limited the movement and entanglement of chains after this point.
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In order to determine the atomic mechanisms responsible for the enhancement in the
mechanical properties, the interaction of NBR molecular chains was calculated during the
NPT equilibrium processes. A complete molecular chain from each model is marked as an
NBRL in Figure 4 (shown as a red chain in Figure 1 in some cells, too). The binding energy
(Ubind) between the NBRL and the NBR matrix was calculated as shown in Figure 4 using
Equation (6):

Ubind = −Uinter = −(Utotal − UNBRL − UNBR) (6)

where Utotal represents the total energy of the NBR, UNBRL identifies the energy of the NBRL,
and UNBR represents the energy of the NBR, except for the NBRL. In order to reduce the
errors of different NBRL, the average value of the binding energy of NBRL was calculated
and repeated 10 times to further average as shown in Figure 4. The Ubind increased from
195.70 to 206.52 kcal/mol as the ACN content increased, indicating that having more ACN
enhanced the interaction of NBR molecular chains by the increase in polarity and thus
improved the mechanical properties of NBR. It was also observed from the structure of the
NBR chain that the degree of coiling of molecules with an increase in ACN was stronger.
The cause of this phenomenon can be explained that the double bond number of models
was decreasing to reduce the bond angle value of the NBR backbone, and the polarity of
the models was increasing to enhance intramolecular interaction force.
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In the NPT equilibrium processes, the radius of gyration of NBR molecular chains
of models was monitored as a parameter to assess the flexibility of NBR and to show
the influence of ACN contents on the movement of NBR molecular chains. As shown
in Figure 5, the radius of gyration of NBR molecular chains with increasing values of
ACN was reduced, indicating that NBR molecular chains with an increase in ACN had a
smaller radius of gyration, lower flexibility, and more rigidity. This comparison showed
that the increasing of the ACN group restricted the flexibility and enhanced the rigidity of
NBR molecular chains, thereby improving the shear resistance and further the mechanical
properties of NBR. Meanwhile, the standard deviation of the radius of gyration of models
by an increased ACN content declined, which showed that the ACN group limited the
range of motion of NBR molecular chains during the NPT equilibrium process. Especially,
the standard deviation of ACN50 value was 0.03 Å, showing decreases of 30%, 57%, and
40% compared with others, respectively. The extremely high rigidity of the ACN50 model
limited the entanglement of NBR molecular chains, thus little improving the mechanical
properties of ACN50 than ACN40 of NBR.

To verify the above hypothesis of a 40% turning point, the MSD of the NBR molecular
chains, which plays a vital role in determining the movement of the polymer chains [53],
was calculated during the NPT equilibrium process and is recorded in Figure 6. The average
MSD values of models with increases in ACN were 3.51, 3.01, 2.66, and 2.05 Å2, showing
decreases of 14.26%, 24.30%, and 41.61% compared with the ACN20 model, respectively.
In comparison with the other models, the flatter slope of the ACN50 curve indicates that
the motion of NBR molecular chains was greatly limited due to its excessive polarity and
rigidity, and thus the mechanical properties of ACN50 barely improved relative to those of
ACN40. This restriction largely dampened the entanglement between molecules, affecting
the enhancement of strength during the equilibrium processes.
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In addition, to further assess the interactions and movement of NBR molecular chains,
the free volume was measured based on the equilibrated structures of models, as recorded
in Figure 7. The field volume was calculated as Field Volume = Enclosed Volume + Free Volume.
The Connolly surface was calculated when a probe molecule with a radius (Rp) of 1.0 Å
rolled over the vdW surface, and the enclosed volume and free volume were determined
as the volumes on the side of the Connolly surface with and without atoms, respectively.
The trends of the field volume (the blue and gray bar) and enclosed volume (the gray bar)
slightly decreased as the ACN content increased, which indicates that the interactions and
movement of NBR molecular chains were enhanced and limited with more branches of the
ACN group, leading to NBR molecular chains with a higher polarity and stronger rigidity.
These results agree with the above-mentioned analysis of mechanical properties.
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It is interesting to mention that ACN30 had the peak value for B, Ubind, and free
volume for all models. The standard deviation of the radius of gyration on ACN30 (0.07 Å)
was more than on ACN20 (0.06 Å), which meant the range of motion of NBR molecular
chains was larger on ACN30, in agreement with the result of free volume. Under the same
increment on polarity of NBR, the distance of intermolecular interactions increased, which
led to a decrease of B and Ubind, rather than a rise similar to others. Compared with the E
and G, the relative position of intermolecular could be considered as a key factor on the
mechanism of B. The polarity and rigidity of NBR were critical factors to determine the
performance on the E and G.

In addition, there are many different initial polymer configurations in the same ACN
content due to the complex polymer configurations. New models of 30% ACN content were
additionally built from other monomer arrangements to validate the ACN30 finding. From
Table 4, the 1211 (the original ACN30 model) and 2121 items contained 2 ACN consecutive
units, and the 2130 and 3111 items contained 3 ACN consecutive units. According to the
above analytical methods, the Ubind, and free volume of these models were calculated and
shown in Table 4 and Figure 8.

Table 4. The information and results of 30% ACN of NBR models with the other arrangement
structures of the monomers.

ACN30 Item
The Number of ACN Consecutive Units Binding Energy

(kcal/mol)
Free Volume

(Å3)1 ACN 2 ACN 3 ACN

1211
(ACN30) 4 1 0 192.70 6972

2121 2 2 0 192.40 7049

2130 1 1 1 190.55 7254

3111 3 0 1 193.73 6655
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As shown in Figure 8, the Ubind values of 30% ACN content models were lower than
the others, and the free volume of these models were larger than the others. The results
showed that the peak value of ACN30 was not by accident, and the analysis of key factors
of the mechanism was meaningful. Moreover, ACN30 models starting from the different
structural configurations could generate slightly different values as shown in Figure 8, but
these results did not affect the analysis of other systems in the study.

The next section further analyses the tribological properties of NBR by observing the
friction process of models.

3.2. Tribological Properties

To investigate the performance of the friction and wear of the NBR matrix with an
increase in the ACN content, snapshots of NBR models during the shearing process were
observed and are recorded in Figure 9. The phenomenon of adsorption occurred at the
interface between the Fe and NBR matrices owing to the significance of the attractive
vdW forces and leading to the wear behavior. AR values of 36.76%, 30.94%, 20.90%, and
24.33% were obtained for the models as the ACN content increased. These values represent
decreases of approximately 16%, 43%, and 34% as compared with ACN20 (36.76%). It can be
observed from Figure 9 that with an increase in the ACN content, the NBR molecular chains
were surrounded by more atoms from the NBR matrices, and the relative slippage appeared
more clearly between the friction interfaces. As also indicated, the tribological properties of
NBR can be enhanced due to the increasing polarity and rigidity with an increase in the
ACN content, leading to greater interactions, greater stiffness, and adsorption reductions
of NBR until an ACN content of 40% is reached.

To further verify the above discussions, the depth variations in the up-Fe-layer of the
models were recorded to observe the deformation of the NBR when the external force of
the up-Fe-layer was removed. The rising amplitudes of the up-Fe-layer with increases in
the ACN content were 0.71, 0.25, 0.22, and 0.34 Å, respectively. Compared with the value
of ACN20, the others were significantly lower, indicating that greater interactions and
stiffness were achieved with an increase in the ACN content. The smallest value of ACN40
also represented the best tribological property of NBR, owing to stronger interactions and
tighter entanglement, as shown for ACN40. The best result was in good agreement with
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the AR of ACN40, which was also consistent with the 40% turning point of the mechanical
properties of NBR.
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Furthermore, the properties of the NBR matrix with ACN50 declined, which could
have been due to the state of NBR molecular chains of ACN50, as shown in Figure 9.
The NBR molecular chains with the shortest length were subjected to limited movement
and less entanglement, causing a smaller interaction area between the molecule contacts.
Thus, the AR value of ACN50 increased during the shearing process, and the tribological
properties of NBR had no improvement with increases in the ACN content. This meant that
the mechanism to enhance NBR by the acrylonitrile was the positive effect of the polarity
combined with the negative effect of the rigidity to affect the tribological properties of NBR
after 40% ACN content.

Overall, the results of the analysis are consistent with experimental observations [9,52].
The results prove that the variable parameters of these models obtained by performing
MD simulations are reliable, and they will become fundamental to the RFR dataset coming
from Section 2.2.

3.3. RFR Model Results

To avoid the randomness of the RFR model, the datasets were trained multiple times
by the RFR algorithm and an importance ranking of the variables was produced. The
feature variables of FN and Ff were selected as the key factor affecting AR to screen
RFR models. Table 5 lists eight RFR models and shows the VI names and values (the
proportion of VI) from the top five for obtaining the highly correlated variables of AR from
dataset. Not surprisingly, apart from the FN and Ff, the temperature was also related to
AR. The bend–torsion–bend (BTB), torsion–bend–bend (TBB), torsion–stretch (TS), and
stretch–torsion–stretch (STS) energies as the structure descriptors are also shown in Table 5.
Compared with the AR value of 112 samples, the value of TBB energy was highly correlated
with the trend of AR value.

To analyze all parameters of the dataset, the VI of the RFR Model 2 was determined
and is shown in Figure 10, which was distinguished according to the parameter modules
(from Table 2). The energy parameters, environmental variables, and friction variables
occupied 98% of all modules in percentages of 73%, 13.8%, and 11.2%, respectively. As the
structure descriptors, the energy parameters mainly contributed to the prediction ability
because they have greater influences than external conditions on polymers [54].
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Table 5. The VI ranking and values of RFR model results.

The VI
Ranking

RFR
Model 1

RFR
Model 2

RFR
Model 3

RFR
Model 4

RFR
Model 5

RFR
Model 6

RFR
Model 7

RFR
Model 8

1 BTB energy
(62.6%)

BTB energy
(33.2%)

BTB energy
(41.9%)

BTB energy
(26.7%)

BTB energy
(37.2%)

BTB energy
(33.1%)

BTB energy
(51.9%)

BTB energy
(41.9%)

2 FN
(7.5%)

TBB energy
(17.1%)

FN
(7%)

TBB energy
(13.2%)

Ff
(9.1%)

Ff
(10.5%)

TS energy
(6.9%)

FN
(7%)

3 Temperature
(6.1%)

Temperature
(8%)

TBB energy
(6.8%)

FN
(11.9%)

Temperature
(8.1%)

TBB energy
(10.1%)

Ff
(6.3%)

TBB energy
(6.8%)

4 TBB energy
(3.1%)

Ff
(5.9%)

Ff
(6.4%)

Ff
(8.6%)

FN
(6.6%)

FN
(6.4%)

Temperature
(4.9%)

Ff
(6.4%)

5 Ff
(2.3%)

FN
(5.3%)

STS energy
(5.3%)

Temperature
(4.4%)

TBB energy
(6.5%)

TS energy
(5.9%)

FN
(4.8%)

STS energy
(5.3%)
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In addition, for example, the ACN20 model at a speed of 0.1 Å/ps, the total potential,
valence, cross-terms and non-bond energy values were −204,951.00, −1029.05, −672.13, and
−202,235.40 kcal/mol, respectively. The total cross-terms energy (59.70% of VI) contributed
less energy value than others, leading to its significance often being ignored in previous
studies of the energy effects using MD simulations. The cross-terms energy demonstrates
the importance of accounting for structure, energy, and dynamics, as shown by JON R.
MAPLE [55], and was further used to analysis and predict the AR of NBR in this work.

Figure 10 also summarizes the top 10 VI values and shows that the BTB and TBB
energies were superior to others. To explore the effects of these parameters on the wear
performance of NBR, the BTB and TBB energy values were obtained from the end of each
equilibrium process, including the structure of the packing after geometry optimization, i.e.,
the structure of the NVT ensemble, the structure of the NPT ensemble, and the structure of
the annealing simulation. It was found that the BTB energies obtained from the structures
of the packing and annealing processes were highly correlated with the ACN contents of
the models, as can be seen in Figure 11A.
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The most striking result emerged between the TBB energy and the AR of NBR, as
shown in Figure 11B. The same trend was observed from the structure of the packing
and annealing processes together with the AR. This may mean that the AR trend of NBR
could be estimated by contrasting the TBB energy of NBR at the early stage of the model’s
construction. A bold hypothesis was proposed that the value of TBB energy, from the NBR
model of the packing after the geometry optimization, could directly predict AR trends for
NBR model of other ACN contents. This conjecture was tested and verified by Section 3.4.

It is also worth clarifying that the TBB energy of ACN40 compared with other models
had the minimum value at the end structure of any process, which is in agreement with
the turning point of a 40% ACN content. This result could be explained by MD simula-
tions showing that the lower TBB energy of NBR could prevent the relative movement of
molecules, thereby maintaining the stability of the mechanical properties.

3.4. Test and Verification of the Hypothesis

In order to verify the agreement in the trend between the TBB energy and AR of
models, new models were packed using the other ACN contents, including proportions
of 15%, 25%, 35%, 45%, and 55%. The TBB energy of all models was summarized from
the packing structure after geometry optimization, as shown by the pink line in Figure 12.
ACN25, ACN15, and ACN55 had, respectively, the maximum values of TBB energy and
extrapolated data points for all models, as shown in Figure 12. Therefore, they were selected
as the validation models simulated by the MD simulations presented in Section 2.1.

As previously predicted, the AR values of validation models agreed with the trend of
the TBB energy, as shown the green bars in Figure 12. This meant that the TBB energy was
found as the highly correlated parameter of AR by screening VI from RFR model, which is
meaningful and used to roughly predict the AR trends. From the 15 to 25% ACN models’
snapshots, the AR values were increased due to the more atomic adsorption around the
interface between metal and polymer materials. This suggests that the increasing polarity
in 15–25% ACN contributes more to the vdW force at the interface of the Fe and NBR
matrices. In the ACN55 model, NBR emerged with a brittle fracture leading to the higher
AR value, owing to the decreases in molecular chain length and an increase in rigidity, as
discussed in Section 3.2. These results show that TBB energy can be used as a parameter to
predict the trend of AR and the wear performance of NBR with different ratios.

Combined with Figure 9, the lower AR values of NBR had the following characteristics:
the stronger interaction force between molecular chains and the lower vdW force at the
interface of the Fe and polymer matrices. In particular, the wear results of ACN25 and
ACN55 showed that the up-Fe-layer adsorbed more matrices, leading to AR values that
were more than others. Therefore, the modified NBR can be considered to enhance the
interaction force of molecules and reduce the vdW force between the matrix and Fe layer.
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In this study, although no more NBR models were validated, the method of identifying
VI by introducing the RFR model still can be used to assist MD analysis in obtaining
additional information quickly and efficiently. It provides new solutions for analyzing the
mechanism, predicting the performance, and guiding the design in the development of
new polymer materials. More precise prediction and analysis using important variables
will be deeply investigated in future.

It is worth noting that the regression analysis of RFR model, for treating the use
and prioritization of multivariate parameters and their impact on quantitative prediction
performance, is widely applicable and not limited to the dimension and variety of data. De-
veloping multiple RFR models is suggested to avoid the randomness of model generation,
and selecting the best one for further the analysis and application. In addition, classification
problems can be also investigated using the random forest classification algorithm.

4. Conclusions

In this research, the effect on the mechanical and tribological properties of NBR with
varied ACN contents was studied using MD simulations. The mechanical and tribological
properties with increasing ACN were enhanced until the content of ACN reached 40%, and
these properties of ACN50 system were unimproved and descended, respectively. The
entanglement and interactions of ACN50 molecules were not strengthened by increased
polarity as compared to those of ACN40, owning to the stronger rigidity and shorter chain
length of ACN50 molecules. In addition, the VI of RFR models is effective for obtaining
the highly correlated parameter of AR, getting the TBB energy to predict the AR trend for
new models. Meanwhile, the wear forms of new models showed that the vdW force at the
interface of the Fe and NBR matrices was a key factor for affecting tribological properties
of NBR. In summary, NBR modification is able to enhance the tribological property by
increasing the polarity and decreasing the vdW force of the interface, while focusing on the
rigidity and chain length in the polymer molecules.
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