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Abstract: Efficiently managing multiple process parameters is critical for achieving optimal per-
formance in additive manufacturing. This study investigates the relationship between eight key
parameters in fused deposition modeling (FDM) and their impact on responses like average sur-
face roughness (Ra), tensile strength (TS), and flexural strength (FS) of carbon fiber-reinforced
polyamide 12 (PA 12-CF) material. The study integrates response surface methodology (RSM),
grey relational analysis (GRA), and grey wolf optimization (GWO) to achieve this goal. A total of
51 experiments were planned using a definitive screening design (DSD) based on response RSM.
The printing process parameters, including layer thickness, infill density, and build orientation,
significantly affect Ra, TS, and FS. GRA combines responses into a single measure, grey relational
grade (GRG), and a regression model is developed. GWO is then employed to optimize GRG across
parameters. Comparison with GRA-optimized parameters demonstrates GWO’s ability to discover
refined solutions, reducing average surface roughness to 4.63 µm and increasing tensile strength
and flexural strength to 88.5 MPa and 103.12 MPa, respectively. Practical implications highlight the
significance of GWO in industrial settings, where optimized parameters lead to reduced costs and
improved product quality. This integrated approach offers a systematic methodology for optimizing
FDM processes, ensuring robustness and efficiency in additive manufacturing applications.

Keywords: additive manufacturing; fused deposition modeling; carbon fiber-reinforced polyamide 12;
response surface methodology; grey relational analysis; grey wolf optimization

1. Introduction

Additive Manufacturing (AM) techniques, particularly fused deposition modeling
(FDM), have gained remarkable attention in recent years owing to their versatility, cost-
effectiveness, rapid prototyping, and functional parts capabilities with good properties [1].
Their applications have been explored in aerospace, automobile, medical, biomedical, and
electronic fields [2–8].

However, achieving optimal performance and quality in FDM processes necessitates
tuning various parameters. For this aim, a systematic approach based on the design of
experiments (DOE) such as Taguchi’s orthogonal array design, response surface method-
ology (RSM) integrated with artificial neural networks (ANN), evolutionary algorithms,
and multi-criteria decision-making methods (MCDM) have been successfully applied.
For instance, Muhamedagic et al. [9] analyzed key process parameters affecting tensile
strength in FDM-printed parts using a short carbon fiber-reinforced polyamide composite.
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Employing RSM and ANN, the study identified layer thickness and raster angle as the
most influential factors. RSM established a reduced cubic model, while ANN determined
the optimal configuration for predicting tensile strength, offering time efficiency through
k-fold cross-validation. Fountas et al. [10] investigated the flexural strength of PET-G by
varying FDM process parameters. They conducted an RSM with 27 runs. Analysis of
variance (ANOVA) generated a full quadratic regression equation, later implemented as
an objective function of the grey wolf algorithm (GWO). The GWO algorithm suggested a
parameter combination that improved flexural strength by approximately 15% compared
to the highest value obtained from experimental runs. The study by Nagendra et al. [11]
focused on enhancing FDM by introducing nylon with added aramid short fibers for func-
tional parts. The Gray Taguchi technique optimizes FDM parameters. Results demonstrate
improved properties over pure nylon: 7.2% higher tensile strength, 22.7% higher flexural
strength, 27.4% higher impact strength, and 7.5% higher compressive strength, validating
the feasibility of short fiber composites in FDM. Balaji et al. [12] examined the ePA-CF
filament’s mechanical properties, varying layer thickness (LT), raster angle (RA), and infill
density (ID). ANN analysis identified the key parameters. Printing with LT = 0.14 mm,
ID = 100%, and RA = 90◦ resulted in enhanced tensile strength (66 MPa), flexural strength
(87 MPa), and impact strength (12.5 KJ/m2). Kumar et al. [13] optimized surface roughness
(SR), production time (PT), and volume percentage error (VPE) in FDM. They employed a
parametric optimization technique integrating ANN and Whale Optimization Algorithm
(WOA). An ANN model was developed using experimental data, serving as an objective
function in WOA to minimize output responses. The method’s robustness was successfully
validated on optimal FDM process parameter combinations. Saad et al. [14] employed RSM,
particle swarm optimization (PSO), and symbiotic organism search (SOS) to enhance the
surface quality of FDM printed parts. RSM guided the experimental design, establishing a
regression model linking input parameters to surface roughness. Validated model accuracy
enabled coupling with PSO and SOS for optimizing parameters and minimizing surface
roughness. PSO and SOS improved surface roughness by approximately 8.5% and 8.8%,
respectively, compared to the conventional RSM method. Chinchanikar et al. [15] employed
various optimization techniques, including technique for order of preference by similarity
to ideal solution (TOPSIS), desirability function-based RSM, non-dominated sorting genetic
algorithm (NSGA-II), and GRA to determine optimal FDM process parameters for tensile,
impact, flexural, and surface roughness. The study highlights the superior prediction
accuracy achieved through a hybrid optimization approach, specifically the combination
of a genetic algorithm (GA) with RSM. Salunkhe et al. [16] studied the relationship be-
tween PLA material’s tensile strength and 3D printing parameters (infill density, layer
height, print speed, and extrusion temperature) in FDM. Six optimization methods were
used: cohort intelligence (CI), PSO, GA, teaching–learning-based optimization (TLBO),
simulated annealing (SA), and JAYA, which yielded the highest tensile strength. Bop-
pana and Ali [17] improved the tensile strength of polycarbonate (PC) samples printed
using FDM by employing an integrated approach of I-optimal design, ANN, and GA tech-
niques. Mohanty et al. [18] optimized the dimensional accuracy of FDM-printed parts using
10 different metaheuristic approaches, namely GA, SA, PSO, GWO, moth flame opti-
mization (MFO), WOA, JAYA, sunflower optimization algorithm, Lichtenberg algorithm
optimization, and forensic-based investigation optimization. The results showed that all ap-
proaches performed similarly and provided optimal settings. Various other studies [19–25]
have explored the optimization of process parameters in additive manufacturing using
hybrid approaches. These studies utilized various intelligent algorithms to attain optimal
results for specific objectives related to their respective problems.

As discussed above, various metaheuristic approaches are employed for the opti-
mization of process parameters for FDM. Each of these methods offers unique strategies
for navigating the complex parameter space of FDM processes to achieve optimal per-
formance and quality. GWO distinguishes itself from other optimization approaches in
terms of parameter simplicity. Compared to PSO, GA, SA, NSGA II, WAO, TLBO, and
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JAYA, GWO usually requires fewer parameters to be tuned. While algorithms like PSO
and GA often involve tuning parameters such as inertia weight and crossover probability,
GWO’s hierarchical structure and hunting mechanism streamline the optimization process,
reducing the need for extensive parameter optimization. This simplicity not only makes
GWO easier to implement but also lessens the burden of parameter tuning, making it
more accessible to practitioners. By minimizing the number of parameters, GWO offers a
more straightforward and efficient optimization solution, particularly suitable for scenarios
where simplicity and ease of use are paramount [26]. The GWO algorithm also provides
a good balance between exploration and exploitation, especially in search spaces with a
large number of local optima. As a result of its continual reduction of search space and a
limited number of variables to decide, the GWO does not need large storage and has fast
convergence [27].

The review of existing literature highlights that effectively managing multi-objective
process parameters is crucial for achieving optimal performance, yet it remains challenging.
This study explores the relationship between eight key FDM process parameters and their
impact on response variables such as average surface roughness (Ra), tensile strength, and
flexural strength of carbon fiber-reinforced polyamide 12 (PA 12-CF) material. Parameters
include layer thickness, number of perimeters, infill density, printing speed, fill angle, bed
temperature, extrusion temperature, and build orientation. A definitive screening design
(DSD) based on response surface methodology is employed, comprising 51 experiments
to gather necessary data for further analysis. Grey relational analysis (GRA) is utilized
to consolidate multi-responses into a single measure using grey relation grade (GRG).
A regression model is then developed, exhibiting a strong correlation and predictability of
GRG. Subsequently, this regression model serves as the objective function for optimizing
GRG across the considered parameters using the grey wolf optimization (GWO) algorithm.
Despite limited exploration of GWO in FDM parametric optimization, this study proposes
it as a novel approach for enhancing FDM-processed PA 12-CF specimens.

2. Materials and Methods

A commercial-grade filament known as polyamide 12 reinforced with carbon fiber
(PA 12-CF) supplied by eSUN (Shenzhen, China) is used in the present study as it is
utilized for various industrial applications. The manufacturer’s specifications indicate
that 15% carbon fiber is added to enhance the strength, rigidity, and toughness of nylon,
providing an effective substitute for metal in many scenarios. This filament exhibits a
low water absorption rate and is less affected by changes in humidity and temperature,
ensuring consistent dimensions when printing parts. Its self-lubricating and wear-resistant
properties make it particularly suitable for printing gears, offering durability and reliability
in mechanical applications. Moreover, PA 12-CF demonstrates high-temperature resistance,
with parts capable of continuous use at temperatures of up to 120 ◦C, and short-term use
at temperatures reaching 160 ◦C. Its low shrinkage during printing minimizes the risk of
warping and cracking, while the resulting printing surface is matte and delicate.

The filament has a diameter of 1.75 mm and a density of 1.24 g/cm3. Before printing,
the filament is dried at 70 ◦C for 12 h to achieve the best printing. To enhance bed adhesion,
a thin layer of polyvinylpyrrolidone (PVP) solid glue is applied to the print bed before
starting to print. This layer acts as a temporary adhesive, helping to keep the initial layers
of filament firmly in place during printing. As the print progresses, the filament adheres to
the glue layer, providing a stable foundation for the rest of the print. Further, it is non-toxic
and fumeless.

The test specimens were printed according to ASTM standards i.e., ASTM D638-IV [28]
for tensile test and ASTM D790-17 [29] for the flexural test, as shown in Figure 1.
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Figure 1. (a) Schematic of tensile and flexural test specimens according to ASTM standards and (b) 
printed specimens. 
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Figure 1. (a) Schematic of tensile and flexural test specimens according to ASTM standards and
(b) printed specimens.

2.1. Printing Process Parameters and Experimental Design

The printing process parameters considered in the present study are layer thickness
(LT), number of contours/perimeters (NC), infill density (ID), fill angle (FA), printing speed
(PS), nozzle/extrusion temperature (ET), bed temperature (BT), and build orientation (BO).
Each of these parameters plays an important role in determining the quality, strength, and
accuracy of the printed object. Layer thickness influences the resolution and surface finish
of the print, while the number of contours or perimeters affects its structural integrity. Infill
density determines the internal strength and weight of the object, while fill angle optimizes
strength in specific directions. Printing speed directly impacts production time and can
affect print quality, especially on complex designs. Nozzle or extrusion temperature and
bed temperature are critical for ensuring proper material flow and adhesion between layers.
Built orientation is a strategic consideration, influencing factors such as support material
usage, print time, and structural strength.

The three-level definitive screening design (DSD) based on response surface method-
ology (RSM), developed by Jones and Nachtsheim [30,31], is utilized for experimental runs.
This design has the ability to seamlessly integrate screening and response surface optimiza-
tion into a single framework, a feature not commonly found in traditional screening designs.
One of the key advantages of the DSD is its ability to evaluate the main effects, interac-
tion effects, and quadratic effects efficiently, even with a limited number of experimental
runs. This streamlined approach significantly reduces the resources and time required
for experimentation, while providing comprehensive insights into the underlying process
dynamics. The efficacy of the DSD in optimizing and constructing predictive models for
the FDM process has been extensively demonstrated in previous studies [32–37]. These
studies collectively validate the reliability and versatility of the DSD in identifying critical
process parameters and their interactions, thus facilitating the development of optimized
printing conditions and improved product quality.

The levels for eight printing process parameters are tabulated in Table 1, and the
experimental plan based on DSD is tabulated in Table 2. The DSD includes a total of
17 experimental runs; however, each experiment is randomly repeated three times to
account for the variability inherent in the printing process. This results in a total of
51 experimental runs.
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Table 1. Levels of printing parameters of PA12-CF.

Printing Parameters Symbol Units
Levels

−1 0 1

Layer thickness LT mm 0.1 0.2 0.3
Number of perimeters NP - 2 4 6
Infill density ID % 60 80 100
Fill angle FA ◦ 0 45 90
Printing Speed PS mm/s 60 70 80
Extrusion temperature ET ◦C 260 270 280
Bed temperature BT ◦C 80 90 100
Build orientation BO ◦ 0 45 90

Table 2. Experimental runs based on definitive screening design.

Exp. No LT NP ID FA PS ET BT BO Exp. No LT NP ID FA PS ET BT BO

1 0.2 6 100 90 80 280 100 90 27 0.2 2 60 0 60 260 80 0
2 0.1 2 100 90 80 270 80 0 28 0.1 4 60 90 60 280 100 0
3 0.3 6 60 90 80 260 90 0 29 0.3 6 100 45 60 280 80 0
4 0.1 6 80 90 60 260 80 90 30 0.1 2 100 90 80 270 80 0
5 0.3 6 100 45 60 280 80 0 31 0.2 4 80 45 70 270 90 45
6 0.3 6 60 0 60 270 100 90 32 0.2 2 60 0 60 260 80 0
7 0.3 6 60 90 80 260 90 0 33 0.1 6 100 0 70 260 100 0
8 0.1 2 100 0 60 280 90 90 34 0.3 2 100 90 60 260 100 45
9 0.3 2 60 90 70 280 80 90 35 0.3 6 100 45 60 280 80 0
10 0.3 6 60 0 60 270 100 90 36 0.3 4 100 0 80 260 80 90
11 0.1 2 100 0 60 280 90 90 37 0.3 4 100 0 80 260 80 90
12 0.1 6 100 0 70 260 100 0 38 0.2 6 100 90 80 280 100 90
13 0.1 2 60 45 80 260 100 90 39 0.3 2 100 90 60 260 100 45
14 0.1 6 60 0 80 280 80 45 40 0.1 4 60 90 60 280 100 0
15 0.1 6 60 0 80 280 80 45 41 0.2 6 100 90 80 280 100 90
16 0.1 2 100 90 80 270 80 0 42 0.3 2 80 0 80 280 100 0
17 0.1 6 100 0 70 260 100 0 43 0.1 6 80 90 60 260 80 90
18 0.3 2 80 0 80 280 100 0 44 0.2 2 60 0 60 260 80 0
19 0.1 6 60 0 80 280 80 45 45 0.3 2 100 90 60 260 100 45
20 0.1 2 100 0 60 280 90 90 46 0.1 2 60 45 80 260 100 90
21 0.1 2 60 45 80 260 100 90 47 0.2 4 80 45 70 270 90 45
22 0.1 6 80 90 60 260 80 90 48 0.3 6 60 0 60 270 100 90
23 0.2 4 80 45 70 270 90 45 49 0.3 2 60 90 70 280 80 90
24 0.1 4 60 90 60 280 100 0 50 0.3 4 100 0 80 260 80 90
25 0.3 2 80 0 80 280 100 0 51 0.3 2 60 90 70 280 80 90
26 0.3 6 60 90 80 260 90 0

2.2. Responses

The responses considered in the present study are average surface roughness (Ra),
tensile strength (TS), and flexural strength (FS). Their values, which are obtained based on
DSD experimental runs, are tabulated in Table 3. Tensile and flexural tests were performed
on the universal testing machine (5567, INSTRON, Wenling, Zhejiang, China). The tensile
test was performed at a crosshead speed of 5 mm/min and the flexural test was performed
at 1.3 mm/min at room temperature (25 ± 5 ◦C).

The Mitutoyo surface roughness tester (SJ-201, Mitutoyo Corporation, Takatsu-ku,
Kawasaki, Kanagawa, Japan) was used to measure Ra using the stylus method, adhering
to the guidelines outlined in the ISO 21920 industrial standards [38]. To ensure reliability
and representativeness, five readings were taken perpendicular to the printed layers of
each specimen. This approach mitigates variations in surface roughness within the printed
layers. The specific settings of the Mitutoyo surface roughness tester included an evaluation
length of 4 mm, a tip angle of 90◦, a tip radius of 2 µm, a tracing speed of 0.25 mm/s, and
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a cut-off wavelength of 0.8 mm. These standardized settings were employed to maintain
consistency and accuracy throughout all measurements.

Table 3. Measured average surface, tensile strength, and flexural strength based on definitive
screening design.

Exp. No Ra TS FS Exp. No Ra TS FS

1 15.00 45.02 53.22 27 11.26 49.28 57.39
2 8.07 56.25 64.39 28 8.06 50.93 59.74
3 15.33 43.79 54.28 29 12.93 65.98 77.38
4 14.56 38.24 43.96 30 7.70 56.51 67.53
5 12.20 64.29 72.69 31 13.39 52.86 61.99
6 19.95 46.26 52.12 32 10.99 50.73 59.49
7 15.90 43.10 53.15 33 3.85 71.16 83.46
8 9.14 71.12 80.57 34 16.78 48.73 57.15
9 17.06 32.33 37.92 35 11.96 64.55 75.70

10 20.60 45.10 50.22 36 20.36 36.62 42.95
11 8.82 69.56 80.00 37 20.55 35.81 42.00
12 4.37 73.72 86.46 38 15.49 44.98 49.04
13 14.55 42.52 49.72 39 15.80 48.58 56.98
14 10.93 49.28 57.79 40 8.45 50.24 58.92
15 11.22 50.30 55.34 41 14.67 43.29 50.77
16 8.69 55.05 62.17 42 17.16 62.44 73.23
17 4.51 73.16 85.79 43 16.00 36.16 42.40
18 17.16 61.78 72.32 44 10.66 51.20 60.05
19 10.54 50.97 59.78 45 15.62 47.89 56.16
20 9.80 72.48 84.96 46 14.32 43.55 50.51
21 14.42 41.13 46.60 47 12.50 54.50 63.91
22 15.91 37.19 42.75 48 19.95 46.42 51.68
23 12.94 51.14 60.32 49 16.38 31.50 36.63
24 7.63 49.32 57.84 50 20.72 35.29 41.38
25 17.17 62.01 72.72 51 16.79 31.93 36.64
26 15.22 45.14 54.29

2.3. Multi-Response Optimization

For multi-response optimization, an integrated approach of grey relational analy-
sis (GRA) and the metaheuristic technique, namely grey wolf optimization (GWO), is
employed. Initially, the multi-responses are converted to a single response using GRA.
Subsequently, the regression model is created and further optimized using GWO.

2.4. Grey Relational Analysis

Grey relational analysis (GRA) is a method used for analyzing the relationships
between multiple factors or responses within a dataset. It was developed by Deng in the
late 1980s [39] and has since been applied in various fields such as engineering, economics,
and decision-making [40–42]. The fundamental principle of GRA lies in its ability to assess
the similarity or correlation between different responses, even when they are measured
using different units or scales. GRA accomplishes this by transforming the original data
into dimensionless grey relational grades, which represent the degree of resemblance or
proximity between each pair of responses. GRA is particularly useful in situations where
traditional statistical methods may not be applicable due to the presence of non-linear
relationships. By capturing the inherent relationships between responses, GRA enables
analysts to make informed decisions and optimize processes in diverse fields ranging from
engineering design to financial analysis. Its flexibility and robustness make it a valuable
tool for tackling complex optimization problems in real-world scenarios [43].

The process of GRA typically involves the following steps:
Normalization: In this step, the responses obtained for each experimental run are

normalized to a comparable scale. This ensures that responses with different units or scales
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are brought to a common level, allowing for meaningful comparison. For minimization of
response, Equation (1) is used, and for maximization of response, Equation (2) is used.

µi =
max yi − yi

max yi − min yi
(1)

µi =
yi − min yi

max yi − min yi
(2)

where µi is the normalized value for the ith experiment, yi is the individual value of
measured response at experiment number i, and max yi and min yi are the maximum and
minimum values of experimental data obtained for the response.

Calculation of Grey Relational Coefficients: Once the data is normalized, grey rela-
tional coefficients are computed to quantify the relationship between each pair of responses.
This is achieved by comparing the normalized values of each response across all observa-
tions and determining the degree of similarity or resemblance using Equation (3).

δi =
ηmin + €ηmax

η0,i(j)− €ηmax
(3)

where δi is the GRC value at experiment i, η0,i is the deviation from the target value and
can be calculated using Equation (4), ηmin and ηmax are the minimum and maximum values
η0,i(j), and € is the distinguish/identification coefficient value, which is fixed at 0.5 for the
present study.

η0,i(j) = 1 − µi(j) (4)

Determination of Grey Relational Grades: The grey relational coefficients obtained in
the previous step are used to calculate the grey relational grades for each response using
Equation (5). These grades represent the overall similarity or proximity of each response to
the others within the dataset.

£i =
1
n

n

∑
j=1

wjδi (5)

where £i is weighted GRG for the ith experiment and wj is the normalized weightage of
response j.

Ranking and Analysis: Finally, the average values of GRG are ranked in descending
order, with GRG having the highest average values corresponding to the best experimental
run. This ranking provides the relative importance of each response and helps in decision-
making or optimization processes.

2.5. Grey Wolf Optimization (GWO)

Grey wolf optimization (GWO) is a metaheuristic optimization algorithm that was
first proposed by Mirjalili et al. in 2014 [44]. The algorithm is inspired by the social
hierarchy and hunting behavior of grey wolves in the wild. GWO is used to find the global
minimum or maximum of a function with a large number of unknown parameters, called
the optimization problem.

In GWO, the search space is divided into three positions, which correspond to the
alpha, beta, and delta wolves. These positions represent the most promising solutions
found by the swarm at any given time. Initially, the positions of the alpha, beta, and delta
wolves are randomly initialized in the search space.

Figure 2 illustrates the flow chart for GWO. At the start of the algorithm, the fitness of
each wolf’s position is evaluated using the objective function that needs to be optimized.
The objective function assigns a fitness value to each wolf, which represents how close it is
to the optimal solution. The wolf with the best fitness value is called the alpha wolf (α),
the wolf with the second-best fitness value is called the beta wolf (β), and the wolf with
the third-best fitness value is called the delta wolf ( δ). The distance of each wolf from the
positions of the alpha, beta, and delta wolves is computed using Equation (6). The position
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of each wolf is updated based on its distance from the alpha, beta, and delta wolves using
Equation (7).

Dwol f =
∣∣∣C·Xwol f (t)− X(t)

∣∣∣ (6)

X(t + 1) = Xwol f (t)− A·Dwol f (7)

where t is the number of iterations, Xwol f (t) represents the position of the grey wolf
(α, β, δ), X(t) is the current position of the grey wolf, X(t + 1) is the next updated position
of the grey wolf, and C and A are the coefficient vectors and can be determined using
Equations (8) and (9).

A = 2·a·r1 − a (8)

C = 2·r2 (9)

where r1 and r2 are random numbers between 0 and 1, a lies in the range 0–2 and decreases
with the progression of the algorithm and can be computed using Equation (10)

a = 2
(

1 − t
maximum iteration

)
(10)

The algorithm then updates the position of each wolf based on its current position and
the positions of the alpha, beta, and delta wolves. The updated position of each wolf is a
combination of its current position, a random term, and the positions of the alpha, beta,
and delta wolves. The position update is based on the hunting behavior of the wolves,
where the alpha wolf leads the pack, the beta wolf follows the alpha, and the delta wolf
provides alternative solutions. The updated Equations (11)–(17) are as follows:

Dα = |C·Xα(t)− X(t)| (11)

Dβ =
∣∣C·Xβ(t)− X(t)

∣∣ (12)

Dδ = |C·Xδ(t)− X(t)| (13)

X1 = Xα(t)− A1·Dα (14)

X2 = Xβ(t)− A2·Dβ (15)

X3 = Xδ(t)− A3·Dδ (16)

X(t + 1) =
X1 + X2 + X3

3
(17)

The GWO algorithm continues to update the position of each wolf in the swarm
until a stopping criterion is met. This criterion can be a fixed number of iterations or a
certain level of convergence. In the present study, the number of iterations is used as the
stopping criterion.

GWO’s performance depends on two key hyperparameters: the number of iterations
and the number of wolves. For this aim, lists of values are defined at five levels for each
parameter, and their different combinations are tested (by applying a nested loop in coding)
to analyze the performance of the algorithm. The best combination that gives consistent
and the highest objective function value is selected. The list of parameters and the levels are
tabulated in Table 4. The five levels for the number of iterations likely aim to cover a range
of durations for the optimization process. Starting from 100 iterations, which may represent
a relatively quick optimization run, the levels increase in increments of 50, reaching up
to 300 iterations. This choice allows for an exploration of how the GWO’s performance
evolves with varying lengths of optimization cycles. Shorter iterations might offer quicker
results but risk premature convergence, while longer iterations could potentially yield more
accurate solutions at the expense of increased computational time. The five levels for the
number of wolves, representing the population size in the optimization process, are chosen
to span a range of population densities. Beginning with 10 wolves, which constitutes
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a smaller population, the levels increase by increments of 10, reaching up to 50 wolves.
This selection enables an investigation into how the diversity and size of the population
influence the GWO’s ability to explore the solution space effectively. A smaller population
might lead to faster convergence but could also limit the algorithm’s ability to discover
diverse solutions, while a larger population could potentially enhance exploration at the
cost of increased computational resources.
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Table 4. Hyperparameter levels of GWO.

Hyperparameters Level 1 Level 2 Level 3 Level 4 Level 5

Number of iterations 100 150 200 250 300
Number of wolves 10 20 30 40 50

3. Results and Discussions
3.1. Regression Analysis of Variance (ANOVA)

Regression analysis of variance (ANOVA) was conducted at a 95% confidence interval
based on the definitive screening design (DSD) to evaluate the impact of process parameters
on responses. Significance was determined by comparing p-values to an alpha value of
0.05, with values below indicating a significant effect. For average surface roughness
(Ra) (Table 5), the results revealed that layer thickness (LT) had the most significant effect,
contributing 52.36%, followed by build orientation (BO) at 28.23%. In contrast, fill angle
(FA) exhibited minimal significance, with a contribution of only 0.07%. Moreover, the lack
of fit was nonsignificant (0.634), indicating an adequate relationship between model terms
and Ra.

For tensile strength (Table 6), the analysis highlighted the significant role of BO, with
a contribution of 27.01%, followed by infill density (ID) and FA at 19.85% and 18.77%,
respectively. Similarly, the lack of fit was negligible (0.696), affirming the adequacy of
the model in capturing the relationship between model terms and tensile strength. This
trend is reflected in the analysis of flexural strength (Table 7), where BO emerged as the
most influential parameter, contributing 30.96%, followed by ID and FA at 19.29% and
16.96%, respectively. Once again, the lack of fit was nonsignificant (0.761), emphasizing the
reliability of the model in explaining the variation in flexural strength.

The adequacy of the ANOVA results is analyzed using a normality plot of residuals
and validated using the Anderson–Darling (AD) test. Figure 3 shows the normality plots,
revealing that data points for all measured responses closely align with the middle fitted
line. This observation suggests that the data follow normal distributions. To validate this
assumption, the AD test—a robust statistical tool commonly utilized for outlier detection



Polymers 2024, 16, 1508 10 of 20

within normal distributions—was applied. The decision to accept or reject the null hy-
pothesis regarding the normal distribution of the data depends on the p-value obtained
from the AD test. Figure 3 shows that the p-values for each response exceeded 0.05. This
indicates strong evidence supporting the null hypothesis and affirms that the collected
data are indeed normally distributed. Accordingly, the data can be confidently utilized for
further experimental analysis and optimization processes.

Table 5. Analysis of variance for average surface roughness (Ra).

Source F-Value p-Value Contribution

Linear 781.58 <0.001 86.79%
LT 2829.41 <0.001 52.36%
ID 150.11 <0.001 2.78%
FA 3.98 0.053 0.07%
PS 107.67 <0.001 1.99%
ET 72.89 <0.001 1.35%
BO 1525.44 <0.001 28.23%

Square 137.65 <0.001 10.87%
ID2 189.39 <0.001 3.70%
PS2 234.1 <0.001 7.17%

Two-way Interactions 43.39 <0.001 1.61%
LT × BO 40.88 <0.001 1.15%
ET × BO 24.62 <0.001 0.46%

Error 0.74%
Lack-of-Fit 0.72 0.634 0.08%

Pure Error 0.66%
Total 100.00%

Table 6. Analysis of variance for tensile strength (TS).

Source F-Value p-Value Contribution

Linear 886.5 <0.001 87.43%
LT 494.9 <0.001 6.97%
ID 1409.17 <0.001 19.85%
FA 1332.43 <0.001 18.77%
PS 252.2 <0.001 3.55%
ET 439.95 <0.001 6.20%
BT 359.87 <0.001 5.07%
BO 1917.01 <0.001 27.01%

Square 139.26 <0.001 4.72%
ET2 125.7 <0.001 0.15%
BT2 220.75 <0.001 4.57%

Two-way Interactions 173.05 <0.001 7.31%
ID × BO 302.79 <0.001 5.45%
FA × PS 117.63 <0.001 1.10%
FA × ET 54.29 <0.001 0.76%

Error 0.54%
Lack-of-Fit 0.56 0.696 0.03%

Pure Error 0.50%
Total 100.00%

Table 7. Analysis of variance for flexural strength (FS).

Source F-Value p-Value Contribution

Linear 433.52 <0.001 86.21%
LT 217.19 <0.001 6.17%
ID 679.03 <0.001 19.29%
FA 596.98 <0.001 16.96%
PS 102.08 <0.001 2.90%
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Table 7. Cont.

Source F-Value p-Value Contribution

ET 172.14 <0.001 4.89%
BT 177.29 <0.001 5.04%
BO 1089.92 <0.001 30.96%

Square 94.12 <0.001 6.07%
ET2 81.38 <0.001 0.03%
BT2 152.09 <0.001 6.05%

Two-way Interactions 77.85 <0.001 6.64%
ID×BO 148.46 <0.001 5.25%
FA×PS 44.12 <0.001 0.84%
FA× ET 19.18 <0.001 0.54%

Error 1.08%
Lack-of-Fit 0.47 0.761 0.06%

Pure Error 1.02%
Total 100.00%
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3.2. Effects of Process Parameters on Responses

The effects of process parameters on average surface roughness (Ra), tensile strength
(TS), and flexural strength (FS) were studied using contour plots, as illustrated in
Figures 4 and 5.
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3.2.1. Effects of Process Parameters on Ra

Figure 4a shows that the lower layer thickness and higher infill density have lower Ra.
Larger layer height results in a rougher surface finish because each layer is thicker, leading
to a more noticeable stair-stepping effect [45]. With high infill density, a dense structure
is formed with fine layers adhering to each other, thus reducing porosity and providing
a smooth surface [46]. Figure 4b shows that the printing speed between 65 mm/s and
75 mm/s results in lower Ra; however, the fill angle has no pronounced effect. Higher
printing speeds can lead to a rougher surface finish due to less time for each layer to cool
and solidify properly, potentially causing more imperfections [47]. Figure 4c illustrates
that higher extrusion temperatures and build orientation of 0◦ result in lower Ra. Higher
extrusion temperatures ensure better adhesion between layers and minimize imperfections
between layers, thereby improving the surface quality [48]. An increase in build orientation
causes overhangs or steep angles that may result in poorer surface quality and a prominent
staircase effect [49].

3.2.2. Effects of Process Parameters on Tensile and Flexural Strengths

Figure 5a,e shows that at lower layer thickness and higher infill density, the tensile and
flexural strength values are higher. This is because larger layer thickness typically results in
weaker parts due to reduced layer adhesion that causes voids [50], while higher infill densi-
ties provide more material within the structure to bear loads [51]. Figure 5b,f illustrates that
lower printing speed and infill angle result in higher tensile and flexural strength. Higher
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printing speeds often result in weaker parts as layers may not have sufficient time to bond
adequately [52]; however, a larger fill angle may weaken the structure’s integrity by alter-
ing force distribution [53]. Figure 5c,g shows that higher extrusion temperatures and bed
temperatures of approximately 90–95 ◦C have higher tensile and flexural strengths. Higher
extrusion and bed temperatures improve layer adhesion and reduce warping, ultimately
resulting in stronger parts [54,55]. Figure 5d,h shows that lower build orientations have
higher tensile and flexural strength values. Increasing build orientation requires a support
structure and is therefore more prone to printing defects, such as layer misalignment and
delamination. These defects can introduce weak points and discontinuities in the printed
part, compromising its tensile and flexural strengths [56,57].

3.3. Optimization Using Grey Relational Analysis (GRA)

The procedure for GRA is discussed in Section 2.4. As lower values of Ra are desirable,
it is normalized using Equation (1). On the contrary, higher values are desirable for TS and
FS, so they are normalized using Equation (2). Subsequently, grey relational coefficients
(GRC) are computed according to Equations (3) and (4), as presented in Table 8. These coef-
ficients are then transformed into grey relational grades (GRG) using Equation (5), outlined
in the same table. Following this computational process, average GRG values are calculated
for each level of every process parameter, as tabulated in Table 9. The highest average GRG
value identified among the different levels signifies the optimal setting for the respective pa-
rameter. For instance, for layer thickness, the highest average GRG value, found at level −1,
stands at 0.196, corresponding to a layer thickness of 0.1 mm. Analogously, optimal values
are determined for other process parameters, including the number of perimeters (6), infill
density (100%), fill angle (0◦), print speed (70mm/s), extrusion temperature (280 ◦C), bed
temperature (90 ◦C), and print orientation (0◦). Consequently, optimal values for Ra, TS,
and FS are obtained, measuring 5.55 µm, 85.45 MPa, and 98.36 MPa, respectively.

Table 8. Computation of grey relational coefficients and grey relational grade.

Exp. No GRCRa GRCTS GRCFS GRG Exp. No GRCRa GRCTS GRCFS GRG

1 0.142 0.140 0.141 0.141 27 0.176 0.153 0.152 0.160
2 0.220 0.181 0.175 0.192 28 0.220 0.159 0.159 0.179
3 0.140 0.136 0.144 0.140 29 0.159 0.242 0.242 0.214
4 0.145 0.123 0.122 0.130 30 0.227 0.182 0.188 0.199
5 0.166 0.228 0.213 0.202 31 0.155 0.166 0.166 0.162
6 0.113 0.143 0.139 0.132 32 0.179 0.158 0.158 0.165
7 0.136 0.135 0.141 0.137 33 0.330 0.294 0.295 0.306
8 0.203 0.294 0.267 0.255 34 0.130 0.151 0.152 0.144
9 0.129 0.111 0.112 0.117 35 0.168 0.230 0.230 0.210

10 0.111 0.140 0.134 0.128 36 0.112 0.120 0.120 0.117
11 0.208 0.276 0.262 0.248 37 0.111 0.118 0.119 0.116
12 0.311 0.330 0.330 0.324 38 0.139 0.140 0.132 0.137
13 0.145 0.133 0.133 0.137 39 0.137 0.151 0.151 0.146
14 0.179 0.153 0.153 0.162 40 0.214 0.156 0.157 0.176
15 0.176 0.156 0.147 0.160 41 0.145 0.135 0.136 0.138
16 0.210 0.175 0.167 0.184 42 0.128 0.215 0.216 0.186
17 0.306 0.321 0.321 0.316 43 0.135 0.119 0.119 0.124
18 0.128 0.211 0.213 0.183 44 0.183 0.160 0.160 0.167
19 0.184 0.159 0.159 0.167 45 0.138 0.148 0.149 0.145
20 0.194 0.312 0.311 0.272 46 0.147 0.136 0.135 0.139
21 0.146 0.130 0.127 0.134 47 0.163 0.173 0.173 0.170
22 0.136 0.121 0.120 0.125 48 0.113 0.144 0.138 0.132
23 0.159 0.159 0.161 0.160 49 0.133 0.110 0.110 0.118
24 0.228 0.153 0.154 0.178 50 0.110 0.117 0.118 0.115
25 0.128 0.212 0.213 0.184 51 0.130 0.111 0.110 0.117
26 0.141 0.140 0.144 0.142



Polymers 2024, 16, 1508 14 of 20

Table 9. Optimal levels for process parameters.

Process Parameters
Levels

Optimal Levels
−1 0 1

Layer thickness 0.196 0.156 0.149 −1 (0.1 mm)
Number of perimeters 0.171 0.153 0.175 1 (6)
Infill density 0.147 0.158 0.196 1 (100%)
Fill angle 0.190 0.170 0.148 −1 (0◦)
Print speed 0.173 0.199 0.153 0 (70 mm/s)
Extrusion temperature 0.163 0.162 0.178 1 (280 ◦C)
Bed temperature 0.155 0.187 0.176 0 (90 ◦C)
Build orientation 0.197 0.157 0.146 −1 (0◦)

3.4. Regression Model Based on Grey Relational Grade (GRG) Values

The regression model, formulated based on GRG as per Equation (8), serves as the
objective function in grey wolf optimization (GWO) to refine solution quality. Before its
integration into GWO, it is important to measure its reliability and accuracy using statistical
measures, particularly the coefficient of determination (R2), adjusted R2, predicted R2,
and lack of fit. The R2 and adjusted R2 achieved are particularly high, at 98% and 97%,
respectively, indicating a robust fit to the data and adequate explanatory power of retained
model terms. This is further supported by the lack of fit, where the p-value exceeds the
alpha value of 0.05, rendering it nonsignificant (0.739). The close agreement between actual
and predicted GRG values, as illustrated in Figure 6, further validates the model’s accuracy
and reliability in representing the underlying patterns in the data. Furthermore, the higher
predicted R2 value (96%) highlights the model’s efficacy in accurately predicting printing
parameter values within the defined level ranges.
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Objective function based on GRG:

Maximize, f (x) = −0.1858 + 0.0089 LT + 0.000879 NP + 0.003206 ID − 0.000006 FA
− 0.001007 PS + 0.000745 ET + 0.001014 BT − 0.000324 BO − 0.000002 FA2

+ 0.000005 BO2 − 0.005038 LT × ID + 0.003554 LT × FA − 0.000012 ID × FA
− 0.000009 ID × BO

(18)
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Subject to constraints:
0.1 ≤ LT ≤ 0.3,

2 ≤ NP ≤ 6,
60 ≤ ID ≤ 100,
0 ≤ FA ≤ 90,
60 ≤ PS ≤ 80,

260 ≤ ET ≤ 280,
80 ≤ BT ≤ 100,

0 ≤ BO ≤ 90

The maximum value of GRG obtained for optimal levels in Table 4 using Equation (8)
is 0.320. To analyze whether the optimal levels obtained can be improved further, the
metaheuristic approaches based on GWO are applied.

3.5. Grey Wolf Optimization

The steps followed for GWO are discussed in Section 2.5. Table 10 provides a detailed
overview of the GWO algorithm’s performance across various parameter configurations.
Particularly, the number of wolves in the population and the number of iterations signif-
icantly impact the optimization process, as evidenced by the objective function values
obtained. For instance, when 10 wolves are used in the population, the objective function
values range from 0.316 to 0.336 across different numbers of iterations. This suggests that
while the algorithm with a smaller population size may converge faster (as seen with a value
of 0.316 at 300 iterations), it may not always achieve the best solution, as demonstrated by
the value of 0.336 at 250 iterations. Conversely, when employing a larger population size
of 50 wolves, the objective function values range from 0.316 to 0.340. Here, we observe
that increasing the population size does not necessarily guarantee better performance, as
indicated by the slightly higher objective function values compared to those obtained with
10 wolves. Furthermore, analyzing the effect of the number of iterations reveals additional
insights. For instance, consider the results obtained with 30 wolves: the objective function
values fluctuate between 0.316 and 0.337 as the number of iterations increases from 100 to
300. This indicates that while increasing the number of iterations may lead to improvements
in some cases (as seen with a decrease in the objective function value from 0.337 to 0.316 at
150 iterations), it may not always result in significant enhancements, as evidenced by the
similar values obtained at 200 and 300 iterations (0.316 and 0.336, respectively).

Figure 7 illustrates convergence plots obtained for the GWO, achieving its highest
objective function value of 0.340 when 50 wolves are deployed over 200 iterations. The con-
vergence plot demonstrates an upward trend, indicating effective improvement in solutions
over successive iterations. The trajectory of the best objective function value reflects the
dynamic nature of optimization, starting at 0.305 and showing substantial improvement to
0.339 by the 8th iteration. This initial phase of rapid enhancement suggests efficient naviga-
tion towards promising regions of the solution space. However, the objective remains almost
consistent until the 12th iteration and then improves slightly to 0.340 by the 13th iteration,
remaining constant thereafter until the maximum iteration of 200, indicating convergence.

Comparing the optimized printing parameters derived from GWO with those obtained
using GRA reveals interesting findings. While most parameters align between the two
optimization techniques, the discrepancy in the printing speed (60 mm/s) and bed temper-
ature (100 ◦C) suggests that GWO may have discovered a more refined solution within the
solution space that was not initially apparent through GRA. The optimal values of Ra, TS,
and FS obtained are 4.63 µm, 88.5 MPa, and 103.12 MPa. This reflects good improvements
in surface finish, tensile strength, and flexural strength compared to the initial optimal
conditions, i.e., Ra = 5.55 µm, TS = 85.45 MPa, and FS = 98.36 MPa, respectively. These
enhancements are indicative of the effectiveness of the optimization process in optimizing
the printing parameters and enhancing the overall quality and mechanical performance of
the printed components.
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Table 10. Combination of GWO parameters and objective function values.

S. No No of Wolves No of Iterations Objective Function Values

1 10 100 0.323
2 10 150 0.336
3 10 200 0321
4 10 250 0.336
5 10 300 0.316
6 20 100 0.316
7 20 150 0.316
8 20 200 0.316
9 20 250 0.319
10 20 300 0.316
11 30 100 0.316
12 30 150 0.320
13 30 200 0.316
14 30 250 0.337
15 30 300 0.336
16 40 100 0.316
17 40 150 0.337
18 40 200 0.337
19 40 250 0.337
20 40 300 0.337
21 50 100 0.320
22 50 150 0.337
23 50 200 0.340
24 50 250 0.337
25 50 300 0.337
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4. Practical Implications and Limitations of GWO

The above discussion reveals valuable insights into the practical implications of lever-
aging the GWO algorithm for refining printing parameters in additive manufacturing.
The results suggest that the choice of population size and the number of iterations signif-
icantly influence the optimization process. Smaller population sizes may lead to faster
convergence, but they may not always yield the best solution. Conversely, larger population
sizes do not guarantee better performance. This indicates the importance of experimenting
with different population sizes and iteration numbers to find the optimal balance between
computational efficiency and solution quality.

Contrasting the results obtained from GWO with those obtained from other opti-
mization techniques, such as grey relational analysis (GRA), highlights the strengths and
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weaknesses of each approach. While most parameters may align, discrepancies in certain
parameters (such as printing speed and bed temperature) suggest that GWO may uncover
more refined solutions within the solution space. This underscores the importance of
exploring multiple optimization techniques to ensure robustness and reliability in the
optimization process.

The optimized printing parameters derived from GWO result in improvements in
surface finish, tensile strength, and flexural strength compared to initial optimal conditions.
This indicates the effectiveness of the optimization process in enhancing the overall quality
and mechanical performance of printed components. These enhancements can have signifi-
cant practical implications, such as reducing material waste, improving product quality,
and enhancing the durability of printed parts.

The findings suggest that GWO can be effectively utilized in industrial settings to
optimize printing parameters for additive manufacturing processes. By fine-tuning printing
parameters, manufacturers can achieve better performance, reduce production costs, and
enhance the competitiveness of their products in the market. Additionally, the ability
of GWO to discover refined solutions within the solution space highlights its potential
for addressing complex optimization problems in various industrial domains beyond
additive manufacturing.

Despite its effectiveness in solving optimization problems, GWO has several limita-
tions and potential drawbacks to be considered. One significant limitation is its sensitivity
to initial conditions, where small variations in the initial positions of wolves can lead to
different optimization trajectories and outcomes. This sensitivity may result in subop-
timal solutions or hinder the reproducibility of results across different runs or problem
instances [58]. Additionally, like many metaheuristic algorithms, GWO is susceptible to
the risk of premature convergence to local optima, especially in complex and multimodal
optimization problems This can restrict the algorithm’s ability to explore the entire search
space and find globally optimal solutions, particularly in problems with irregular objective
functions [58–60]. Furthermore, the performance of GWO may heavily depend on the
choice of algorithmic parameters, such as the number of iterations and the population size,
which can make it challenging to achieve consistent results across different optimization
tasks [61]. Thus, while GWO offers a powerful approach to optimization, researchers and
practitioners should be aware of these limitations and carefully consider its applicability to
specific problem domains.

5. Conclusions

The study systematically investigated the parametric optimization of the FDM process
for PA12-CF parts by integrating response surface methodology (RSM), grey relational
analysis (GRA), and grey wolf optimization (GWO). The research identified eight key
process parameters and their relationships with response variables such as average surface
roughness (Ra), tensile strength, and flexural strength. Through a definitive screening
design (DSD) and subsequent analysis, significant impacts of parameters like layer thick-
ness and build orientation on surface finish and mechanical properties were revealed.
By consolidating responses into grey relational grades (GRG) and developing regression
models, the study established a framework for optimizing printing parameters. GWO was
then employed to refine the solution space and derive optimal parameter settings that
significantly enhance the quality and mechanical properties of PA 12-CF parts, including a
layer thickness (LT) of 0.1 mm, six perimeters (NP), infill density (ID) of 100%, fill angle
(FA) of 0◦, printing speed (PS) of 60 mm/s, extrusion temperature (ET) of 280 ◦C, bed
temperature (BT) of 100 ◦C, and build orientation (BO) of 0◦. These optimized parameters
resulted in impressive improvements, with average surface roughness reduced to 4.63 µm,
tensile strength enhanced to 88.5 MPa, and flexural strength increased to 103.12 MPa.

Furthermore, the comparison between GRA and GWO optimization techniques re-
vealed the effectiveness of GWO in refining printing parameters and uncovering more
refined solutions within the solution space. While both methods provided valuable insights,
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GWO demonstrated superior performance in enhancing surface finish and mechanical
properties, particularly in optimizing parameters.

The practical implications of this research are significant for industrial applications
of additive manufacturing. By implementing the optimized printing parameters derived
from this study, manufacturers can achieve higher-quality PA 12-CF parts while reducing
production costs and improving product competitiveness in the market. Additionally, the
integration of advanced optimization techniques like GWO showcases the potential for
addressing complex parametric optimization challenges across various industrial domains
beyond additive manufacturing.

While the study provides valuable insights into parametric optimization, it is not
without limitations. One limitation is the focus on a specific material (PA12-CF), which may
limit the generalizability of the findings to other materials. Additionally, the research pri-
marily explores the optimization of mechanical properties and surface finish, overlooking
other important factors such as production time and energy consumption. Future research
could address these limitations by expanding the scope to include a wider range of materi-
als and considering additional optimization objectives to provide a more comprehensive
understanding of FDM process optimization.
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9. Muhamedagic, K.; Berus, L.; Potočnik, D.; Cekic, A.; Begic-Hajdarevic, D.; Cohodar Husic, M.; Ficko, M. Effect of Process
Parameters on Tensile Strength of FDM Printed Carbon Fiber Reinforced Polyamide Parts. Appl. Sci. 2022, 12, 6028. [CrossRef]

https://doi.org/10.3390/polym16060831
https://www.ncbi.nlm.nih.gov/pubmed/38543436
https://doi.org/10.1016/j.jmapro.2024.01.030
https://doi.org/10.1108/RPJ-04-2023-0150
https://doi.org/10.1080/09544828.2023.2247859
https://doi.org/10.1007/s12008-023-01354-0
https://doi.org/10.1007/s00170-023-11571-2
https://doi.org/10.1007/s40964-024-00635-8
https://doi.org/10.1108/RPJ-09-2023-0316
https://doi.org/10.3390/app12126028


Polymers 2024, 16, 1508 19 of 20

10. Fountas, N.A.; Zaoutsos, S.; Chaidas, D.; Kechagias, J.D.; Vaxevanidis, N.M. Statistical Modelling and Optimization of Mechanical
Properties for PLA and PLA/Wood FDM Materials. Mater. Today Proc. 2023, 93, 824–830. [CrossRef]

11. Nagendra, J.; Prasad, M.S.G. FDM Process Parameter Optimization by Taguchi Technique for Augmenting the Mechanical
Properties of Nylon–Aramid Composite Used as Filament Material. J. Inst. Eng. Ser. C 2020, 101, 313–322. [CrossRef]

12. Balaji, N.S.; Velmurugan, C.; Saravana Kumar, M.; Sivakumar, M.; Asokan, P. Experimental Investigation on Mechanical Properties
of Fdm-Based Nylon Carbon Parts Using Ann Approach. Surf. Rev. Lett. 2023, 30, 2350028. [CrossRef]

13. Kumar, P.; Gupta, P.; Singh, I. Parametric Optimization of FDM Using the ANN-Based Whale Optimization Algorithm. AI EDAM
2022, 36, e27. [CrossRef]

14. Saad, M.S.; Nor, A.M.; Baharudin, M.E.; Zakaria, M.Z.; Aiman, A.F. Optimization of Surface Roughness in FDM 3D Printer Using
Response Surface Methodology, Particle Swarm Optimization, and Symbiotic Organism Search Algorithms. Int. J. Adv. Manuf.
Technol. 2019, 105, 5121–5137. [CrossRef]

15. Chinchanikar, S.; Shinde, S.; Shaikh, A.; Gaikwad, V.; Ambhore, N.H. Multi-Objective Optimization of FDM Using Hybrid Genetic
Algorithm-Based Multi-Criteria Decision-Making (MCDM) Techniques. J. Inst. Eng. Ser. D 2023, 105, 49–63. [CrossRef]

16. Salunkhe, S.; Jatti, D.V.S.; Tamboli, S.; Shaikh, S.; Solke, N.; Gulia, V.; Jatti, V.S.; Khedkar, N.K.; Pagac, M.; Abouel Nasr, E.
Optimization of Tensile Strength in 3D Printed PLA Parts via Meta-Heuristic Approaches: A Comparative Study. Front. Mater.
2023, 10, 1336837.

17. Boppana, V.C.; Ali, F. Improvement of Tensile Strength of Fused Deposition Modelling (FDM) Part Using Artificial Neural
Network and Genetic Algorithm Techniques. Int. J. Ind. Eng. Oper. Manag. 2024, 6, 117–142. [CrossRef]

18. Mohanty, A.; Nag, K.S.; Bagal, D.K.; Barua, A.; Jeet, S.; Mahapatra, S.S.; Cherkia, H. Parametric Optimization of Parameters
Affecting Dimension Precision of FDM Printed Part Using Hybrid Taguchi-MARCOS-Nature Inspired Heuristic Optimization
Technique. Mater. Today Proc. 2022, 50, 893–903. [CrossRef]

19. Chandrashekarappa, M.P.G.; Chate, G.R.; Parashivamurthy, V.; Kumar, B.S.; Bandukwala, M.A.N.; Kaisar, A.; Giasin, K.;
Pimenov, D.Y.; Wojciechowski, S. Analysis and Optimization of Dimensional Accuracy and Porosity of High Impact Polystyrene
Material Printed by FDM Process: PSO, JAYA, Rao, and Bald Eagle Search Algorithms. Materials 2021, 14, 7479. [CrossRef]
[PubMed]

20. Raju, M.; Gupta, M.K.; Bhanot, N.; Sharma, V.S. A Hybrid PSO–BFO Evolutionary Algorithm for Optimization of Fused
Deposition Modelling Process Parameters. J. Intell. Manuf. 2019, 30, 2743–2758. [CrossRef]

21. Shirmohammadi, M.; Goushchi, S.J.; Keshtiban, P.M. Optimization of 3D Printing Process Parameters to Minimize Surface
Roughness with Hybrid Artificial Neural Network Model and Particle Swarm Algorithm. Prog. Addit. Manuf. 2021, 6, 199–215.
[CrossRef]

22. Feng, R.; Jiang, J.; Sun, Z.; Thakur, A.; Wei, X. A Hybrid of Genetic Algorithm and Particle Swarm Optimization for Reducing
Material Waste in Extrusion-Basedadditive Manufacturing. Rapid Prototyp. J. 2021, 27, 1872–1885. [CrossRef]

23. Seyedzavvar, M. A Hybrid ANN/PSO Optimization of Material Composition and Process Parameters for Enhancement of
Mechanical Characteristics of 3D-Printed Sample. Rapid Prototyp. J. 2023, 29, 1270–1288. [CrossRef]

24. Sai, T.; Pathak, V.K.; Srivastava, A.K. Modeling and Optimization of Fused Deposition Modeling (FDM) Process through Printing
PLA Implants Using Adaptive Neuro-Fuzzy Inference System (ANFIS) Model and Whale Optimization Algorithm. J. Braz. Soc.
Mech. Sci. Eng. 2020, 42, 617. [CrossRef]

25. Fountas, N.A.; Vaxevanidis, N.M. Optimization of Fused Deposition Modeling Process Using a Virus-Evolutionary Genetic
Algorithm. Comput. Ind. 2021, 125, 103371. [CrossRef]

26. Negi, G.; Kumar, A.; Pant, S.; Ram, M. GWO: A Review and Applications. Int. J. Syst. Assur. Eng. Manag. 2021, 12, 1–8. [CrossRef]
27. Hatta, N.M.; Zain, A.M.; Sallehuddin, R.; Shayfull, Z.; Yusoff, Y. Recent Studies on Optimisation Method of Grey Wolf Optimiser

(GWO): A Review (2014–2017). Artif. Intell. Rev. 2019, 52, 2651–2683. [CrossRef]
28. ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 1998.

Available online: https://www.astm.org/d0638-14.html (accessed on 10 June 2023).
29. ASTM D790-17; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating

Materials. ASTM International: West Conshohocken, PA, USA, 1997. Available online: https://www.astm.org/d0790-17.html
(accessed on 10 June 2023).

30. Jones, B.; Nachtsheim, C.J. A Class of Three-Level Designs for Definitive Screening in the Presence of Second-Order Effects.
J. Qual. Technol. 2011, 43, 1–15. [CrossRef]

31. Jones, B.; Nachtsheim, C.J. Effective Design-Based Model Selection for Definitive Screening Designs. Technometrics 2017,
59, 319–329. [CrossRef]

32. Abas, M.; Habib, T.; Noor, S.; Salah, B.; Zimon, D. Parametric Investigation and Optimization to Study the Effect of Process
Parameters on the Dimensional Deviation of Fused Deposition Modeling of 3D Printed Parts. Polymers 2022, 14, 3667. [CrossRef]

33. Abas, M.; Habib, T.; Noor, S.; Khan, K.M. Comparative Study of I-Optimal Design and Definitive Screening Design for Developing
Prediction Models and Optimization of Average Surface Roughness of PLA Printed Parts Using Fused Deposition Modeling. Int.
J. Adv. Manuf. Technol. 2022, 125, 689–700. [CrossRef]

34. Luzanin, O.; Guduric, V.; Ristic, I.; Muhic, S. Investigating Impact of Five Build Parameters on the Maximum Flexural Force in
FDM Specimens—A Definitive Screening Design Approach. Rapid Prototyp. J. 2017, 23, 1088–1098. [CrossRef]

https://doi.org/10.1016/j.matpr.2023.08.276
https://doi.org/10.1007/s40032-019-00538-6
https://doi.org/10.1142/S0218625X23500282
https://doi.org/10.1017/S0890060422000142
https://doi.org/10.1007/s00170-019-04568-3
https://doi.org/10.1007/s40033-023-00459-w
https://doi.org/10.1108/IJIEOM-01-2023-0006
https://doi.org/10.1016/j.matpr.2021.06.216
https://doi.org/10.3390/ma14237479
https://www.ncbi.nlm.nih.gov/pubmed/34885633
https://doi.org/10.1007/s10845-018-1420-0
https://doi.org/10.1007/s40964-021-00166-6
https://doi.org/10.1108/RPJ-11-2020-0292
https://doi.org/10.1108/RPJ-10-2022-0338
https://doi.org/10.1007/s40430-020-02699-3
https://doi.org/10.1016/j.compind.2020.103371
https://doi.org/10.1007/s13198-020-00995-8
https://doi.org/10.1007/s10462-018-9634-2
https://www.astm.org/d0638-14.html
https://www.astm.org/d0790-17.html
https://doi.org/10.1080/00224065.2011.11917841
https://doi.org/10.1080/00401706.2016.1234979
https://doi.org/10.3390/polym14173667
https://doi.org/10.1007/s00170-022-10784-1
https://doi.org/10.1108/RPJ-09-2015-0116


Polymers 2024, 16, 1508 20 of 20

35. Mohamed, O.A.; Masood, S.H.; Bhowmik, J.L. Influence of Processing Parameters on Creep and Recovery Behavior of FDM
Manufactured Part Using Definitive Screening Design and ANN. Rapid Prototyp. J. 2017, 23, 998–1010. [CrossRef]

36. Mohamed, O.A.; Masood, S.H.; Bhowmik, J.L. Modeling, Analysis, and Optimization of Dimensional Accuracy of FDM-Fabricated
Parts Using Definitive Screening Design and Deep Learning Feedforward Artificial Neural Network. Adv. Manuf. 2021, 9, 115–129.
[CrossRef]

37. Abas, M.; Habib, T.; Khan, I.; Noor, S. Definitive Screening Design for Mechanical Properties Enhancement in Extrusion-Based
Additive Manufacturing of Carbon Fiber-Reinforced PLA Composite. Prog. Addit. Manuf. 2024. [CrossRef]

38. ISO 21920-2:2021; Geometrical Product Specifications (GPS)—Surface Texture: Profile—Part 2: Terms, Definitions and Surface
Texture Parameters. International Organization for Standardization: Geneva, Switzerland, 2021. Available online: https:
//www.iso.org/standard/72226.html (accessed on 20 December 2023).

39. Julong, D. Introduction to Grey System Theory. J. grey Syst. 1989, 1, 1–24.
40. Jayant, A.; Giri, V.; Singh, P.K.; Luthra, S. A State-of the-Art Literature Survey of Grey Relational Analysis Applications in

Competitive Business Environment. Int. J. Ind. Syst. Eng. 2018, 30, 425–448. [CrossRef]
41. Chakraborty, S.; Datta, H.N.; Chakraborty, S. Grey Relational Analysis-Based Optimization of Machining Processes: A Compre-

hensive Review. Process Integr. Optim. Sustain. 2023, 7, 609–639. [CrossRef]
42. Xuemei, L.; Cao, Y.; Wang, J.; Dang, Y.; Kedong, Y. A Summary of Grey Forecasting and Relational Models and Its Applications in

Marine Economics and Management. Mar. Econ. Manag. 2019, 2, 87–113. [CrossRef]
43. Prakash, S.; Agrawal, A.; Singh, R.; Singh, R.K.; Zindani, D. A Decade of Grey Systems: Theory and Application–Bibliometric

Overview and Future Research Directions. Grey Syst. Theory Appl. 2023, 13, 14–33. [CrossRef]
44. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
45. Mathew, A.; Kishore, S.R.; Tomy, A.T.; Sugavaneswaran, M.; Scholz, S.G.; Elkaseer, A.; Wilson, V.H.; John Rajan, A. Vapour

Polishing of Fused Deposition Modelling (FDM) Parts: A Critical Review of Different Techniques, and Subsequent Surface Finish
and Mechanical Properties of the Post-Processed 3D-Printed Parts. Prog. Addit. Manuf. 2023, 8, 1161–1178. [CrossRef]

46. Lalegani Dezaki, M.; Ariffin, M.K.; Serjouei, A.; Zolfagharian, A.; Hatami, S.; Bodaghi, M. Influence of Infill Patterns Generated
by CAD and FDM 3D Printer on Surface Roughness and Tensile Strength Properties. Appl. Sci. 2021, 11, 7272. [CrossRef]

47. Bakhtiari, H.; Nikzad, M.; Tolouei-Rad, M. Influence of Three-Dimensional Printing Parameters on Compressive Properties and
Surface Smoothness of Polylactic Acid Specimens. Polymers 2023, 15, 3827. [CrossRef] [PubMed]

48. Kumar, M.S.; Farooq, M.U.; Ross, N.S.; Yang, C.-H.; Kavimani, V.; Adediran, A.A. Achieving Effective Interlayer Bonding of PLA
Parts during the Material Extrusion Process with Enhanced Mechanical Properties. Sci. Rep. 2023, 13, 6800. [CrossRef]

49. Buj-Corral, I.; Domínguez-Fernández, A.; Durán-Llucià, R. Influence of Print Orientation on Surface Roughness in Fused
Deposition Modeling (FDM) Processes. Materials 2019, 12, 3834. [CrossRef] [PubMed]

50. Gordelier, T.J.; Thies, P.R.; Turner, L.; Johanning, L. Optimising the FDM Additive Manufacturing Process to Achieve Maximum
Tensile Strength: A State-of-the-Art Review. Rapid Prototyp. J. 2019, 25, 953–971. [CrossRef]

51. Karad, A.S.; Sonawwanay, P.D.; Naik, M.; Thakur, D.G. Experimental Study of Effect of Infill Density on Tensile and Flexural
Strength of 3D Printed Parts. J. Eng. Appl. Sci. 2023, 70, 104. [CrossRef]

52. Liaw, C.-Y.; Tolbert, J.W.; Chow, L.W.; Guvendiren, M. Interlayer Bonding Strength of 3D Printed PEEK Specimens. Soft Matter
2021, 17, 4775–4789. [CrossRef]

53. Durgun, I.; Ertan, R. Experimental Investigation of FDM Process for Improvement of Mechanical Properties and Production Cost.
Rapid Prototyp. J. 2014, 20, 228–235. [CrossRef]

54. Syrlybayev, D.; Zharylkassyn, B.; Seisekulova, A.; Akhmetov, M.; Perveen, A.; Talamona, D. Optimisation of Strength Properties
of FDM Printed Parts—A Critical Review. Polymers 2021, 13, 1587. [CrossRef] [PubMed]

55. Snapp, K.L.; Gongora, A.E.; Brown, K.A. Increasing Throughput in Fused Deposition Modeling by Modulating Bed Temperature.
J. Manuf. Sci. Eng. 2021, 143, 94502. [CrossRef]

56. Patadiya, N.H.; Dave, H.K.; Rajpurohit, S.R. Effect of Build Orientation on Mechanical Strength of FDM Printed PLA BT—Advances in
Additive Manufacturing and Joining; Shunmugam, M.S., Kanthababu, M., Eds.; Springer: Singapore, 2020; pp. 301–307.

57. Popescu, D.; Zapciu, A.; Amza, C.; Baciu, F.; Marinescu, R. FDM Process Parameters Influence over the Mechanical Properties of
Polymer Specimens: A Review. Polym. Test. 2018, 69, 157–166. [CrossRef]

58. Agushaka, J.O.; Ezugwu, A.E.; Abualigah, L.; Alharbi, S.K.; Khalifa, H.A.E.-W. Efficient Initialization Methods for Population-
Based Metaheuristic Algorithms: A Comparative Study. Arch. Comput. Methods Eng. 2023, 30, 1727–1787. [CrossRef]

59. Wang, B.; Liu, L.; Li, Y.; Khishe, M. Robust Grey Wolf Optimizer for Multimodal Optimizations: A Cross-Dimensional Coordina-
tion Approach. J. Sci. Comput. 2022, 92, 110. [CrossRef]

60. Makhadmeh, S.N.; Al-Betar, M.A.; Doush, I.A.; Awadallah, M.A.; Kassaymeh, S.; Mirjalili, S.; Zitar, R.A. Recent Advances in Grey
Wolf Optimizer, Its Versions and Applications: Review. IEEE Access 2024, 12, 22991–23028. [CrossRef]

61. Meidani, K.; Hemmasian, A.; Mirjalili, S.; Barati Farimani, A. Adaptive Grey Wolf Optimizer. Neural Comput. Appl. 2022,
34, 7711–7731. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1108/RPJ-12-2015-0198
https://doi.org/10.1007/s40436-020-00336-9
https://doi.org/10.1007/s40964-024-00610-3
https://www.iso.org/standard/72226.html
https://www.iso.org/standard/72226.html
https://doi.org/10.1504/IJISE.2018.096160
https://doi.org/10.1007/s41660-023-00311-4
https://doi.org/10.1108/MAEM-04-2019-0002
https://doi.org/10.1108/GS-03-2022-0030
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1007/s40964-022-00391-7
https://doi.org/10.3390/app11167272
https://doi.org/10.3390/polym15183827
https://www.ncbi.nlm.nih.gov/pubmed/37765681
https://doi.org/10.1038/s41598-023-33510-7
https://doi.org/10.3390/ma12233834
https://www.ncbi.nlm.nih.gov/pubmed/31766409
https://doi.org/10.1108/RPJ-07-2018-0183
https://doi.org/10.1186/s44147-023-00273-x
https://doi.org/10.1039/D1SM00417D
https://doi.org/10.1108/RPJ-10-2012-0091
https://doi.org/10.3390/polym13101587
https://www.ncbi.nlm.nih.gov/pubmed/34069144
https://doi.org/10.1115/1.4050177
https://doi.org/10.1016/j.polymertesting.2018.05.020
https://doi.org/10.1007/s11831-022-09850-4
https://doi.org/10.1007/s10915-022-01955-z
https://doi.org/10.1109/ACCESS.2023.3304889
https://doi.org/10.1007/s00521-021-06885-9

	Introduction 
	Materials and Methods 
	Printing Process Parameters and Experimental Design 
	Responses 
	Multi-Response Optimization 
	Grey Relational Analysis 
	Grey Wolf Optimization (GWO) 

	Results and Discussions 
	Regression Analysis of Variance (ANOVA) 
	Effects of Process Parameters on Responses 
	Effects of Process Parameters on Ra 
	Effects of Process Parameters on Tensile and Flexural Strengths 

	Optimization Using Grey Relational Analysis (GRA) 
	Regression Model Based on Grey Relational Grade (GRG) Values 
	Grey Wolf Optimization 

	Practical Implications and Limitations of GWO 
	Conclusions 
	References

