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Abstract: Cellulose is a biopolymer with numerous advantages that make it an ecological, economical,
and high-performing choice for various applications. To fully exploit the potential of cellulose, it
is often necessary to dissolve it, which poses a current challenge. The aqueous zinc oxide/sodium
hydroxide (ZnO/NaOH/Water) system is a preferred solvent for its rapid dissolution, non-toxicity,
low cost, and environmentally friendly nature. In this context, the behavior of cellulose chains
in the aqueous solution of ZnO/NaOH and the impact of temperature on the solubility of this
polymer were examined through a molecular dynamics simulation. The analysis of the root means
square deviation (RMSD), interaction energy, hydrogen bond curves, and radial distribution function
revealed that cellulose is insoluble in the ZnO/NaOH solvent at room temperature (T = 298 K).
Decreasing the temperature in the range of 273 K to 268 K led to a geometric deformation of cellulose
chains, accompanied by a decrease in the number of interchain hydrogen bonds over the simulation
time, thus confirming the solubility of cellulose in this system between T = 273 K and T = 268 K.

Keywords: cellulose; MD simulation; cellulose dissolution; ZnO/NaOH aqueous solution; hydrogen
bonding; temperature behavior of cellulose; cellulose; the interaction energy between cellulose and
aqueous solvent

1. Introduction

Growing concern over environmental pollution has prompted researchers to shift their
attention from traditional petroleum-derived synthetic polymers to more environmentally
friendly alternatives [1]. Among the latter, cellulose, the most abundant biopolymer on
Earth, stands out as an available renewable organic material, offering advantages such as its
non-toxicity, broad durability, and environmental friendliness [2,3]. Additionally, cellulose
has been used for thousands of years in the manufacture of fibers, paper, films, filters,
and textiles [4], making it a promising option to meet today’s needs for environmentally
friendly materials [5,6]. Cellulose is a syndiotactic biopolymer of anhydroglucose units
(AGUs) linked by (1,4) β-glycosidic bonds (Figure 1) [3].

The fundamental characteristic that gives cellulose its unique properties is its dy-
namic crystallinity and its ability to arrange in different crystalline forms, known as poly-
morphs [3]. The crystallinity of cellulose refers to the way in which the cellulose chains
are organized in a solid structure with a high degree of regularity and orderliness [7]. This
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crystalline organization gives cellulose distinctive physical properties, such as mechanical
strength, rigidity, dimensional stability, and insolubility, in many solvents [8].
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In the crystalline regions, the cellulose chains are joined together by complex intra- and
intermolecular hydrogen bonds, forming the basis of cohesion between the cellulose chains.
In contrast, in the amorphous domains, the cellulose chains are distributed homogeneously
along the microfibers [9,10]. The intra- and interchain hydrogen bonds give the cellulose
fiber a stable and compact structure, while the network of hydrogen bonds is one of
the main factors of its insolubility in organic and inorganic solvents and its resistance to
decomposition by microbial and enzymatic agents [1,11]. The solubility of cellulose in
alkaline aqueous systems (MOH where M = Na, K) is closely related to the reactivity of
the hydroxyl groups, particularly the C6-OH, within its structure. Indeed, the -C6-OH
group is highly reactive [12], and its availability for nucleophilic reactions is significantly
influenced by the presence of hydroxide ions (OH−). When cellulose is exposed to alkaline
conditions, such as those used in pretreatment procedures [13], the reactivity of C6-OH is
further enhanced, thus facilitating cellulose dissolution. Therefore, understanding in detail
how hydrogen bonds involving C6-OH form and break, whether within the same cellulose
molecule or between different molecules, is essential for elucidating the mechanisms of
cellulose dissolution. This knowledge will enable the design of more effective treatment
methods to enhance the solubility of cellulose in various solvents, which is crucial for
the development of new cellulose-derived materials with improved properties. Another
factor contributing to the insolubility of cellulose is its amphiphilic nature, which refers
to the presence of both hydrophilic (water-attracting) and hydrophobic (water-repelling)
functional groups in its molecular structure [14]. Thus, cellulose is made up of long
glucose chains, and each glucose unit contains three hydroxyl groups (-OH) located on
the equatorial positions of the glucose ring. These hydroxyl groups are hydrophilic with a
strong affinity for water through hydrogen bonds. However, cellulose also has hydrophobic
CH bonds (carbon–hydrogen bonds) located on the axial positions of the glucose ring
and is, therefore, less interactive with water [15,16]. Therefore, the disturbance in the
balance between the hydrophilic and hydrophobic character can play a crucial role in its
dissolution [13,17]. Cellulose is also renowned for its resistance to dissolution in many
organic and inorganic solvents, making it essentially insoluble in water, acetone, ethanol,
and many other liquids [18]. This insolubility is essential to its structural role in plants,
but it also raises fundamental questions and provides exciting opportunities for research
and innovation.

There are several factors that influence the solubility of cellulose, including cellulose
particle size and its degree of polymerization and molecular weight. Indeed, smaller
cellulose particles tend to be more soluble than larger ones, such as cellulose fibers obtained
from wood pulp, cotton, or other natural sources, which have reduced solubility in water
and in many organic solvents. This reduced solubility is mainly due to crystalline regions
of the cellulose fibers and the hydrogen bonds. The latter creates a network that resists
the penetration of solvent molecules and inhibits dissolution [19,20]. On the other hand,
the degree of polymerization and molecular weight significantly influence its solubility.
Thus, a degree of polymerization (DP) between 100 and 20,000 is insoluble in water and in
a large part of organic and inorganic solvents, while shorter fragments of cellulose, with a
DP ranging from 2 to around 12, are generally soluble [21].
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Other factors, such as temperature, pressure, and solvent concentration, can influence
the solubility of cellulose. In addition, the aqueous sodium hydroxide solution is a preferred
solvent for cellulose dissolution due to its various advantages, including non-toxicity, low
cost, environmentally friendly, and fast dissolution process [22–24]. The main limitations
lie in the low concentration of cellulose that can be dissolved in the aqueous NaOH solution
(less than 10%) [25], as well as in the gelation that occurs over time and with increasing
temperature. This is why several dissolution processes of cellulose include the addition of
organic and/or inorganic moieties such as zinc oxide (ZnO), urea, and thiourea to improve
the performance of the alkaline aqueous solutions. In particular, ZnO is known as an
additive in the alkali dissolution in NaOH/aqueous system, which allows the formation
of strong hydrogen bonds between cellulose and Zn (OH)4

2− anion, leading to cellulose
dissolution [4,26,27]. The latter can also enhance cellulose dissolution in the aqueous solvent
ZnO/NaOH by associating and charging cellulose molecules under alkaline conditions [4].
In addition, it has been suggested that ZnO acts as a ‘binder’ for water, stabilizing cellulose
solutions in aqueous NaOH through additional interactions between water molecules
and Zn(OH)−3 and Zn(OH)2−

4 ions. These interactions significantly reduce the amount
of free water around cellulose chains, thereby reducing its aggregation. Therefore, ZnO
stabilizes the solution by keeping water away from the cellulose chains [28]. On the other
hand, temperature is a very important parameter controlling the cellulose dissolution
in NaOH-based solutions, and unlike the general idea that entropy plays a greater role
when increasing temperature, it has been found that decreasing temperatures below zero is
generally required to dissolve cellulose in this type of solutions [2,29].

Recently, Bregado et al. [30] observed that temperature influences the dissolution
of a crystalline model of cellulose Iβ microfibrils at 25 MPa in the temperature range of
298–660 K. Similarly, Ramakrishnan et al. [31] showed that the dissolution of cellulose in a
mixture of 1-ethyl-3-methylimidazolium acetate ionic liquid [C2C1Im][OAc] with water
is temperature dependent. By exploring the evolution of the RMSD parameters and the
number of H-bonds in molecular dynamics studies, the authors confirmed that T = 433 K is
an effective temperature for dissolving cellulose in this solvent system.

In this study, we investigate the mechanism of cellulose solubility in an aqueous
ZnO/NaOH system at different temperatures by using molecular dynamics (MD) simula-
tion. The aim is to draw a clear scheme of temperature-dependent conformational changes
in the cellulose chains, which is generally characterized by the disruption of the interchain
hydrogen bond network at low temperatures, leading to the separation of tightly packed
chains from the crystalline structure and the dissolution of the cellulose.

2. Materials and Methods

The molecular dynamics of cellulose solubility at different temperatures were sim-
ulated using Schrödinger suite software (2018.4). The cellulose structure is an Iβ crys-
talline structure containing 6 chains with 8 glucose units, constructed using cellulose
builder [32]. The force field used is OPLS-2005 [33]. The size of the periodic simulation box
was 10 × 10 × 10 Å. The solvent system consisted of water molecules modeled using the
TIP3P model, ZnO, Na+, and OH− molecules, composed of 9% NaOH/1% ZnO modeled
using the Material package integrated into the Schrödinger 2018.4 software with the same
force field. The simulations were performed in a time of 10 ns with an interval of 2 fs under
a canonical ensemble (NVT) with the pressure controlled by a Berendsen barostat P = 1 bar,
and each simulation was performed at a different temperature; the temperatures studied
are 260, 273, 278, 290, and 298. The simulations were carried out using the Desmond
package 2018.4.
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3. Results and Discussion
3.1. Root Mean Square Deviation (RMSD)

To control the process of cellulose dissolution in the aqueous ZnO/NaOH solvent,
an approach was adopted to study the evolution of chain conformation during the MD
simulation. This analysis aims to understand the dissolution mechanisms and to identify
the key factors influencing cellulose solubility by following the evolution of cellulose chains
at different times during the simulation (i.e., the initial time (0 ns) (Figure 2) and at the final
time (10 ns) (Figure 3), under different temperature conditions (i.e., T = 260 K, 273 K, 278 K,
290 K, and 298 K).
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Figure 2. Images capturing the cellulose structures at 0 ns.

The visual representations in the final simulation times in (Figure 3) show that the
cellulose chains are in an aggregated form at temperatures T = 260 K, 290 K, and 298 K
(Figure 3). However, a different behavior is observed at T = 273 K and 278 K, where
the cellulose chains adopt a side-by-side ordered configuration at the beginning of the
simulation at t = 0 ns (Figure 2). However, a continuous configurational arrangement of
the chains is observed during the simulation, transitioning from a regular linear form to a
deformed form, leading to a complete separation of the chains at the end of the simulation at
10 ns (Figure 3). This segregation of chains indicates the dispersion of the cellulose chains in
the medium, suggesting that the dissolution of cellulose in an aqueous ZnO/NaOH solvent
system occurs at these temperatures. These findings are supported by experimental work
conducted by Kang et al. [34], who investigated the dissolution and molecular interactions
of cellulose carbamate (CC) in NaOH/ZnO aqueous solutions. Their analyses, utilizing
various techniques such as optical microscopy, differential scanning calorimetry (DSC),
proton nuclear magnetic resonance (1H NMR), dynamic light scattering (DLS), atomic
force microscopy (AFM), and transmission electron microscopy (TEM), confirmed that
lower temperatures were favorable for CC dissolution in the ZnO/NaOH system. Another
experimental study conducted by Väisänen et al. [4] on the dissolution of cellulose in
a ZnO/NaOH solvent system was monitored using Raman spectroscopy. The authors
showed that the dissolution of cellulose in aqueous NaOH at low temperatures is generally
attributed to the formation of NaOH hydrates capable of penetrating the cellulose network,
thereby detaching individual chains from each other and forming a new network with
them. Additionally, the addition of ZnO facilitates the dissolution of cellulose and delays
its self-aggregation by coordinately binding to the C2 and C3 OH groups of cellulose chains
released from the crystalline structure, thus forming a ring-like structure similar to zinc
glycerolate. The formation of this complex disturbs the conjugated electronic system of the
hydrogenated cellulose network and thereby helps keep the cellulose chains apart from
each other.

To better understand the solubility of cellulose at different temperatures, we analyzed
the root mean square deviation (RMSD) as a key parameter to monitor the evolution of
structures during simulations and observe the dispersion of cellulose chains in the solvent



Polymers 2024, 16, 1211 5 of 12

system. The RMSD provides a measure of the average deviation between the atoms of a
molecule relative to a reference structure over time. Indeed, it quantifies the fluctuations in
the position of atoms within a molecule relative to a reference structure over time. Thus,
for cellulose dissolved in ZnO/NaOH, a stable RMSD implies that the cellulose structure
remains relatively unchanged, with few notable modifications in its spatial configuration
during the observed period. Cellulose insolubility refers to its resistance to dissolve, or to
partially dissolve, in the ZnO/NaOH solvent. In other words, low cellulose solubility may
be associated with high RMSD stability, suggesting that the cellulose structure remains
intact and is not sufficiently disturbed to allow complete dissolution in the solvent, while
a variation in RMSD indicates the perturbation of the cohesion of the arrangement of
the cellulose chains. This is why the correlation between RMSD and cellulose solubility
is frequently investigated in molecular dynamics simulations [30,31]. In our study, we
calculated the average RMSD of the cellulose chains relative to the ZnO/NaOH solvent
at different temperatures to explore how temperature variations affect the stability and
dissolution of cellulose.
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Thus, by calculating the root mean square deviation (RMSD) of cellulose chains for
each temperature (Figure 4) and comparing the RMSD curves, we were able to follow the
evolution of cellulose structures under different thermal conditions, whereas by monitoring
the RMSD fluctuations, we could estimate the effectiveness of cellulose solubility at each
temperature since stability in RMSD values indicates insolubility [35]. Thus, at temperatures
of 273 K and 278 K, the results show an increase in RMSD values over the simulation
period, suggesting deformation in the crystalline structure of cellulose and, consequently,
its solubility. This temperature range is consistent with other studies, as indicated in the
work of Zhang et al., who reported that cellulose solubility in the NaOH/urea system is
observed between −10 ◦C and 5 ◦C, while a frozen phase appears below −10 ◦C [21].
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3.2. Interaction Energy

The dissolution of cellulose involves breaking its interchain bonded state into individ-
ual chains. The strength of these bonds, represented by the interaction energy between
cellulose chains, affects their packing density. To study the effect of temperature on cel-
lulose dissolution in the ZnO/NaOH aqueous solvent system, we analyzed the average
electrostatic interaction energy between cellulose chains and the solvent at various temper-
atures using the Schrödinger Suite software (version 2018.4) and the Desmond package.
The results (Figure 5) show that at temperatures close to room temperature (298–290 K)
and below 260 K, no significant variation is observed in the interaction energy curves.
However, a decrease in interaction energy is noted when the temperature decreases to a
range between 278 K and 273 K and suggests a stronger preference for interaction between
cellulose chains and the solvent. As the temperature increases or decreases, the interaction
between cellulose and the solvent becomes less favorable due to a strengthening of the
bonding forces between cellulose chains that hinder their dissolution in the solvent. This
trend in cellulose–solvent interaction agrees with the RMSD analysis, indicating stronger
interactions between cellulose and the solvent at 278 K–273 K compared to lower and
higher temperatures.
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3.3. Hydrogen Bonds

Hydrogen bonds are of primordial importance in the close packing and the stabiliza-
tion of crystalline Iβ cellulose, which exhibits two types of hydrogen bonds: intramolecular
bonds within cellulose chains and intermolecular bonds between chains (Figure 6). It is,
therefore, possible to monitor variations in hydrogen bonds within chains and between
chains to analyze the dissolution of cellulose in various solvent systems. This analysis
enables us to understand the mechanisms underlying dissolution and optimize cellulose
processing conditions.
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When analyzing the evolution of hydrogen bonds vs temperature, we observe that
within the temperature range of 290 K to 298 K, a relatively stable number of inter- and
intrachain hydrogen bonds (Figure 7) indicates the stability of the cellulose structure. How-
ever, significant variations emerge at intermediate temperatures, specifically between 278 K
and 273 K during simulations (Figure 7). The number of intrachain hydrogen bonds de-
creases from 10 to 3, while interchain bonds drop from 12 to 7. This pronounced decrease
at intermediate temperatures suggests a notable alteration in the molecular structure of
cellulose due to specific interactions of cellulose chains with the ZnO/NaOH aqueous
system. These observations raise the hypothesis of increased disruption of inter- and intra-
chain hydrogen bonds at lower temperatures, potentially leading to greater accessibility
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of hydroxyl groups to interact with the solvent. Therefore, temperature plays a crucial
role in the dynamics of hydrogen bonds and, consequently, in the controlled dissolution
of cellulose within this system. At 260 K (Figure 7), stability in the number of hydrogen
bonds is once again observed, indicating a possible saturation of molecular interactions at
this lower temperature.

To confirm the accessibility of the cellulose hydroxyl groups to solvent molecules
after the breaking of intra- and interchain bonds of cellulose, we chose to measure the
number of hydrogen bonds between cellulose and anions, cations, and water throughout
the simulation. It is well established, according to Liu et al. [37], that during the cellulose
dissolution process, the hydroxyl groups of the AGU unit can form hydrogen bonds with
the anions, significantly influencing cellulose–solvent interactions. The results of hydrogen
bonds between cellulose and solvent at T = 278 K show a significant increase in the number
of hydrogen bonds. Specifically, the numbers are higher between cellulose and anions,
ranging from 8 to 14 (Figure 8), and between cellulose and water, the number of bonds
slightly increases from 7 to 10 (Figure 8) compared to bonds between cellulose and cations.
These results confirm that at a temperature of 278 K, the hydroxyl groups of the glucose
unit can form hydrogen bonds with the solvent. Additionally, the hydroxyl groups of
cellulose form a higher number of bonds with the anions compared to water, suggesting
that cellulose is more soluble with the addition of ZnO/NaOH in the aqueous system at a
temperature of 278 K.
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3.4. Radial Distribution Function (RDF)

The radial distribution function (RDF) is a crucial parameter in molecular dynamics
simulations, revealing the specific solute–solvent distribution in different systems. This dis-
tribution provides a better understanding of interactions on a molecular scale. Specifically,
RDF describes how the density of a given particle varies as a function of distance from a
reference particle [33,38]. In our case, we chose the three hydroxyl groups (O2, O3, and
O6) in the glucose units, which are responsible for hydrogen bonding, to calculate the RDF
between cellulose and other solvent species, including Zn(OH−)4 molecules, Na+ ions, and
water molecules.

The radial distribution function is represented by the following equation [39]:

gij(r) =
Nij(r, r + ∆r)V

4πr2∆rNi j

where r is the distance between atom i and j, Nij(r, r + ∆r)V is the number of j particles
around i within a shell radius of r normalized by the actual number of Ni and Nj atoms at
that distance, and V is the total volume of the system.

Based on the previous analyses, the most interesting temperature is T = 273 K. There-
fore, in this study, we analyzed the RDF curves between cellulose and the various solvent
components at T = 273 K (Figure 9a–c).

For the interaction between cellulose and the cation (Figure 9a), the curve reveals
peaks corresponding to the first interaction shell of cellulose–cation at distances of r = 2.8 Å
and 3.3 Å. Between cellulose and water (Figure 9b), the first peak with low intensity is
observed at a distance of r = 2.1 Å. Conversely, between cellulose and the anion (Figure 9c),
the distances show smaller values: r = 1 Å and 1.3 Å. The coordination numbers (CN) of
the cellulose–solvent interaction obtained by integrating the RDF results up to the first
minimum (3.35 Å) show that between cellulose and cations, the values are between 0.03
and 0.04. For the interaction between cellulose and water, the CN ranges between 0.05 and
0.07, while for the interaction between cellulose and the anion, the CN ranges between
1.3 and 2.2.
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Comparing the distances between cellulose–anion, cellulose–cation, and cellulose–
water, it is evident that the anion is situated at a shorter distance compared to the cation
and water, with interaction peaks also being more intense than those observed for the
cation and water. This suggests that the anion presents a denser distribution around the
cellulose hydroxyl groups in the first solvation shell. Conversely, the cation and water are
situated at greater distances, and the likelihood of water distribution around the cellulose
hydroxyl groups is higher than that of the cation.

These findings are supported by the CN values between cellulose and the cation,
which indicate that the distribution of cations around the cellulose hydroxyl groups is
highly limited, resulting in weak cellulose–cation interaction. Based on RDF analysis, a
spatial organization of solvating species around the cellulose hydroxyl groups is predicted
in the ZnO/NaOH aqueous mixture at T = 278 K. In the first solvation shell, the cellulose
hydroxyl groups are surrounded by Zn(OH−)4 molecules, followed by water molecules,
and then by Na+ cations. This distribution could facilitate the dissolution process at this
temperature in this system.

4. Conclusions

Molecular dynamics simulations were conducted to investigate the effect of temper-
ature on cellulose dissolved in an aqueous ZnO/NaOH system. The simulations were
performed at different temperatures: T = 298 K, 290 K, 278 K, 273 K, and 260 K. This
simulation study provides a microscopic insight into the behavior of cellulose chains at
different temperatures. At 298 K, 290 K, and 260 K, the chains exhibit some stability and
remain primarily in an ordered form throughout the simulation. However, at lower tem-
peratures, T = 278 K and 273 K, the chains completely separate, indicating dispersion of the
cellulose chains in the medium. These results suggest that the dissolution of cellulose in
an aqueous ZnO/NaOH solvent system occurs at temperatures between 273 K and 278 K.
This conclusion is supported by the analysis of RMSD, which shows an increase in RMSD
values at 278 K and 273 K. Additionally, the analysis of intra- and intermolecular hydrogen
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bonds indicates that these bonds decrease at T = 278 K–273 K, which may lead to greater
accessibility of the hydroxyl groups to interact with the solvent. This increased accessibility
would facilitate the dissolution process of cellulose in ZnO/NaOH at temperatures between
278 K and 273 K.

Regarding the mechanism of solvent interaction with cellulose, the results of radial
distribution function (RDF) clarify that the Zn(OH−)4 anion is the most crucial solvent
component in the cellulose dissolution process in the aqueous ZnO/NaOH system. There-
fore, according to this study, cellulose dissolution in ZnO/NaOH is preferable at lower
temperatures between 273 K and 278 K.
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