
Citation: Meng, R.; Liu, L.; Su, X.;

Gong, W.; Luo, X.; Gao, H. Facile

Preparation of Cellulose Beads with

Tunable Graded Pores and High

Mechanical Strength. Polymers 2024,

16, 725. https://doi.org/10.3390/

polym16060725

Academic Editor: Bruno Medronho

Received: 6 December 2023

Revised: 18 January 2024

Accepted: 27 February 2024

Published: 7 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Facile Preparation of Cellulose Beads with Tunable Graded Pores
and High Mechanical Strength
Ranjv Meng 1,2, Lin Liu 2,*, Xiuping Su 3 , Wenli Gong 2, Xiaolei Luo 2 and Huiying Gao 1

1 School of Fashion Design, Jiaxing Vocational Technical College, Jiaxing 314036, China;
13567307272@163.com (H.G.)

2 School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
15757335629@163.com (W.G.); ambious_skyler@163.com (X.L.)

3 Key Laboratory of Functional Fibers and Intelligent Textiles, Shaoxing University Yuanpei College,
Shaoxing 312000, China; suxiuping@usx.edu.cn

* Correspondence: linliu@zstu.edu.cn

Abstract: Cellulose-based hierarchical porous beads exhibit significant application potential in
adsorption and separation systems due to their degradation and biocompatibility. However, the
current fabrications of cellulose beads show poor mechanical properties and a difficult-to-regulate
hierarchical porous structure, reducing their lifespan of use and limiting their application in fine
separation. Here, we reported the facile creep–drop method to prepare cellulose beads that enabled
systemic regulation of the macro-size, micropore structures, and mechanical properties by optimizing
injection nozzle diameter, the composition of the coagulation bath, the temperature of the coagulation
bath, and cellulose concentration. Notably, during the molding process, the H2SO4-Na2SO4 composite
solidification bath endowed cellulose beads with a dense shell layer and a loose core layer, which
achieved the integration of mechanical properties and high porosity. The cellulose beads exhibited
high porosity (93.38–96.18%) and high sphericity (86.78–94.44%) by modulating the shell thickness of
the cellulose beads. In particular, the cellulose beads exhibited excellent mechanical properties with
a high compressive strength of 544.24 kPa at a 5% cellulose concentration. It is expected that these
cellulose beads with tunable microstructures can realize their potential for applications in the fields
of wastewater treatment, chemical engineering, bioengineering, medicine, and pharmaceuticals.

Keywords: cellulose beads; tunable porous; core–shell structure; hierarchical porous; coagulation bath

1. Introduction

Porous beads, possessing spherical particles, a uniform pore structure, a good func-
tional surface, and a controllable size, can match different application scenarios in adsorp-
tion [1], separation [2], chromatography packing [3], catalyst support [4], drug delivery [5],
drug release [6], etc. Normally, porous beads have been made from inorganic or organic
compounds, such as silica [7], carbon [8], cellulose [9], chitosan [10], alginate [11], poly-
acrylonitrile [12], etc. In comparison with other materials, cellulose is more attractive as a
green advanced material due to its abundant source, renewability, non-toxicity, environ-
mental friendliness, easy modification, and low cost [13,14]. However, due to the high
degree of polymerization and strong hydrogen bonding, cellulose shows poor solubility
in conventional solvents, resulting in low mechanical properties of regenerated cellulose
beads [15,16].

Therefore, a lot of effort is spent on dissolving cellulose and improving the mechanical
properties of cellulose beads. There are several ways to dissolve cellulose, such as the early
viscose process, cellulose carbamate process, recent aqueous complexing agents, alkaline
solution system, and non-aqueous system [17]. Unfortunately, most dissolution methods
inevitably come with the use of toxic or expensive reagents such as N-dimethylacetamide,
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ammonium fluoride/dimethyl sulfoxide, and LiClO4, which are not conducive to en-
vironmental protection [18–20]. The low-temperature alkaline–urea system is currently
a promising method for dissolving cellulose by disrupting the intramolecular and in-
termolecular hydrogen bonds of cellulose molecules, which possesses the advantages
of a great solubilization effect, low energy consumption, and low solvent cost [21]. At
present, the NaOH–urea system has been applied to the preparation of regenerated cellu-
lose membranes [22], aerogels [23], fibers [24], and porous materials [25,26], thus providing
a highly promising approach for the preparation of high-performance regenerated cellulose
bead materials.

In terms of the preparation of cellulose beads, the primary methods include drop-in
phase separation, emulsion dispersion, high-pressure electrostatic jetting, the microfluidic
method, etc. [27,28]. The drop-in phase separation method is one of the simplest and
continuous methods to achieve the large-scale production of spherical polymers [29], which
is capable of controllably producing spherical substances of different sizes. Compared
with other methods, the drop-in phase separation method improves the spherulization
efficiency, reduces the preparation cost, decreases the use of organic solvents, and reduces
environmental pollution [30]. During the process of preparing porous cellulose beads by
drop-in phase separation, the cellulose solution is extruded from the nozzle and dripped
into the coagulation bath, and the exchange of solvent and non-solvent promotes the
regeneration of the drops by condensation from the outside to the inside to form the porous
cellulose beads, whose physical properties and structure depend on the parameters of the
preparation process [31]. However, current studies lack dimensional control and rarely
discuss the laws of mechanical properties, leading to unclear mechanisms for regulating
the structure and properties. On the other hand, since cellulose beads cannot effectively
rebuild the three-dimensional hydrogen bonding network in a solidification bath, thus
forming a loose network structure, current cellulose beads tend to exhibit poor mechanical
properties. In summary, developing cellulose beads with excellent mechanical properties
and tunable structures remains an important challenge.

In this study, we developed a simple and accurate method to prepare cellulose beads
by using alkaline urea as the solvent and H2SO4/Na2SO4 as the coagulation bath. The
prepared cellulose beads not only had high porosity and great sphericity but also possessed
a core–shell structure: the surface was a dense shell-like structure formed by the deposi-
tion of cellulose molecules, and the inside was composed of a three-dimensional network
structure of cellulose molecular chains. By investigating the effects of different cellulose con-
centrations, coagulation bath concentrations, and temperatures on the performance of the
cellulose beads, it was found that the cellulose beads of 5% concentration showed excellent
mechanical properties with a compressive strength of 544.24 kPa. Remarkably, we found
that the morphology of the cellulose beads could be controlled, which was conducive to the
control of the mechanical properties of cellulose beads. This work provides a foundation
for the design of cellulose materials and tailoring structures for various applications.

2. Materials and Methods
2.1. Materials

The cotton fibers were provided by Zhejiang Tiandi Cotton Co., Ltd. (Hangzhou,
China), and they were used after vacuum drying at 60 ◦C for at least 6 h. Sodium sulfate
(H2SO4), sodium acid (Na2SO4), sodium hydroxide (NaOH), and urea were obtained from
Sinopharm Chemical Co., Ltd. (Shanghai, China). All chemical reagents were analytically
pure and were not further purified.

2.2. Preparation of Cellulose Beads with Tunable Pore Size and Structure

As shown in Scheme 1, the preparation of porous cellulose beads was applied from a
homogeneous cellulose solution by the dropping method. The process was as follows: a
clear homogeneous cellulose solution was formed by dissolving cellulose fibers in a 7%
NaOH and 12% urea aqueous solution according to our previous report [32]. Subsequently,
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the mixed solution was extruded dropwise into a H2SO4/Na2SO4 coagulation bath through
a peristaltic pump using a syringe needle with a diameter of 1.64 mm, 1.11 mm, 0.52 mm,
or 0.11 mm to form the porous cellulose beads. To exclude the impact of other factors
(e.g., the surface tension of the coagulant solution, sinking height), the extrusion speed of
the mixed solution was maintained at 30 mL/min, with the needle tip kept at a constant
distance of 1 cm from the surface of the coagulation bath. All cellulose beads were prepared
in 250 mL beakers. The naming of different samples was based on the concentration of
different components (the details are in Table 1). To better study the morphology and
specific surface area of the cellulose beads and reduce the influence of ice crystals on the
internal structure of the balls during freezing, the cellulose balls were instantaneously
frozen with liquid nitrogen before freeze-drying and then sent to a Scientz-12N freeze dryer
(−80 ◦C) for drying.
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Scheme 1. Preparation process of cellulose beads.

Table 1. The codes, preparation conditions, and physical properties of the cellulose beads.

Preparation Conditions
Porosity

(%)

Water
Content

(%)

SSA
(m2 g−1)

Apparent
Density
(g/m3)

Sample
Code

Ccellulose
(wt%)

Coagulation Condition
T (◦C)

CH2SO4 (M L−1) CNa2SO4 (g L−1)

CBC-3 3 1.5 80 30 96.16 94.07 87.17 0.073
CBC-4 4 1.5 80 30 95.85 93.11 97.34 0.078
CBC-5 5 1.5 80 30 93.38 91.36 99.87 0.105

CBA-0.5 4 0.5 80 30 94.85 92.41 64.66 0.076
CBA-1 4 1 80 30 95.21 92.89 94.46 0.071

CBA-1.5 4 1.5 80 30 95.85 93.11 97.34 0.078
CBA-2 4 2 80 30 95.18 92.87 84.84 0.075

CBS-0 4 1.5 0 30 94.67 92.89 60.74 0.071
CBS-4 4 1.5 40 30 95.13 92.98 92.26 0.073
CBS-8 4 1.5 80 30 95.85 93.11 97.34 0.078
CBS-12 4 1.5 120 30 94.45 93.72 80.45 0.079

CBT-0 4 1.5 80 0 95.06 93.27 86.42 0.069
CBT-15 4 1.5 80 15 96.18 92.58 84.93 0.075
CBT-30 4 1.5 80 30 95.85 93.11 97.34 0.078
CBT-45 4 1.5 80 45 93.66 91.04 58.66 0.069

2.3. Characterization
2.3.1. Field Emission Scanning Electron Microscope (FE-SEM)

Cellulose beads were brittle-fractured using liquid nitrogen in order to observe their
internal structure. Before observation, the cross-section and outside surface of the cellulose
bead were gold plated, and then the surface, edge, and internal structures were observed
with FE-SEM (JSM-5610, Hitachi, Tokyo, Japan). The acceleration voltage was 3 KV.
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2.3.2. Determination of the Weight, Size, and Shape of the Cellulose Beads

Fifty cellulose beads were randomly selected and then gently rubbed with filter paper
to dry the excess water on the surface and placed in an oven (60 ◦C) until the weight was
constant. The mass of the dried cellulose beads was weighed, and a Nikon ECLIPSE (TS100,
Nikon, Tokyo, Japan) inverted biological microscope was used to measure the size of the
cellulose beads. The cellulose beads were randomly selected and placed on a microscope
slide to measure the lengths of the long and short axes for calculating the average diameter
and sphericity.

2.3.3. Moisture Content

The dry and constant weight method was used to obtain the moisture content. Wet
cellulose beads were weighed at a certain amount M0 (g) and then placed in an oven (60 ◦C)
to dry until the weight was constant. Subsequently, the weight M (g) of dry cellulose beads
was measured, and the moisture content (ω, %) was calculated by following Formula (1):

ω = (M0 − M) × 100%/M0 (1)

2.3.4. Porosity

The pycnometer method was used to measure the wet true density ρp (g·mL−1) of the
cellulose beads. The porosity P (%) was calculated by following Formula (2):

P = (ρp × ω)/ρH × 100% (2)

where ρp is the wet true density of cellulose beads, g·mL−1. ω is moisture content, %. ρH
is the density of water, 1 g·mL−1.

2.3.5. Nitrogen Adsorption Performance

The 3H-2000PS1 BET tester of Beijing Best Analytical Instrument Research Institute
(3H-2000PS1, BeiShiDe, Beijing, China) was used to test the specific surface area of cellulose
beads. The samples were first degassed for 2 h at 130 ◦C, then nitrogen was used as
the adsorption medium to determine the equilibrium adsorption capacity of nitrogen at
different working pressures, and finally, the specific surface area of the sample was obtained
by the BET adsorption equation.

2.3.6. Mechanical Properties

The universal material testing machine (5943, INSTRON, Norwood, MA, USA) was
used to test the compressive strength of the cellulose beads. The samples were compressed
to 5% deformation at a compression speed of 5 mm·min−1. After the sample was restored,
they were stayed for 30 s and then compressed to 10%. The above steps were repeated
until the deformation of the sample reached 60%, and 5 parallel samples were selected
for testing.

3. Results and Discussion
3.1. Size and Shape of the Cellulose Beads

Under the combined action of gravity and squeezing force, uniform droplets of differ-
ent sizes were extruded through needle nozzles with different diameters and then dropped
into a H2SO4/Na2SO4 coagulation bath to obtain uniform cellulose beads with different
sizes. Using this process, the morphology of cellulose beads was explored by adjusting
the preparation parameters. The cellulose content, coagulation bath temperature, H2SO4
and Na2SO4 concentrations, and extrusion speed were fixed at 4 wt%, 30 ◦C, 1.5 M L−1,
80 g L−1, and 30 mL min−1. As shown in Figure 1, the formed cellulose beads show a milky
white round appearance with a uniform size. The diameter distribution of cellulose beads
prepared by using needles with diameters of 1.64 mm, 1.11 mm, 0.52 mm, and 0.11 mm
were 2.90–3.90 mm, 2.55–2.90 mm, 1.95–2.30 mm, and 1.05–1.25 mm, respectively. The
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influences of the diameter of the extrusion nozzle on the average diameter, mass, and
sphericity of cellulose beads were studied in detail. As can be seen from Figure 2a, by
controlling the diameter of the extrusion nozzle, various cellulose beads with different
diameters were prepared, which were 1.27, 2.19, 2.83, and 3.35 mm, respectively. The
average weights of the cellulose beads increased with their average diameters, which were
1.82, 6.17, 9.46, and 14.50 mg per bead, respectively. On the other hand, the sphericity of
cellulose beads using syringe needles with diameters of 1.64 mm, 1.11 mm, 0.52 mm, and
0.11 mm were 86.78%, 94.35%, 93.49%, and 94.44% (Figure 2b), respectively. All the results
showed that the obtained cellulose beads possessed uniform sphericity, thus suggesting
the controlled diameters of the cellulose beads.
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3.2. Physical Properties of the Porous Cellulose Beads

The cellulose solution was creeped out from the injection nozzle and dropped into the
coagulation bath. During the coagulation period of the cellulose droplets, the exchange
of the solvent-poor solvent and the non-solvent promoted the extension of the core to
continue the growth until the polymer concentration reached its low limitation. When it
was too high to be solidified, the coagulation process was completed, and the cellulose
beads were formed. Generally, the physical properties and structures of cellulose beads
depend on the preparation process parameters, so cellulose beads with different pore
structures can be obtained by adjusting the preparation process parameters for application
in different fields. In this study, cellulose concentrations and coagulation bath conditions
(temperature and H2SO4 and Na2SO4 concentrations) were tuned to explore their effects
on the physical properties of cellulose beads. The preparation conditions and physical
properties of all cellulose samples are summarized in Table 1. To determine the effect
of cellulose concentration and coagulation bath conditions on the microstructure of the
cellulose beads, the porosity, water content, and specific surface area (SSA) of the cellulose
beads were tested and characterized.

The samples in the first group (CBC-3, CBC-4, and CBC-5) were prepared by adjusting
the concentration of the cellulose solution. As shown in Table 1, the porosity and water
content of cellulose beads decreased with the concentration of the cellulose solution, but
the SSA increased from 87.17 to 99.87 m2 g−1. The samples in the second group (CBA-0.5,
CBA-1, CBA-1.5, and CBA-2) were prepared by adjusting the concentration of H2SO4
in the coagulation bath. It can be seen from the data that the concentration of H2SO4
mainly affected the SSA: the SSA was only 64.66 m2 g−1 when the H2SO4 concentration
was 0.5 M L−1, and the SSA increased to 97.34 m2 g−1 when the concentration reached to
1.5 M L−1. The third group samples, including CBS-0, CBS-4, CBS-8, and CBS-12, were
prepared by adjusting the Na2SO4 concentration in the coagulation bath, and the effect
was similar to the H2SO4 concentration. The fourth group samples, including CBT-0,
CBT-15, CBT-30, and CBT-45, were prepared under different reaction temperatures. The
temperature showed a weak influence on the porosity and water content of the cellulose
beads, but the SSA was relatively large at 30 ◦C. When the temperature reached up to 45 ◦C,
the cellulose beads showed the smallest SSA of 58.66 m2 g−1. In general, the concentration
of the cellulose solution had a bigger influence on the porosity, water content, and SSA of
the cellulose beads. The higher the concentration, the lower the porosity and water content,
and the higher the SSA. The concentration of sulfuric acid, the concentration of sodium
sulfate, and the reaction temperature in the coagulation bath mainly affected the SSA of the
cellulose beads, and a large SSA could only be obtained within an appropriate range.

3.3. Effects of Different Reaction Conditions on the Morphology and Core–Shell Structure of the
Cellulose Beads

As shown in Figures 3–6, the morphological characteristics of the cellulose beads
can be adjusted by changing the cellulose concentration, coagulation bath concentration
(H2SO4/Na2SO4), and temperature. The shell–core structure played a decisive role in the
physical properties. It can be seen from the images that all the cellulose beads showed
a well-defined and interconnected 3D network porous structure, and their surfaces were
covered by a dense shell. The surfaces of the cellulose beads were thin and dense uni-
form microporous layers. The internal structures were composed of many holes, each of
which was surrounded by thin walls with micropores or mesopores. Of course, the beads
produced by different preparation conditions showed some differences in microstructure
and macrostructure.

3.3.1. Effect of Cellulose Solution Concentration

Figure 3 shows the effect of different cellulose concentrations on the morphology
of cellulose beads. Obviously, as the cellulose concentration increases, the surface of the
cellulose beads becomes dense and the size of the micropores decreases. As can be seen from
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the inside of the cellulose beads, the internal network of the cellulose beads shows a denser
structure, respectively. Figure S1 also illustrates this phenomenon. The pore diameter of
CBC-3 is larger, and the distribution is wider, mainly distributed in 400~1000 nm. As the
cellulose concentration increases, the pore diameter gradually becomes smaller, and the
pore diameter of CBC-4 is concentrated in 230~350 nm, and the pore diameter of CBC-5
is concentrated in 100~250 nm. A higher cellulose concentration leads to higher cellulose
content in the sample [32,33]. In addition, due to molding under the same coagulation bath
conditions, there was no significant difference between the edge thickness of these beads.
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coagulation bath was 1.5 M L−1 H2SO4/80 g L−1 Na2SO4 at 30 ◦C.

3.3.2. Effect of H2SO4 and Na2SO4 Concentrations in the Coagulation Bath

Cellulose regeneration is an essential step in the formation of cellulose beads. The
coagulant is considered a key factor in the formation process of beads, during which the
cellulose solution is regenerated and starts to form beads due to the solvent/non-solvent
exchange and subsequent phase separation. Therefore, different coagulation conditions
will affect their diffusion and formation process, resulting in regenerated cellulose beads
with various morphological characteristics and properties [32]. Figures 4 and 5 show that
the H2SO4 and Na2SO4 concentrations significantly affect the morphology of the cellulose
beads. The kinetics of coagulation can explain this result, which mainly depends on the
relative diffusion rate of the solvent from the cellulose droplet to the coagulant and the
reverse process, that is, the diffusion of the non-solvent into the cellulose droplet [34].

As the concentration of H2SO4 increased, the surface of the cellulose beads became
more compact and smooth (Figure 4). A relatively smooth surface with less pore structure
could be observed, and even the pores on the surface of CBA-2 were smaller than those
on the surface of CBA-0.5. This indicated that the droplets formed a dense and firm skin
after the first contact with more concentrated acid. When the concentration of H2SO4
increased from 0.5 to 1.5 M L−1, there was a denser porous structure in the internal
structure of the beads, and the pore size decreased slightly. From Figure S2, it can be
seen that the internal pore diameter of CBA-0.5 is larger and the distribution is wider,
mainly distributed in 250~700 nm. The pore diameter of CBA-1 is obviously smaller, and
the pore diameter is concentrated in 250~390 nm. The increased H2SO4 concentration
significantly enhanced the interdiffusion between the coagulation bath and the cellulose
solution and accelerated the process of acid–base neutralization in the internal droplets,
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which promoted the regeneration of intermolecular hydrogen bonds between the cellulose
molecules [35]. However, the strong condensation into 2 M L−1 H2SO4 immediately formed
an excessively rigid and dense shell, which hindered the mutual diffusion of the solvent
inside the sample and the non-solvent outside the sample. Thus, the inner pores of the
cellulose beads had a larger pore size [36]. The pore size of cellulose is significantly wider
than that of CBA-1.5, which is mainly distributed between 230 and 350 nm (Figure S2).
The internal pore structure was in good agreement with the porosity and BET value of the
microbeads (Table 1). On the other hand, a clear core–shell structure could be observed in
the cross-sectional image. Coagulation in 0.5 and 1 M L−1 H2SO4 produced a fairly thick
skin layer but coagulation in 2 M L−1 H2SO4 formed a relatively thin shell. It could be that
the surface of the droplet rapidly regenerated and then immediately formed a very dense
and dense skin layer at a high acid concentration. When the concentration of cellulose
beads was low, the coagulation process slowed down, and the skin layer of cellulose beads
became thick.
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The core–shell formation process of the cellulose beads in a coagulation bath containing
different concentrations of H2SO4 was observed and recorded in detail, as shown in Figure 5.
The cellulose solution was dropped into a mixed solution of 0.5, 1, or 2 M L−1 H2SO4 and
80 g L−1 Na2SO4 and taken out at 0.5, 1, 5, 10, and 30 min; the coagulation process was
observed under a microscope. The darker areas represent the regenerated cellulose beads,
while the bright areas represent the cellulose solution without solidification. At 0.5 min,
the edges of the three samples were regenerated, and the central part was still the cellulose
solution. After 30 min, the cellulose solution inside the droplet gradually completed
regeneration and shrank into spherical beads. From the regeneration process of the sample
and the size of the droplet, it could be seen that the coagulation rate of the cellulose beads
in the 0.5 M L−1 H2SO4 reaction environment was the smallest, and the sample processed
by 2 M L−1 H2SO4 was significantly smaller than the other two samples. This showed
that the higher concentration of H2SO4 tended to cause a denser shell of the cellulose
beads. However, at 10 min, the 2 M L−1 H2SO4 sample had more cellulose solution than
the 1.5 M L−1 H2SO4 sample, which showed that the dense shell affected the solution
exchange between the inside and the outside and hindered the regeneration of the internal
cellulose solution.
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Figure 5. Photos of the cellulose beads prepared with different H2SO4 concentrations: (a) 0.5, (b) 1.5,
and (c) 2 M L−1 H2SO4 with 80 g L−1 Na2SO4 and 30 ◦C.

Figure 6 shows the effect of different doses of Na2SO4 on the morphology of the cellu-
lose beads. CBS-0 showed a loose and porous internal structure, which is also illustrated
by Figure S3, and the edge thickness was thinner. This is because sulfuric acid could be
fully ionized without the presence of Na2SO4. H+ ions existed in the coagulation bath,
and the exchange rate between the conversion solvent and the non-solvent was faster. The
presence of Na2SO4 promoted the regeneration and formation of beads through a “salting
out” mechanism. It is a strong electrolyte and one of the components of the coagulant,
which can promote the dehydration and formation of cellulose droplets [35]. On the other
hand, absorbing enough Na2SO4 to H2SO4 reduced the H+ concentration in the coagulation
bath and caused the back diffusion rate, thereby contributing to the life of the coagulation
bath [37].
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(d) 120 g L−1 Na2SO4/1.5 M L−1 H2SO4 at 30 ◦C.

3.3.3. Effect of the Temperature of the Coagulation Bath

The effect of coagulation bath temperature on the morphological characteristics of
the cellulose beads was also studied. The SEM images in Figure 7 showed the effect of
different coagulation bath temperatures on the surface, interior, and edges of the beads.
It could be seen that raising the temperature of the coagulation bath from 0 ◦C to 45 ◦C
produced a denser surface and a thicker shell. This phenomenon was closely related to



Polymers 2024, 16, 725 10 of 14

phase transition kinetics. When the cellulose droplets were immersed in the coagulation
bath, a shell of droplets was first formed. Subsequently, the coagulation bath of internal
droplets depended on interdiffusion and subsequent phase separation. A faster coagulation
process occurred with a higher temperature so that the molecular chain of the shell layer
was rapidly regenerated to form a thick shell. At the same time, when the coagulation
bath temperature was elevated from 0 ◦C to 30 ◦C, the internal pores of the cellulose beads
became denser. It can be seen from Figure S4 that the internal pore diameter of CBT-0 is
larger and the distribution is wider, mainly distributed in 250~700 nm. The pore diameters
of CBT-15 and CBT-30 are obviously smaller, with their pore size distributions concentrated
in the ranges of 250~390 nm and 230~350 nm, respectively. During the regeneration of the
cellulose solution in the coagulation bath, an increase in the temperature of the coagulation
bath could enhance the driving force for diffusion between the solvent and the non-solvent.
However, when the temperature of the coagulation bath is 45 ◦C, the internal pores of the
cellulose beads become loose, and their pore size distribution changes from 220~350 nm for
CBT-30 to 290~410 nm for CBT-45 (Figure S4). It is reasonable that at higher temperatures,
faster coagulation might pack cellulose molecules more densely in the shell layer, while
at lower temperatures, slower coagulation might fill more cellulose molecules inside. On
the other hand, when the temperature of the coagulation bath was from 0 ◦C to 45 ◦C, the
pores on the surface of the bead gradually became denser, and the thickness of the ball edge
gradually increased. In this way, because of the low-temperature conditions, the speed of
H+ entering the bead becomes slower so that the initial H+ and OH− are concentrated on
the surface of the cellulose bead for the neutralization reaction, which then produces water,
making the surface of the bead have larger holes. The increase in temperature speeds up
the diffusion rate, forming a thicker spherical wall.
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3.4. Mechanical Properties of the Cellulose Beads

For practical applications, the mechanical properties of a material are extremely impor-
tant. The compressive stress–strain curves are shown in Figure 8, which indicate that the
cellulose beads under different preparation parameters had tunable mechanical properties.
Overall, the core–shell structure of the cellulose beads endows the material with a hierarchy
at the micro-nano scale [38]. Thus, the compressive strength of the cellulose beads far
exceeds the strength reported in the literature (Supplementary Materials). Regarding the
cellulose concentration (Figure 8a), the increase in cellulose concentration was beneficial
for the strength of the cellulose beads. When the cellulose concentration reached up to 5%,
the prepared cellulose beads exhibited the highest compressive strength of 544.27 kPa. This
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was because the higher concentration of the cellulose solution formed a denser pore struc-
ture [39,40] (consistent with Figure 3), which resulted in high mechanical properties. The
effects of H2SO4 concentration and Na2SO4 dosage in the coagulation bath on mechanical
properties were consistent with their effect on the SSA, as shown in Figure 8b. The cellulose
beads prepared under the reaction conditions of 1.5 M L−1 H2SO4 and 8 g Na2SO4 pos-
sessed the highest compressive strength of 470.1 kPa, respectively. As shown in Figure 8d,
when the temperature of the coagulation bath was 30 ◦C, the mechanical properties of the
cellulose beads were the strongest. The compressive strengths at temperatures of 0 and
15 ◦C were weak. This was because the lower reaction temperature was not conducive
to the formation of cellulose beads, and the excessive temperatures destroyed the stable
structure of cellulose beads.
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4. Conclusions

In this study, a green method was presented to fabricate cellulose beads with a core–
shell structure and great mechanical properties. The structure of the cellulose beads was
tunable by the concentration of cellulose, the concentration of H2SO4 and Na2SO4 in the
coagulation bath, and the temperature of the coagulation bath. The concentration of the
cellulose solution had a great influence on the porosity, water content, and SSA of the
cellulose beads. In terms of mechanical properties, the cellulose beads prepared with a
high cellulose concentration (5%) and moderate concentrations of H2SO4 (1.5 M L−1) and
Na2SO4 (80 g L−1) had the highest compressive strength. Through the control of these
experimental parameters, this work achieved the customization of mechanical properties
and apparent morphology of cellulose beads, which showed a huge application poten-
tial in wastewater treatment, chemical engineering, bioengineering, medicine, and the
pharmaceutical field.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/polym16060725/s1. Figure S1. Interior pore size distribution of cellulose
beads. (a) 3 wt%, (b) 4 wt%, (c) 5 wt% cellulose concentration coagulated into 1.5 M H2SO4/8 g
Na2SO4 at 30 ◦C. Figure S2. Interior pore size distribution of cellulose beads. 4 wt% cellulose
concentration coagulated into (a) 0.5, (b) 1, (c) 1.5, (d) 2 M H2SO4/8 g Na2SO4 at 30 ◦C. Figure S3.
Interior pore size distribution of cellulose beads. 4 wt% cellulose concentration coagulated into
1.5 M H2SO4 (a) 0, (b) 4, (c) 8, (d) 12 g Na2SO4 at 30 ◦C. Figure S4. Interior pore size distribution
of cellulose beads. 4% cellulose concentration coagulated into 1.5 M H2SO4 /8 g Na2SO4 at (a) 0,
(b) 15, (c) 30, (d) 45 ◦C. Figure S5. Comparison of literature on the compressive resistance of cellulose
beads [41–45].
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