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Abstract: Classification of the crosslink density level of para rubber medical gloves by using near-
infrared spectral data combined with machine learning is the first time reported in this paper. The
spectra of medical glove samples with different crosslink densities acquired by an ultra-compact
portable MicroNIR spectrometer were correlated with their crosslink density levels, which were
referencely evaluated by the toluene swell index (TSI). The machine learning protocols used to
classify the 3 groups of TSI were specified as less than 80% TSI, 80–88% TSI, and more than 88%
TSI. The 80–88% TSI group was the group in which the compounded latex was suitable for medical
glove production, which made the glove specification comply with the requirements of customers
as indicated by the tensile test. The results show that when comparing the algorithms used for
modeling, the linear discriminant analysis (LDA) developed by 2nd derivative spectra with 15 k-
best selected wavelengths fairly accurately predicted the class but was most reliable among other
algorithms, i.e., artificial neural networks (ANN), support vector machines (SVM), and k-nearest
neighbors (kNN), due to higher prediction accuracy, precision, recall, and F1-score of the same value
of 0.76 and no overfitting or underfitting prediction. This developed model can be implemented in
the glove factory for screening purposes in the production line. However, deep learning modeling
should be explored with a larger sample number required for better model performance.

Keywords: crosslink density; natural rubber; medical glove; near infrared; linear tunable filter;
MicroNIR

1. Introduction

The US Food and Drug Administration [1] reported: Due to the problem of the COVID-
19 epidemic, there is a high medical demand, so a large amount of public health equipment
has to be produced, especially medical rubber gloves that must be used to prevent direct
contact with patients. And it is also used only once and then discarded. In the production
process, there must be a process that must be controlled. Usually, medical gloves are
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divided into surgical gloves, which are long from the hand to the elbow and are rubber
gloves that must be sterilized, light-weight, and highly flexible. The other type is used
for general examinations (medical examination gloves), which are about the length of
the wrist, highly flexible, and used to prevent contact in general disease examinations.
Both types are single-use medical examination gloves. Gloves shall be manufactured from
compounded natural rubber, nitrile rubber, or polychloroprene rubber latex in accordance
with International Standard ISO 11193-1 [2].

The production of rubber gloves requires the preparation of a latex compound for use
in dipping molding. The latex compound must be vaporized with chemicals and additives
to meet the standards set for specific types of gloves. When chemicals are added to the
latex, they will interact, causing the separated rubber molecules to coagulate. Together,
they form a polymer chain, forming a crosslink. In production, the amount of this crosslink
affects the properties of rubber gloves. The manufacturing company must configure the
appropriate crosslink density for quality production.

Criteria for classification of the crosslink density levels depend on the manufacturer
and product standards. The examination gloves of the W.A. RUBBER MATE CO., LTD.,
Thailand, who provided the chemical for natural rubber latex compounding for the pro-
duction of gloves used in this research, indicated the usable range is 80–88% toluene swell
in-dex, which is an appropriate crosslink density value for the compound latex for the
production of medical rubber gloves.

Toluene swell index (TSI) or equilibrium swelling values are determined by immersing
a latex film in the solvent, usually toluene, and measuring the increase in linear dimensions
at equilibrium [3]. TSI is directly related to the crosslink density, but the procedure is
relatively slow and requires toluene, a hazardous chemical, and the total time for the test,
including drying of the film, is about 1 h or more [3].

Near-infrared spectroscopy is a non-destructive technique that requires no chemicals,
making it environmentally friendly. It is a rapid method that requires only 1–2 min to scan
the sample and calculate the interested parameter or constituent. The accuracy of the NIR
technique prediction is comparable to the reference test, but not more.

Since NIR spectra do not carry a signal to detect C–S bonds, which are the cross-link
between isoprene units [4], the absorption of C–H bonds, which were changed during
crosslinking, made the NIR spectroscopy model workable, including the classification of
crosslink density levels in compound latex.

Machine learning algorithms such as linear discriminant analysis (LDA), support
vector machine (SVM), artificial neural network (ANN) and k-nearest neighbor (kNN)
combined with NIR spectral data have been used in classification of rubber objects e.g.,
by using NIR spectra 900–2500 nm, the k-NN classifiers (1-NN with standard normal
variate (SNV) data pre-treatment and variable selection based on F-test-statistics (mean
class-specific accuracy (MCSA) = 0.78), SVM with SNV data pre-treatment and PCA di-
mension reduction (mean MCSA = 0.85), and LDA with SNV without any variable selec-
tion or dimension reduction (MCSA = 0.86) in classification of historical and modern
polymers including natural rubber where 20% of erroneous predictions were due to its
misidentification as a man-made rubber polyisoprene which has a similar composition [5].
There was none of research reports on rubber gloves quality classification and the use of low
cost portable NIR spectrometers including ultra compact MicroNIR spectrometer (Viavi,
Chandler, AZ, USA) which has been used for prediction of bamboo biomass activation
energy (Ea) by PLS modeling for Ea at n = 1 and Ea at n ̸= 1 showed coefficients of
determination of 0.781 and 0.714, respectively [6], identifying illicit drugs in oral fluids,
including cocaine (COC), amphetamine (AMP), and ∆9-tetrahydrocannabinol (THC) where
the partial least squares–discriminant analysis (PLS-DA) prediction for COC, AMP, and
THC provided the non-error rate (NER, %) of prediction for all the processed classes (NER
not less than 90%) resulting in 100% correctly classified samples when predicting illicit-drug
abuse [7] and identification of marine macro-, meso-, and microplastic litter collected on
beaches in sediments and seawater and enabled the correct identification of marine plastic
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litter for macro-, meso- (96%), and microplastics (73%) with exception of totally black items
and items less than 1 mm in size [8] and more. Therefore, the objectives of this research
were to report for the first time the feasibility of using NIR spectroscopy in the classification
of crosslink density levels of medical gloves when using the NIR spectra of thick films of
medical gloves scanned by an ultra-compact diffuse reflectance MicroNIR spectrometer
(960–1650 nm) combined with machine learning.

2. Materials and Methods
2.1. Sample Preparation

Concentrated natural rubber latex used for compounding for molding medical gloves
was obtained from the factory of Thai Rubber Latex Group Public Company Limited in
Nongyai, Chonburi, Thailand, and the chemicals used in producing the thick film of medical
gloves, including Potassium Hydroxide (KOH), Hydroperse (WA-4C), Octolite (WL-M),
Hydrocal 295 (Filler), coagulant used, and mixing ingredients formula for manufacturing
medical gloves, were provided by W.A. Rubber Mate Co., Ltd. in Nongmaidaeng, Chon
Buri, Thailand, specifically. The concentrated latex was mixed with chemicals and stirred
for up to 90 h for curing. The sampling for measuring crosslink density was first started at
24 h and then every 3 h for 90 h; 31 samples were obtained. The experiment was carried out
in five rounds. Therefore, 155 samples were obtained. For the measurement of the crosslink
density of the thick film of medical gloves, an aluminum sheet of 90 × 220 × 0.5 mm was
used as a mold. The mold was dipped in coagulant and placed in the oven (MEMMERT UF
30, Schwabach, Germany) at 100 ◦C for 10 min. Then, the mold was dipped in the cured
sample at the predetermined curing time (from 24 h to 90 h) described above for 10 s and
dried in the oven at 100 ◦C for 30 min to obtain the rubber-thick film of the medical glove
for further experiments. Then, the thick rubber film of the medical glove was removed
from the aluminum sheet by hand, and during the removal, corn starch was applied on
both sides to prevent the rubber film from sticking together.

The total real number of spectra after outlier elimination in this study is 130, of
which 93 (42:29:22) were used as training and 37 as testing. With the Synthetic Minority
Over-sampling Technique (SMOTE), the total spectra were increased to 163, of which 126
(42:42:42) were used as training and 37 real spectra were used as testing. The sample
collection duration of our experiment was during 28 January 2022 till 9 January 2023 which
is the year-round production of the factory, confirming the robustness of the calibration
model’s wide variation data.

2.2. NIR Spectroscopy

Ultra compact NIR spectrometer with a wavelength range of 900–1700 nm (MicroNIR
Pro 1700ES Spectrometer, VIAVI Solutions Inc., San Jose, CA, USA) was used for the
absorbance spectrum of the thick film sample acquisition. The scanning resolution was
6.2 nm. Therefore, there were 125 points (908–1676 nm) obtained to form the spectrum. The
white reference spectrum and dark reference spectrum for the background compensation
were scanned at the beginning of every 10 samples to be scanned. The white reference
material was Spectralon® and the dark reference spectrum was obtained by scanning the
flour from a height of ~60 cm.

2.3. Toluene Swelling

The cross-link density of the compound latex is measured using the Toluene Swell
Index (TSI). Cut the thick film of medical glove obtained in 2.1 into a circle with a diameter
of 25 mm by die cutting and submerge it in toluene in a glass Petri disk with a 100 mm
diameter and 15 mm height with a glass cover. The Petri disk was placed on the squared
paper for 10 min. The experiment was carried out in triplicate per sample. By swelling
in the toluene solution, the amount of crosslink density can be determined. The swelling
value gradually decreased as more cross-linking bonds were formed. The swelling of the
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rubber-thick film was measured by reading the value before and after 10 min from the scale
of the squared paper. The toluene swell index (TSI) was calculated by Equation (1).

TSI (%) = (Y − X)/X × 100 (1)

Y is the diameter of the circular film submerged in toluene for 10 min, and X is the
diameter of the circular film before being submerged in toluene.

The crosslink density of medical rubber glove production is highest when TSI is in the
range of 80–88%. Therefore, the TSI levels in this study were at three levels, including less
than 80, 80–88, and more than 88%.

2.4. Near Infrared Spectroscopy Classification Modelling
Figure 1 shows the schematic of the developed classification model.

Polymers 2024, 16, x FOR PEER REVIEW 4 of 23 
 

 

rubber-thick film was measured by reading the value before and after 10 min from the 
scale of the squared paper. The toluene swell index (TSI) was calculated by Equation (1). 

TSI (%) = (Y − X)/X × 100 (1) 

Y is the diameter of the circular film submerged in toluene for 10 min, and X is the 
diameter of the circular film before being submerged in toluene. 

The crosslink density of medical rubber glove production is highest when TSI is in 
the range of 80–88%. Therefore, the TSI levels in this study were at three levels, including 
less than 80, 80–88, and more than 88%. 

2.4. Near Infrared Spectroscopy Classification Modelling 
Figure 1 shows the schematic of the developed classification model. 

 
Figure 1. Flow diagram for model development of TSI classification. 

2.4.1. Spectral Pretreatment 
After spectrum acquisition, the obtained spectra were subjected to mathematical pre-

treatment to reduce interference from an unstable environment and sample influence on 
the spectra, which developed noise, baseline shift, and tilting problems. Before spectral 
pretreatment, the abnormal spectra observed by the eyes were eliminated, and 42, 29, and 
22 samples of the TSI levels of less than 80, 80–88, and more than 88%, respectively, were 
obtained for the calibration set. The prediction set included 17, 12, and 8 samples of TSI 
levels of less than 80, 80–88, and more than 88%, respectively. Therefore, 130 is the total 
number. Then, the principal component analysis was applied to the raw spectra, and the 
three principal component scores and x-loading were plotted. 

The pretreated methods of Savitzky–Golay smoothing, which resulted in reduced 
noise in the spectrum, were first applied, and then the second derivative (segment size 21) 
[9], multiplicative scatter correction (MSC), standard normal variate (SNV), detrending, 
and normalization were applied consecutively [10]. 

Other preprocessing resulting from normalization, including min-max normaliza-
tion, is also considered in this study. In addition to that, robust normal variate (RNV) 
preprocessing is also used in this study to handle light scatter effects like SNV. If the SNV 
formula is subtracted by the mean, RNV is subtracted by the median of each spectral 
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2.4.1. Spectral Pretreatment

After spectrum acquisition, the obtained spectra were subjected to mathematical
pretreatment to reduce interference from an unstable environment and sample influence
on the spectra, which developed noise, baseline shift, and tilting problems. Before spectral
pretreatment, the abnormal spectra observed by the eyes were eliminated, and 42, 29, and
22 samples of the TSI levels of less than 80, 80–88, and more than 88%, respectively, were
obtained for the calibration set. The prediction set included 17, 12, and 8 samples of TSI
levels of less than 80, 80–88, and more than 88%, respectively. Therefore, 130 is the total
number. Then, the principal component analysis was applied to the raw spectra, and the
three principal component scores and x-loading were plotted.

The pretreated methods of Savitzky–Golay smoothing, which resulted in reduced
noise in the spectrum, were first applied, and then the second derivative (segment size
21) [9], multiplicative scatter correction (MSC), standard normal variate (SNV), detrending,
and normalization were applied consecutively [10].
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Other preprocessing resulting from normalization, including min-max normalization,
is also considered in this study. In addition to that, robust normal variate (RNV) prepro-
cessing is also used in this study to handle light scatter effects like SNV. If the SNV formula
is subtracted by the mean, RNV is subtracted by the median of each spectral variable
and subsequently divided by the standard deviation of the spectrum. Like SNV, RNV
and L2 norm scaling can also handle scatter problems on the spectrum [11]. Finally, log
transformation preprocessing is also used to scale and transform NIR spectra to increase
the relationship between absorbance and response to become linear again [12].

SMOTE involves oversampling through the creation of synthetic new samples based
on the original ones. These new samples are generated using random constants within the
range of [0,1] and are placed at distances determined by the original samples [13]. As a
result, SMOTE preprocessing typically does not introduce noise unless the original samples
contain noise, in which case the new spectra might inherit noise. To address this issue, we
employed Savitzky–Golay smoothing, which helped mitigate the problem.

2.4.2. Classification Analysis

With full and selection wavelengths, after performing several spectral pretreatments,
the classify models were developed using supervised machine learning classification
algorithms, including 2 algorithms as linear classifiers (LDA, KNN) and 2 algorithms
as hybrid classifiers (linear and nonlinear), including SVM and ANN. The wavelength
was selected using the k-best and genetic algorithm (GA) methods. k-Best selection of
wavelengths is a spectral analysis technique that selects the most informative wavelengths
from a dataset based on specific criteria, enhancing computational efficiency and reducing
noise. k-Best directly identifies the best “k” individual wavelengths based on specific
criteria, resulting in a subset of fixed size. In this study, we used the function select k-
Best, including the ANOVA F-value between features for classification tasks (“f_classif”),
mutual information for a discrete target (“mutu-al_info_classif”), and chi-squared statistics
of non-negative features for classification tasks (“chi2”) with a range of top features to
select (k) between 1 and 50 [14]. GA was originally proposed by Holland in 1975 and
refers to the natural selection and genetic mechanisms in the biological world. According
to Chu et al. [15], the realization of GA mainly includes five basic elements: parameter
coding, initialization of the population, design of fitness function, genetic operation design,
convergence criterion, and selection of variables. For dimensional reduction, this study will
use a PCA algorithm with just 10 PCs, which will be considered later as feature variables.

The first time, the existing data set of samples was split into 2 groups, including the
calibration set (70% of all samples) and the validation set (30% of all samples). After that,
pretreatment, modeling, and testing of the modeling performance will be conducted. The
second time, because this study has imbalanced data, the data augmentation technique will
be used by applying the SMOTE to a calibration data set. This technique has been reported
several times in research papers as being able to improve the performance of the calibration
model being generated, especially when using NIR spectroscopy data for classification
problems [16–18]. A full description of this method can be read in the Brownlee [19] short
report. The data ratio on calibration with 3 groups before augmentation is 42:29:22. By
conducting the SMOTE method, the calibration data will generate a ratio of 42:42:42. After
that, the pretreatment will be performed by modeling and testing the model using the
validation data set.

In order to identify an appropriate model for classifying the crosslink density level
of para rubber medical gloves, the supervised machine learning classification algorithms,
including Artificial Neural Networks (ANN), Support Vector Machines (SVM), k-Nearest
Neighbors (kNN), and Linear Discriminant Analysis (LDA), consider the distinct strengths
exhibited by each algorithm type.

Artificial Neural Networks (ANN) are a form of deep learning that models the neural
structure of the human brain [20]. They consist of interconnected nodes (neurons) organized
into layers (input, hidden, and output) [21]. ANN learns by adjusting weights in response
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to input data, aiming to map inputs to outputs through a training process, commonly
employing algorithms such as backpropagation [21]. ANN demonstrates the ability to
comprehend complex patterns and adaptability [22].

Support Vector Machines (SVM) are supervised learning algorithms. They seek a
hyperplane that effectively segregates data into distinct classes, aiming to maximize the
margin (distance) between the closest points of different classes, referred to as support
vectors, for accurate classification of new data points [23]. SVM proves effective in high-
dimensional spaces [24].

k Nearest Neighbors (kNN) is a straightforward, instance-based learning algorithm
utilized for classification. It predicts outcomes based on the majority class or average value
of the k nearest data points to a query point in the feature space [25]. Being non-parametric,
it requires no training [26].

Linear Discriminant Analysis (LDA) is a technique used for both dimensionality
reduction and classification [27]. It aims to determine linear combinations of features
that effectively differentiate classes within a dataset [28]. LDA projects data onto a lower-
dimensional space, maximizing the distance between class means and minimizing the
variance within each class [28]. It functions as a dimensionality reduction method and
effectively handles multi-class problems.

The calibration set was used to validate the machine learning estimators, and the
op-timum hyperparameter of each ML algorithm was found with the “GridSearchCV” com-
mand of the Scikit-learn module. Table 1 presents predefined parameters for performing
the “GridSearchCV” command. The optimum hyperparameter was searched based on the
highest cross-validation accuracy from executing the 5-fold cross-validation. The process
of modeling was implemented in the Python (3.11.4) language with the machine learning
packages of Scikit-learn (1.2.2) and the programming tool of Jupyter Notebook (6.5.4).

Table 1. Hyperparameter and tuning range of machine learning.

Algorithm Hyperparameter Range of Tuning

ANN
Hidden layer size (HLZ) (3), (4), (5), (10), (11), (12), (16), (19), (20), (100), (3, 2),

(5, 4), (100, 100), (4, 3, 2), (100, 100, 100)

Activation function (AF) identity, logistic, tanh, relu

SVM
Pinalty factor (C) 1–50

Degree (D) 2, 3, 4
Gamma (G) scale, auto

kNN n-neighbor (n) 1–20

LDA n-component 1–20

2.5. Classification Model Performance Determination

The confusion matrix represents the resulting predicted classes of the model, used to
determine the classification performance [20]. It consists of true positive (TP): number of
samples correctly predicted as positive; false negative (FN): number of samples wrongly
predicted as negative; false positive (FP): number of samples wrongly predicted as positive;
and true negative (TN): number of samples correctly predicted as negative (Figure 2).
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The classification model performance was defined by classification accuracy, weighted
average of precision, weighted average of recall, and weighted average of F1-score calcu-
lated as illustrated in Table 2.

Table 2. The model performance determination.

Parameter Meaning Formula

Accuracy the proportion of correct predictions TP + TN
N

Precision Correctly predicting positive outcomes when the
model predicts them as positive.

TP
TP + FP

Recall the model’s capability of predicting positive cases TP
TP + FN

F1-score the harmonic means between precision and sensitivity Precision × Recall
Precision + Recall

The data analysis for this study was conducted utilizing MATLAB R2022b [29].

2.6. Validation by Unknown Real Sample Set form Factories

Medical rubber gloves without powder were collected from 4 factories (4 gloves per
factory). Therefore, 16 gloves. Each glove was scanned by placing a MicroNIR window on
the intact glove (a two-layer scan) placed on the aluminum plate as a reflector, making this
scanning the transflectance mode. The scanning was conducted with 5 scans per position
and 4 positions on one glove. Therefore, there are 320 spectra in total. Then, the MicroNIR
was inserted inside the glove and scanned only one layer using the same procedure. After
that, the glove was subjected to the TSI test immediately.

Every spectrum scanned was subjected to some models developed, including LDA,
kNN, and SVM, with different pretreatment methods, and the model classification perfor-
mance was calculated.

3. Results
3.1. NIR Spectra of Medical Glove Samples Measured by MicroNIR Spectrometer

Figure 3a–j shows raw (a), Savitzky–Golay smoothing (b), 2nd derivative (c), multi-
plicative scatter correction (MSC) (d), standard normal variate (SNV) (e), detrending (f),
min-max scaling (g), robust normal variate (RNV) (h), log transform (i), and L2 norm
scaling (j) spectra of different levels of toluene swell index of 93 glove samples of 3 levels of
TSI, respectively.
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3.2. Statistics of Toluene Swell Index of Thick Film Samples for Modelling

Table 3 shows the number of toluene swell index (TSI) of glove samples of different
levels for model development before and after SMOTE.

Table 3. The number of samples and statistics of TSI of thick film of medical glove samples of different
levels for model development before and after SMOTE.

TSI
Range (%)

Calibration Set Prediction Set

Number of
Samples

before SMOTE

Number of
Samples

after SMOTE

True TSI
Range (%) Mean (%) SD (%) Number

of Samples
True TSI

Range (%) Mean (%) SD (%)

less than 80 42 42 71.00–79.17 75.42 2.22 17 72.92–79.17 75.90 2.01

80–88 29 42 80.00–88.00 83.39 2.67 12 81.25–88.00 84.42 2.49

more than 88 22 42 89.58–108.00 92.46 3.92 8 90.63–98.96 93.20 3.03

3.3. Performance of Classification Models
3.3.1. Full Spectra

The results of classifying three different TSI levels of thick-film medical gloves for
the calibration and prediction sets in an imbalanced dataset are presented in Table 4,
which shows the LDA achieved the highest accuracy (0.99) during calibration, but when
validated, it exhibited the lowest accuracy (0.46). In contrast, other models demonstrated
similar performance for both the calibration and validation sets. The calibration accuracies
of ANN, SVM, and kNN were 0.70, 0.74, and 0.77, respectively, while the validation
set accuracies were 0.84, 0.70, and 0.70, respectively. For LDA, though the accuracy in
calibration was the highest, the accuracy in validation was the lowest, indicating the overfit
of the model that occurred due to the sample size not significantly conforming to the
number of hyperparameters tuned [30,31] and to the effect of the separation method, which
caused the distribution of the pretreated spectra of the calibration set and validation set to
be different. This can be used as a rationale for the LDA models in Tables 5–7.

Table 4. Model performance for classifying TSI levels of thick film from medical gloves before SMOTE
using full spectra.

Algorithm
(WL) Pre-Treatment Hyper-Parameter

Calibration Set Prediction Set

Weighted Average
A

Weighted Average
A

P R F1 P R F1

ANN
(125)

Savitzky–Golay smoothing
+ RNV

HLZ = (100, 100, 100)
AF = Identity 0.70 0.70 0.69 0.70 0.84 0.84 0.83 0.84

SVM
(125)

Savitzky–Golay smoothing
+ RNV

C = 1
D = 2

G = scale
0.75 0.74 0.74 0.74 0.70 0.70 0.70 0.70

kNN
(125)

Savitzky–Golay smoothing
+ log transform n = 6 0.77 0.77 0.76 0.77 0.69 0.70 0.69 0.70

LDA
(125) Second derivative n = 1 0.99 0.99 0.99 0.99 0.49 0.46 0.44 0.46

P, Precision; R, Recall; F1, F1-score; A, Accuracy. The bold indicates the optimum model.
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Table 5. Model performance for classifying TSI levels of thick film from medical gloves after SMOTE
using full spectra.

Algorithm
(WL)

Pre-Treatment Hyper-Parameter

Calibration Set Prediction Set

Weighted Average
A

Weighted Average
A

P R F1 P R F1

ANN
(125) Min-max normalization HLZ = (100)

AF = logistic 0.78 0.78 0.78 0.78 0.74 0.73 0.73 0.73

SVM
(125)

Savitzky–Golay smoothing
+ L2 norm scaling

C = 3
D = 2

G = Scale
0.78 0.78 0.78 0.78 0.74 0.73 0.73 0.73

kNN
(125)

Savitzky–Golay smoothing
+ L2 norm scaling n = 13 0.76 0.75 0.75 0.75 0.73 0.73 0.73 0.73

LDA
(125)

Savitzky–Golay smoothing
+ L2 norm scaling n = 1 0.99 0.99 0.99 0.99 0.45 0.43 0.43 0.43

P, Precision; R, Recall; F1, F1-score; A, Accuracy. The bold indicates the optimum model.

Table 6. Model performance for classifying TSI levels of thick film from medical gloves before SMOTE
using selective spectra.

Selection
Method

Algorithm
(WL) Pre-Treatment Hyper-Parameter

Calibration Set Prediction Set

Weighted Average
A

Weighted Average
A

P R F1 P R F1

k-Best

ANN
(41)

Savitzky–Golay
smoothing + RNV

HLZ = (100)
AF = relu

k-best = f_classif
0.74 0.74 0.74 0.74 0.67 0.68 0.66 0.68

SVM
(14)

Savitzky–Golay
smoothing + RNV

C = 27
D = 2

G = scale
k-best = mutual_info_classif

0.79 0.78 0.78 0.78 0.64 0.65 0.63 0.65

kNN
(19)

Savitzky–Golay
smoothing + log transform

n = 4
k-best = mutual_info_classif 0.75 0.75 0.74 0.75 0.67 0.68 0.65 0.68

LDA
(15) Second derivative n = 1

k-best = f_classif 0.72 0.72 0.72 0.72 0.76 0.76 0.76 0.76

GA

ANN
(60)

Savitzky–Golay
smoothing + RNV

HLZ = (10)
AF = relu 0.71 0.71 0.70 0.71 0.66 0.65 0.63 0.65

SVM
(55)

Savitzky–Golay
smoothing + RNV

C = 1
D = 2

G = scale
0.75 0.74 0.74 0.74 0.70 0.70 0.70 0.70

kNN
(62)

Savitzky–Golay
smoothing + log transform n = 6 0.76 0.76 0.75 0.76 0.69 0.70 0.69 0.70

LDA
(60) Second derivative n = 1 0.91 0.91 0.91 0.91 0.64 0.65 0.64 0.65

P, Precision; R, Recall; F1, F1-score; A, Accuracy. The bold indicates the optimum model.

Table 7. Model performance for classifying TSI levels of thick film from medical gloves after SMOTE
using selective spectra.

Selection
Method

Algorithm
(WL) Pre-Treatment Hyper-Parameter

Calibration Set Prediction Set

Weighted Average
A

Weighted Average
A

P R F1 P R F1

k-best

ANN
(22) Min-max scaling

HLZ = (100, 100)
AF = relu

k-best = chi2
0.75 0.75 0.74 0.75 0.70 0.70 0.70 0.70

SVM
(43)

Savitzky–Golay
smoothing + L2 norm scaling

C = 1, D = 2
G = Scale

k-best = mutual_info_classif
0.80 0.79 0.79 0.79 0.68 0.65 0.66 0.65

kNN
(1)

Savitzky–Golay
smoothing + L2 norm scaling

n = 7
k-best = chi2 0.80 0.79 0.79 0.80 0.68 0.65 0.66 0.68

LDA
(2)

Savitzky–Golay
smoothing + L2 norm scaling

n = 1
k-best = mutual_info_classif 0.75 0.75 0.75 0.75 0.70 0.70 0.70 0.70
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Table 7. Cont.

Selection
Method

Algorithm
(WL) Pre-Treatment Hyper-Parameter

Calibration Set Prediction Set

Weighted Average
A

Weighted Average
A

P R F1 P R F1

GA

ANN
(61) Min-max scaling HLZ = (100, 100)

AF = relu 0.80 0.80 0.80 0.80 0.74 0.73 0.73 0.73

SVM
(69)

Savitzky–Golay
smoothing + L2 norm scaling

C = 2,
D = 2

G = Scale
0.78 0.78 0.78 0.78 0.73 0.70 0.71 0.70

kNN
(63)

Savitzky–Golay
smoothing + L2 norm scaling n = 19 0.75 0.75 0.75 0.75 0.72 0.73 0.72 0.73

LDA
(74)

Savitzky–Golay
smoothing + L2 norm scaling n = 1 0.99 0.99 0.99 0.99 0.57 0.57 0.57 0.57

P, Precision; R, Recall; F1, F1-score; A, Accuracy. The bold indicates the optimum model.

After generating the data using SMOTE, the results of classifying three different TSI
levels of thick-film medical gloves for the calibration and prediction sets with a balanced
dataset are presented in Table 5. Although the issue of imbalanced data has been addressed,
the accuracy has remained the same. The calibration accuracies for ANN, SVM, kNN, and
LDA were 0.78, 0.78, 0.75, and 0.99, respectively, while the validation set accuracies were
0.73, 0.73, 0.73, and 0.43, respectively.

However, the F1-scores of G2 and G3 (groups with smaller sample sizes than G1) were
higher after SMOTE (Balanced data).

3.3.2. Selective Spectra by k-Best and GA Method

The results of classifying three different TSI levels of thick-film medical gloves for the
calibration and prediction sets in an imbalanced dataset with selected wavelengths are
presented in Table 6, where the k-Best and GA methods reduced the number of wavelengths
from 125 (full wavelength) to 14–62 wavelengths, but the accuracy of the model remained
the same, indicating other bands that were not featured wavelengths had a neutral effect
on classification. The calibration accuracies for ANN, SVM, and kNN with k-Best were 0.74,
0.78, and 0.75, respectively, while the validation set accuracies were 0.68, 0.65, and 0.68,
respectively. The calibration accuracy for LDA with k-Best (15 wavelengths) decreased to
0.72 (from 0.99), but the validation accuracy increased from 0.43 to 0.76.

The calibration accuracies for ANN, SVM, kNN, and LDA with GA were 0.71, 0.74,
0.76, and 0.91, respectively, while the validation set accuracies were 0.65, 0.70, 0.70, and
0.65, respectively.

Similar to the full spectra models, the results of classifying the three different TSI
levels of thick-film medical gloves for the calibration and prediction sets after balancing the
dataset by SMOTE with selected wavelengths were similar to the results before balancing
the dataset (Table 7). However, the F1-scores of G2 and G3 were higher. The k-Best and
GA methods reduced the number of wavelengths from 125 (full wavelength) to 1–74
wavelengths. The calibration accuracies for ANN, SVM, kNN, and LDA with k-Best were
0.70, 0.79, 0.80, and 0.75, respectively, while the validation set accuracies were 0.70, 0.65,
0.68, and 0.70, respectively. The calibration accuracies for ANN, SVM, kNN, and LDA with
GA were 0.80, 0.78, 0.75, and 0.99, respectively, while the validation set accuracies were
0.73, 0.70, 0.73, and 0.57, respectively.

3.3.3. Dimensional Reduction by PCA

The results of the classification of three different TSI levels of thick film in medical
gloves for the calibration and prediction sets for the imbalance dataset and after balancing
the dataset by SMOTE with the independent variable dimension reduction using PCA
are presented in Tables 8 and 9, respectively. The LDA with Savitzky–Golay smoothing
+ detrending and + Robust normal variate for the PCA data before and after SMOTE,
respectively, show the best prediction performance indicated by accuracy, precision, recall,
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and F1-score of 0.75, 0.75, 0.76, and 0.75 and 0.76, 0.75, 0.76, and 0.75, respectively. From
Figure 4, PC1 has covered the highest spectral informative variance of 94.42%, leaving
only 4.77 and 0.63% for PC2 and PC3, and 0.18% for PC4 and PC125. However, when the
PC scores of different PCs were used for model development, PC1 was the main PC and
could only be classified with a performance of 0.75–0.76, indicating the highest spectral
informative variance, but there was just a moderate correlation between those spectra.

Table 8. Model performance for classifying TSI levels of thick film from medical gloves before SMOTE
using dimensional reduction by PCA.

Algorithm Pretreatment Hyper-
Parameter

Calibration Set Prediction Set

Weighted Average
A

Weighted Average
A

P R F1 P R F1

10PC-ANN Savitzky–Golay smoothing
+ Mean scaling

HLZ = (100)
AF = relu 0.74 0.74 0.74 0.74 0.75 0.76 0.75 0.76

10PC-SVM Savitzky–Golay smoothing
C = 1
D = 2

G = scale
0.75 0.74 0.74 0.74 0.70 0.70 0.70 0.70

10PC-kNN Savitzky–Golay smoothing
+ Log transform n = 6 0.77 0.77 0.76 0.77 0.69 0.70 0.69 0.70

10PC-LDA Savitzky–Golay smoothing
+ Detrending n = 1 0.76 0.76 0.76 0.76 0.75 0.76 0.75 0.75

P, Precision; R, Recall; F1, F1-score; A, Accuracy. The bold indicates the optimum model.

Table 9. Model performance for classifying TSI levels of thick film from medical gloves after SMOTE
using dimensional reduction by PCA.

Algorithm Pretreatment Hyper-
Parameter

Calibration Set Prediction Set

Weighted Average
A

Weighted Average
A

P R F1 P R F1

10PC-ANN Savitzky–Golay smoothing
+ RNV

HLZ = (100, 100, 100)
AF = relu 0.94 0.94 0.94 0.94 0.61 0.62 0.61 0.62

10PC-SVM Second derivative
C = 25
D = 2

G = Scale
0.98 0.98 0.98 0.98 0.70 0.68 0.68 0.68

10PC-kNN Savitzky–Golay smoothing
+ Log transform n = 3 0.83 0.83 0.83 0.83 0.66 0.68 0.65 0.68

10PC-LDA Savitzky–Golay smoothing
+ Robust normal variate n = 1 0.76 0.76 0.76 0.76 0.75 0.76 0.75 0.76

P, Precision; R, Recall; F1, F1-score; A, Accuracy. The bold indicates the optimum model.

These performance indicators, together with the X-loading loading of PC1 to PC3
(Figure 5), indicated a moderate relationship between the PC score of NIR spectral data
obtained by PCA and TSI. From Figure 5, the high peaks of cis-1,4-polyisoprene from pure
Para rubber sheet at 1200, 1390, and 1420 nm, as indicated by Sirisomboon et al. [5], were
shown in the X-loading of PC1 to PC3, which confirmed that there was a relationship
between the NIR vibration of natural rubber and the related property, which in this case
was TSI but moderate.

3.3.4. Validation Result by Unknown Real Sample Set from Factories

Table 10 shows the production information of the unknown glove samples and the
TSI value of every sample. The models developed were used to predict the TSI value of
the glove sample. The TSI of every glove was 60% except one, which was 72%, which was
in group 1 (<80%). This indicated the uniformity of glove production. Though there may
be an opportunity to have an out-of-access group indicating the need for non-destructive
detection of the product in real-time online for 100% cross-density level detection.
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Table 10. The information about an unknown medical glove product from different factories.

Factory Production Date Expired Date Initial Diameter (mm) % TSI

sl1 August 2022 August 2025 40 60
sl2 August 2022 August 2025 40 60
sl3 August 2022 August 2025 40 60
sl4 August 2022 August 2025 40 60

PO1 May 2023 May 2026 40 60
PO2 May 2023 May 2026 40 60
PO3 May 2023 May 2026 40 60
PO4 May 2023 May 2026 40 60
PX 1 October 2023 October 2026 40 60
PX 2 October 2023 October 2026 40 60
PX 3 October 2023 October 2026 40 60
PX 4 October 2023 October 2026 40 60
St1 September 2023 September 2026 43 72
St2 September 2023 September 2026 40 60
St3 September 2023 September 2026 40 60
St4 September 2023 September 2026 40 60

By the TSI test, the results show that every glove product was in Group 1, where TSI
was less than 80%. Table 11 shows the prediction results of the high-performance models
from the modeling state. Unexpectedly. The best model by LDA with second derivative
spectral pretreatment + k-best wavelength selection could not predict accurately, but KNN
developed by full spectra and Savitzky–Golay smoothing, + L2 norm scaling pretreatment,
+ GA wavelength selection spectra provided 100% accuracy for both one-layer and two-
layer scans, but using the data after SMOTE (Table 12). It was observed that the results of
most of the models show similar accuracy when scanned by both scan layers, inciting no
prediction problem for the one-layer model by scanning a double-layer glove.

Table 11. Accuracy of classification of the TSI level of unknown samples by developed models using
before and after SMOTE data.

Full Spectrum Best Preprocessing + Algorithm Scanning Method
Group

G1 (TSI < 80) G2 (80 < TSI < 88) G3 (TSI > 88)

Before SMOTE (Savitzky–Golay
smoothing + RNV) + SVM

One-layer scan 288 12 20

Two-layer scan 276 21 23

After SMOTE (Savitzky–Golay smoothing + L2 norm
scaling) + kNN

One-layer scan 320 0 0

Two-layer scan 320 0 0

Selection Wavelength Best Preprocessing + Algorithm Scanning Method
Group

G1 (TSI < 80) G2 (80 < TSI < 88) G3 (TSI > 88)

Before SMOTE (Second derivative) + k-best + LDA
One-layer scan 55 1 264

Two-layer scan 263 45 12

After SMOTE (Savitzky–Golay smoothing + L2 norm
scaling) + GA + kNN

One-layer scan 320 0 0

Two-layer scan 320 0 0

Reduction Features Best Preprocessing + Algorithm Scanning Method
Group

G1 (TSI < 80) G2 (80 < TSI < 88) G3 (TSI > 88)

Before SMOTE (Savitzky–Golay smoothing +
Detrending) + 10-PC + LDA

One-layer scan 128 104 88

Two-layer scan 137 104 79

After SMOTE (Savitzky–Golay smoothing + RNV) +
10-PC + LDA

One-layer scan 141 69 110

Two-layer scan 127 92 101

The bold indicates the optimum model.

Figure 6 shows the raw spectra (Figure 6a) and the pretreated spectra by Savitzky–
Golay smoothing + L2 norm scaling (Figure 6b) of the gloves in unknown samples, both
one-layer and two-layer scans. The raw spectra show the same peaks as the raw spectra
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of the modeling set, but the peaks between 1400 and 1500 nm were shifted slightly to the
left due to the slightly different production processes of the factories from ours. There
were baseline shifts and tilling effects due to physical factors such as density, while the
same peaks illustrated the same constituents. After being pretreated, the baseline effect
was mostly eliminated, and the height of the peaks could inform the different radiation
absorptions due to the different quantities of constituents.

Table 12. The F1-score of models for classifying TSI levels of medical gloves before and after SMOTE
using no spectral pretreatment.

Algorithm Selection
Method

Calibration Validation

Before SMOTE After SMOTE Before SMOTE After SMOTE

<80% 80–88% >80% <80% 80–88% >80% <80% 80–88% >80% <80% 80–88% >80%

ANN

Full 0.78 0.62 0.63 0.80 0.75 0.78 0.89 0.73 0.88 0.79 0.62 0.80

k-best 0.83 0.66 0.67 0.79 0.68 0.77 0.79 0.45 0.71 0.78 0.52 0.88

GA 0.86 0.65 0.46 0.86 0.75 0.80 0.83 0.52 0.36 0.79 0.62 0.80

SVM

Full 0.81 0.69 0.65 0.83 0.74 0.77 0.81 0.52 0.71 0.79 0.62 0.80

k-best 0.84 0.74 0.72 0.82 0.76 0.78 0.77 0.38 0.71 0.73 0.52 0.71

GA 0.81 0.69 0.65 0.83 0.74 0.77 0.81 0.52 0.71 0.71 0.67 0.80

kNN

Full 0.87 0.70 0.65 0.82 0.70 0.74 0.82 0.48 0.71 0.80 0.58 0.80

k-best 0.83 0.68 0.67 0.81 0.78 0.78 0.78 0.42 0.71 0.73 0.52 0.71

GA 0.86 0.68 0.65 0.82 0.70 0.74 0.82 0.48 0.71 0.81 0.55 0.75

LDA

Full 1.00 0.98 0.98 1.00 0.99 0.99 0.50 0.29 0.56 0.47 0.36 0.45

k-best 0.81 0.63 0.67 0.81 0.68 0.77 0.79 0.64 0.88 0.78 0.52 0.80

GA 0.95 0.88 0.88 1.00 0.99 0.99 0.73 0.45 0.74 0.69 0.61 0.25
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4. Discussion
4.1. NIR Spectra of Medical Glove Samples Measured by MicroNIR Spectrometer

From Figure 3, the raw, smoothed, MSC, SNV, detrending, log transform, and L2 norm
scaling spectra where the structure of the spectra was the same show obvious peaks of
cis-1,4-polyisoprene from pure Para rubber sheet at 1200, 1390, and 1420 nm, as indicated
by Sirisomboon et al. [5]. The MSC, SNV, detrending, and L2 norm scaling pretreated
algorithms reduced the problem of baseline shift and tilling while the log transform could
not, and the mezzy structure of the pretreated spectra was obtained from min-max scaling
and RNV. The different TSI-level spectra were not clearly separated.

4.2. Statistics of Toluene Swell Index of Thick Film Samples for Modelling

Since the collected data are unbalanced (Table 3), applying SMOTE could help increase
the sample size and balance the new data. This technique ensures an equal number of
samples in each group or class, addressing the initial data imbalance. However, in our case,
due to the spectral pretreatment effect on the prediction of the new data set obtained by
SMOTE, the comparison of the before SMOTE models could not be compared to the after
SMOTE models.

4.3. Performance of Classification Models
4.3.1. Full Spectra

Amirruddin et al. [18] discussed the classification model’s ability to categorize accuracy
as follows: less than 40.00% as poor, 40.00–80.00% as moderate, and more than 80.00% as
good. When comparing the validation accuracy results for classifying three different TSI
levels of thick-film medical gloves with an imbalanced dataset using the full spectrum
range (Table 4), it was observed that ANN was an underfitting model, while SVM and kNN
were considered moderate models, and LDA performed poorly.

The research data’s TSI level classification was also attempted using partial least
squares regression (PLSR) with a method employed by Phanomsophon et al. [17]. When
combined with various spectral pre-treatment algorithms, the classification accuracy ranged
from 32.14% to 65.12%. This suggests a relative lower performance for PLSR in this context.

4.3.2. Selective Wavelengths by k-Best and GA Method

The results of classifying three different TSI levels of thick-film medical gloves with
an imbalanced dataset while using selected wavelengths through k-Best feature selection
indicated that the removal of unimportant wavelengths could help mitigate overfitting
issues (Tables 6 and 7).

By comparison between the results in Tables 6 and 7, though there were different
spectral pretreatment methods, the models mostly improved due to SMOTE. However,
by the guidelines of Amirruddin et al. [16], the model was still classified as having
moderate performance.

When comparing the algorithms used for modeling, it was found that LDA developed
from 2nd derivative preprocessing spectra with 15 k-Best selected wavelengths before
SMOTE (Table 6) fairly accurately predicted the class but was most reliable among other
algorithms, i.e., ANN, SVM, and kNN, due to higher prediction accuracy, precision, recall,
and F1-score of the same value of 0.76 and no overfitting or underfitting prediction. The
15 featured wavelengths were in 4 ranges, including 930–960, 1335–1350, 1400–1500, and
1530–1600 nm, which were the vibrations of CH and CH2; CH3; CH, CH2, CONH2 and
CONHR; and RNH2, respectively [32]. The model from the kNN algorithm combined
with Savitzky–Golay smoothing + L2 norm scaling pretreated spectra, 63 GA wavelength
selected, and SMOTE provided the best performance for unknown sample prediction. This
model had an accuracy, precision, recall, and F1-score of 0.75 for the calibration set and 0.72,
0.73, 0.72, and 0.73, respectively, for the validation set. The 63 wavelengths were in 3 ranges,
including 900–970 nm (CH 3rd overtone and OH 2nd overtone), 1000–1205 nm (NH 2nd
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overtone and CH 2nd overtone), and 1230–1660 nm (CH 2nd overtone, 1st overtone of CH
combination, NH 1st overtone and CH 1st overtone) [32].

4.3.3. Dimensional Reduction by PCA

The performance of the calibration model improved after applying SMOTE, especially
with ANN and SVM. However, overfitting occurred during predictions on the prediction
set (Table 9).

The best results were obtained with the LDA algorithm both before and after SMOTE,
and these results were comparable to the LDA model with 15 k-Best selected wavelengths
but without SMOTE. Therefore, the LDA model with 15 selected wavelengths had a shorter
calculation time.

4.4. Effect of Sample Number

According to the principle that the model performance will be better if the number of
samples is large due to the small error, in the case of ANN, the number of data values used
for training must exceed the number of weights determined in the network; this entails
using a large number of samples for calibration if the number of input variables is also
large. Based on the results, PC-ANN, where the data dimension was reduced, was the
best choice for the intended application [33]. In our case, we used GA-ANN, k-Best, and
PC-ANN, where the variables were reduced from the original full spectra to some featured
wavelength data. Recently, in 2023, Rasooli Sharabiani et al. [34] used ANN with samples
of winter wheat leaf for evaluation of chlorophyll content based on VIS/NIR spectroscopy
using PLSR and ANN, where 120 samples were for the training set and the left was for the
test set. The models resulted in the most accurate predictions, with a correlation coefficient
of 0.92 and 0.97, along with a root mean square error of 0.9131 and 0.7305, respectively.
Ni et al. [35] suggested that back propagation ANN (BANN) were powerful and promising
methods for handling linear as well as nonlinear systems, even when the data sets are
moderately small, and they indicated that when very little data are available, BANN has
the additional advantage of achieving robust predictive performance based on relatively
small data sets compared to other nonlinear approaches while being less influenced by
preprocessing, i.e., SNV.

4.5. Effect of SMOTE

SMOTE was utilized to address the issue of imbalanced samples within the class
classifications, which were causing bias in classifying the smaller groups. We have used
SMOTE in our synthetic oversampling to increase the number of data points to (42:42:42)
from (42:29:22). Even in balanced data, the discrimination model’s performance does not
significantly increase, indicating the inherent characteristics of the data set, in which there
was a moderate correlation between spectral characteristics and the TSI of the medical
glove samples. Generally, the discrimination performance of the model relatively increases
before and after balancing the data for full spectra, selective spectra, and dimensional
reduction spectra (See Table 11). Most of the models developed after SMOTE had a better
F1-score. It shows that the SMOTE method can increase the discriminative model’s ability
by generating similar but not identical data [36].

Table 11 shows the F1-scores of models for classifying TSI levels of medical gloves
before and after SMOTE using no spectral pretreatment for each class. Specifically, the
F1-scores for the TSI = 80–88% group and the TSI > 88% group increased after applying
SMOTE. Therefore, SMOTE can address the bias in classifying smaller groups. In the best
model constructed using LDA with 2nd derivative spectra and 15 k-best selected features,
without employing SMOTE, the validation F1-score was slightly higher than by using
SMOTE. However, the calibration F1-score without SMOTE is slightly lower than with
SMOTE. Upon comparison, we opted for a model that does not utilize SMOTE. However,
in other models, using SMOTE increases the F1 values of minorities.
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In addition, the effect of SMOTE on increasing the model performance was remarkably
confirmed by the 100% prediction accuracy of the unknown samples by the kNN algorithm
combined with Savitzky–Golay smoothing + L2 norm scaling pretreated spectra, both in
the full wavelength range and the 63 GA wavelength selected by the data after SMOTE
(Table 10).

4.6. The Merit of This Study

We have tried in this work with different modeling methods, including wavelength
selection and using balanced data, but the model performance has not improved. The
machine learning algorithms in this study were from two linear classifier algorithms (LDA
and kNN) and two hybrid classifier algorithms (linear and nonlinear), including SVM
and ANN. We concluded that the inherent characteristics of the data set might explain
the weak correlation between spectral characteristics and the TSI of the medical glove
samples. Before we end everything, let us recall the chemistry of the biopolymers, in our
case, natural rubber, and their relation to NIR radiation.

Natural rubber is a naturally occurring nanocomposite with an island-nanomatrix
structure, which is composed of cis-1,4-polyisoprene particles with an average diameter of
~1µm dispersed in a nanomatrix (several tens of nanometers thick) of nonrubber compo-
nents such as proteins and phospholipids. The island-nanomatrix structure is stabilized
by physical and chemical pinning with proteins and phospholipids, which is based on the
fact that the cis-1,4-polyisoprene of natural rubber is a branched polymer [37]. A medical
glove is a vulcanized natural rubber product where crosslinks must be formed between
the polymer chains to provide adequate mechanical resistance for natural rubber latex
products [38]. It was proved that cis-1,4-polyisoprene absorbed NIR radiation at 750, 907,
and 920 nm in the NIR shortwavelength by Sirisomboon et al. [39] and at 1202, 1390, 1420,
1719, 1780, 1884, 2032, and 2218 nm in the NIR longwavelength by Sirisomboon et al. [5],
and these absorptions correlate well with the chemical constituents in rubber latex, for
example, dry rubber content [5,39,40] and total solids content [39,40] and ammonia [41]
and with physical parameters such as viscosity [42].

The studies by Lim and Sirisomboon of crosslink density of natural rubber film
developed from prevulcanized latex model which was created by PLSR using the spectra
scanned by FT-NIR spectrometer [3], the natural rubber thin film model provided the r2,
root mean square error of cross validation and bias of 0.65, 4.01%TSI and −0.028%TSI,
respectively, using the wavenumber range of 6102–5446.3 cm−1 and 4428–4242.9 cm−1

(1639–1836 nm (included natural rubber absorption bands) and 2258–2357 nm), whereas
for the natural rubber thick film model the r2, root mean square error of cross validation
and bias were 0.70, 4.00%TSI and −0.006%TSI, respectively, using the wavenumber range
of 6102–4597.7 cm−1 (1639–2175 nm (included natural rubber absorption bands)). By using
the low-cost VIS/NIR diode array spectrometer in the wavelength range of 450–1000 nm
using a fiber optic probe scanned on the thin and thick film, the models for crosslink density
indicated by prevulcanisate relaxed modulus (PRM) had poor results, as indicated by the
R2 of calibration and RMSEC of 0.02 and 17.31 × 104 N/m2 and 0.05 and 16.63 × 104 N/m2,
respectively [43].

It is proved in our experiment in this report that the longer wavelength range between
960 and 1650 nm, including 3 bands of natural rubber absorption by a low-cost linear
variable filter ultra-compact spectrometer (MicroNIR Pro, 1700ES, Viavi, USA), improved
the NIR spectroscopy model by using LDA and kNN algorithms for classification with
an accuracy of 76% for the validation set and 100% for the unknown set, respectively.
Amirruddin et al. [44] categorized balanced accuracy as poor below 40.00%, moderate
within 40.00–80.00%, and excellent above 80.00%. With 76% accuracy, it is obvious that
the best model, constructed before SMOTE using LDA with 2nd derivative spectra and
15 k-Best selected features, had moderate model performance, and the kNN combined
with Savitzky–Golay smoothing + L2 norm scaling pretreated spectra after SMOTE was
excellent with 100% accuracy after being tested for 16 unknown samples, which were from
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only G1 (<80%TSI). This kNN model must be proved with more sample numbers and more
sample groups. Therefore, both developed models can be implemented in the glove factory
for screening purposes in the production line.

It might be concluded that this wavelength range spectra (960–1650), i.e., 15 wave-
lengths by the k-Best algorithm and 63 wavelengths by GA, contained crosslink density-
featured information about the natural rubber-thick film of medical gloves.

In terms of speed of crosslink density measurement, the TSI reference laboratory test
takes 15 min to get the result, and the sample is destroyed, while for non-destructive NIR
spectroscopy, only 30s are needed. The NIR spectroscopy is suitable for homogeneous
material where an NIR hyperspectral image is not necessary. The medical glove is a fairly
homogeneous material; therefore, there is no need to use the hyperspectral image technique,
which has a tremendously higher price.

5. Conclusions

Classification of the crosslink density level of para rubber thick film of medical gloves
by using NIR spectral data combined with machine learning is the first time reported in
this paper. The spectra were acquired by an ultra-compact portable MicroNIR spectrometer
with a wavelength range of 960–1700 nm. The crosslink density levels were referencely
evaluated by toluene swell index (TSI) to correlate with the NIR spectra of the medical
glove samples generated using different levels of vulcanized compounded natural rubber
latex, where the 3 groups of TSI were specified, including less than 80%TSI, 80–88%TSI, and
more than 88%TSI. The 80–88%TSI group was the group in which the compounded latex
was suitable for medical glove production, which made the glove specification comply with
the required standards of customers, for example, ASTM standard and European standard.

Followed the ASTM standard for the glove when sold to the USA. By tensile testing,
the torn point of the glove sample before and after accelerated curing must be more than
or equal to 18 MPa with 650% elongation and more than or equal to 14 MPa with 500%
elongation, respectively. By European glove trading before and after the torn point, the force
must be more than or equal to 12 N and 9 N, respectively. The before-accelerated curing is
24 h after production. The accelerated curing is to simulate the storage or transportation
in a container, in which the accelerating curing condition is when the glove sample is at
100 ± 2 ◦C for 22 ± 2 h or 70 ± 2 ◦C for 166 ± 2 h and kept at room temperature for not
less than 1 h but not after 24 h and subjected to a tensile test.

From the experiment, we can conclude that when comparing the algorithms used
for modeling, the LDA developed by 2nd derivative spectra using 15 k-Best selected
wavelengths before SMOTE fairly accurately predicted the class, and the kNN combined
with Savitzky–Golay smoothing + L2 norm scaling pretreated spectra after SMOTE showed
an excellent accuracy of 100% on a 16/unknown sample set. But they were most reliable
among other algorithms, i.e., ANN and SVM, due to higher prediction accuracy, precision,
recall, and F1-scores of the same value of 0.76 and 1.00, respectively, with no overfitting
or underfitting prediction. This developed model should be applied to factory usage for
screening purposes. However, in deep learning modeling, for example, different types
of convolutional neural networks should be explored to get a more accurate and reliable
model with the larger sample number required for deep learning.
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