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Abstract: The waste management of plastic has become a pressing environmental issue, with polyethy-
lene terephthalate (PET) being one of the major contributors. To address this challenge, the utilization
of recycled PET fibers and strips in geotechnical engineering applications for soil stabilization has
gained considerable attention. This review aims to provide a comprehensive study of the geotech-
nical engineering properties of recycled-PET-reinforced soils. The review examines various factors
influencing the performance of PET-reinforced soils, including PET percent content, fiber length,
and aspect ratio. It evaluates the mechanical properties, like shear strength, compressibility, bearing
capacity, hydraulic behavior, and durability of recycled-PET-reinforced soils. The findings reveal PET
reinforcement enhances shear strength, reduces settlement, and increases the bearing capacity and
stability of the soil. However, it is observed that the incorporation of recycled PET fibers and strips
does not lead to a significant impact on the dry density of the soil. Finally, an environmental and
cost comparison analysis of recycled PET fibers and strips was conducted. This review serves as a
valuable resource for researchers, engineers, and practitioners involved in the field, offering insights
into the geotechnical properties of PET-reinforced soils and outlining future research directions to
maximize their effectiveness and sustainability.

Keywords: PET fibers; PET strips; polymer; geotechnical properties; soil stabilization; environmental
impact; economic impact; sustainability

1. Introduction

Soil stabilization is a fundamental aspect of geotechnical engineering that involves
improving the engineering properties of soils to enhance their load-bearing capacity, reduce
settlement, and mitigate potential geotechnical hazards [1,2].

The strengthening mechanisms of soil are complex and multifaceted, involving various
interactions between soil particles and reinforcements [3,4]. Particle rearrangement and
interlocking, frictional resistance, cohesion and adhesion, and reinforcement through fibers
or strips all contribute to soil strength [5]. These mechanisms are crucial for enhancing the
mechanical properties of soil, such as shear strength, compressibility, and bearing capacity.
The factors influencing soil strengthening mechanisms can be broadly categorized into
soil-related properties and reinforcement-related properties. Soil-related properties include
soil type and gradation, moisture content, density, and chemical and biological processes [6].
Reinforcement-related properties include fiber length, aspect ratio, material, and surface
texture, as well as interface bonding between soil and reinforcement [7]. Understanding the
interplay between these factors and mechanisms is essential for effective soil stabilization
and reinforcement.

Traditionally, soil stabilization has relied on the use of conventional materials, such as
cement, lime, and chemical additives, to modify soil characteristics [8,9]. However, with
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increasing environmental concerns and the need for sustainable construction practices,
there has been a growing interest in utilizing recycled materials for engineering [10].

The use of recycled materials for soil stabilization offers several advantages, including
environmental benefits and cost-effectiveness [11]. Recycling materials not only diverts
waste from landfills but also reduces the consumption of virgin resources and lowers the
overall carbon footprint associated with construction activities [12,13]. By incorporating
recycled materials, geotechnical engineers can contribute to sustainable waste management
practices while achieving the desired engineering performance.

A wide range of recycled materials can be used for soil stabilization in geotechnical
engineering. These materials can include industrial by-products, such as fly ash from
coal-fired power plants, slag from steel production, recycled aggregates, polyethylene
terephthalate (PET), and crushed concrete [14,15]. Each material possesses unique proper-
ties that can be harnessed to improve soil characteristics and meet project requirements.

According to the researchers Mohee, et al. [16], plastic decomposition is not possible
since plastic is not a biodegradable material. The traditional landfill methods for the dis-
posal of plastic have negative effects on the environment [17,18]. Plastics, including PET,
often contain additives and chemicals that can leach out when exposed to acidic environ-
ments, such as those found in landfills. This leaching process is accelerated as plastics
degrade over time, releasing potentially harmful substances into the surrounding soil. As a
result, soil organisms and ecosystems can be adversely affected by the presence of these
chemicals, posing risks to environmental health [19]. Therefore, it is crucial to explore alter-
native methods for disposing of plastic materials. Plastic possesses several advantageous
properties such as brittleness, strength, durability, resistance to chemical and corrosion,
insect attacks, abrasion, and heat resistance as well as insulating properties [20,21]. To
tackle the challenge of plastic waste management, one potential approach is to utilize
plastic waste for soil stabilization.

Plastic waste constitutes a significant portion of the municipal waste stream, account-
ing for approximately 8–12% of total waste generated worldwide. Each year, countries
across the globe produce an estimated 190 million tonnes of plastic waste [22]. Approxi-
mately 60% of the waste composition consists of construction and demolition (C&D) waste,
while plastic waste makes up around 5% of the total waste. Within the plastic waste cate-
gory, 3% comprises a combination of PET (polyethylene terephthalate), polyvinyl chloride
(PVC), and high-density polyethylene (HDPE), with the remaining 2% consisting of other
types of plastic materials [23].

PET fibers and strips are widely used plastic materials commonly found in beverage
bottles, food containers, and packaging materials [24]. The disposal of PET waste poses
a significant environmental challenge due to its non-biodegradable nature. However,
recent studies have explored the possibility of utilizing recycled PET fibers and strips as a
sustainable alternative for soil stabilization in geotechnical engineering applications [25].
The geotechnical engineering properties of recycled PET make it an attractive candidate for
soil stabilization. PET has excellent tensile strength, durability, and resistance to chemicals,
which are desirable characteristics for reinforcing and stabilizing soil [26,27]. Additionally,
the abundance of PET waste presents an opportunity for recycling and transforming it into
a valuable resource for geotechnical applications [28].

This comprehensive review aims to provide an in-depth analysis of the geotechnical
engineering properties of recycled PET fibers and strips for soil stabilization as shown in
Figure 1. The review will cover various aspects, including the effect of recycled PET on
soil mechanical properties. Furthermore, the potential benefits and drawbacks of utilizing
recycled PET fibers and strips for soil stabilization will be critically assessed, considering
factors such as environmental impact and compatibility with existing geotechnical practices.
Overall, this review aims to contribute to the advancement of sustainable soil stabiliza-
tion techniques by highlighting the geotechnical engineering properties of recycled PET.
The findings of this review will be valuable for researchers, engineers, and practitioners
involved in geotechnical engineering, providing them with a comprehensive reference for
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the utilization of recycled PET fibers and strips as a viable solution for soil stabilization,
while promoting the principles of environmental sustainability.
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2. Materials and Methods

An extensive literature search was performed utilizing academic databases includ-
ing Web of Science, Scopus, and Google Scholar from September 2023 to January 2024.
Relevant publications, conference papers, and reports published up to the current date
were identified by using keywords such as “recycled PET fibers in geotechnical engineer-
ing”, “PET-reinforced soils”, and similar variations. From this search, we identified more
than 140 relevant papers published in the last decade. We filtered these papers based on
relevance and quality, focusing on peer-reviewed articles and high-impact journals. The
selection criteria included studies that provided empirical data, comprehensive reviews, or
significant advancements in the understanding of soil strength mechanisms and factors.
After filtering, the geotechnical parameters of soils reinforced with PET were obtained from
the chosen literature. The analyzed data were compiled to detect trends and patterns in
the performance of soils reinforced with PET. This encompassed data regarding the PET
content; fiber length; aspect ratio; mechanical properties such as shear strength (ASTM
D4767-11) [30], Atterberg limits (ASTM D4318) [31], compressibility (ASTM D2166) [32],
and bearing capacity (ASTM D1883) [33]; hydraulic behavior (ASTM D5084) [34]; and
other relevant variables that affect soil behavior. The research findings were combined and
presented in an organized way, highlighting the efficacy of PET fibers and strips in soil
stabilization and their compatibility with various soil types. This analysis aimed to provide
engineers and academics with crucial insights to promote sustainable practices in the field
of geotechnical engineering.

3. Properties of PET
3.1. Structural Properties of PET

PET, a thermoplastic polymer, is widely recognized for its recyclability and has gained
global significance due to its extensive range of plastic applications. The chemical structure
of PET, represented in Figure 2, depicts the arrangement of its repeating units, with ‘n’
representing the number of these units. PET fibers and strips possess several important
structural properties. The ethylene glycol units (-O-CH2-CH2-O-) are connected by ester
linkages to the terephthalic acid units (-C6H4-CO-O-), forming a linear chain [35]. The
ester linkages are formed through a condensation reaction between the hydroxyl groups of
ethylene glycol and the carboxyl groups of terephthalic acid [36]. This chemical structure
gives PET its notable properties. The presence of the ester linkages contributes to PET’s high
strength, durability, and thermal stability. The polymer chains are closely packed, creating
a rigid and crystalline structure, which further enhances PET’s mechanical properties [37].
The chemical structure of PET also enables its excellent barrier properties, making it
resistant to moisture, gases, and chemicals. This property makes PET a preferred material
for packaging applications, as it helps to protect and preserve the contents of various
products [38]. Furthermore, the presence of the aromatic ring in the terephthalic acid units
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enhances PET’s chemical resistance and makes it less susceptible to degradation from
ultraviolet (UV) light exposure, providing it with good UV stability [39].
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3.2. Thermal, Mechanical, and Physiochemical Properties of PET

In geotechnical engineering, semi-crystalline PET and amorphous PET offer distinct
advantages and applications. Semi-crystalline PET, characterized by its ordered molecular
structure, provides superior mechanical strength and stiffness, making it suitable for rein-
forcing soil in applications requiring high load-bearing capacities, such as embankments
and retaining walls. Its strength enhances soil stability and durability. Conversely, amor-
phous PET lacks a defined molecular arrangement, offering flexibility and transparency. In
geotechnical engineering, amorphous PET is often used in erosion control mats or geotex-
tiles, where flexibility and ease of installation are paramount. While semi-crystalline PET
ensures structural integrity, amorphous PET provides adaptability and ease of use, catering
to diverse geotechnical engineering needs [40].

Polyethylene terephthalate (PET) is a thermoplastic polymer with distinct thermal,
mechanical, and physiochemical properties, as shown in Table 1. A key property to consider
is the glass transition temperature (Tg) of the polymer, which signifies the temperature
at which the amorphous sections of the material shift from a rigid, glass-like state to a
more pliable, rubbery state. For PET, the Tg is typically around 60 to 80 ◦C [41]. The
maximum service temperature (Tmax) of PET denotes the uppermost temperature at which
the material can endure continuous exposure without experiencing substantial degradation.
This temperature can vary depending on the specific formulation and processing conditions.
In terms of molding, PET requires a specific temperature range for processing known
as the mold temperature (Tmould). The Tmould typically falls within the range of 120 to
150 ◦C for semi-crystalline PET [42], allowing the polymer to melt and flow easily into
the desired shape within the mold. Finally, PET has a melting temperature (Tm), which
is the temperature at which the crystalline regions of the polymer melt and the material
undergoes transitions from a solid state to a liquid state. The Tm of PET is relatively high,
ranging from approximately 240 to 260 ◦C for semi-crystalline PET [42].

PET exhibits several important mechanical properties. One of the key properties of
PET is its Young’s modulus, denoted by E, which represents its stiffness or resistance to
deformation under an applied force. PET typically has a Young’s modulus ranging from 2 to
4 GPa, depending on the specific grade and processing conditions [43]. Another important
mechanical property of PET is its elongation at break, represented by εb. Elongation at break
is a measure of the material’s ability to withstand deformation before fracturing or breaking.
PET generally exhibits an elongation at a break of around 50–100%, meaning it can stretch
to about 1.5 to 2 times its original length before failure [44]. The maximum stress (σmax) is
another significant mechanical property of PET. It represents the maximum force or load
that PET can withstand before fracturing or yielding. The maximum stress of PET typically
ranges from 50 to 100 MPa, depending on the grade and processing conditions [45].

PET has several important physicochemical properties. Density is a key property of
PET and is typically around 1.38 g/cm3 [46]. This relatively high density contributes to
its strength and durability, making it suitable for various applications. PET exhibits low
permeability to gases such as carbon dioxide (CO2) and oxygen (O2) [47]. At 25 ◦C, the
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permeability of PET to CO2 is relatively low, indicating its ability to act as a barrier to
prevent gas transmission. PET also has low oxygen permeability, which makes it useful
for packaging applications where oxygen barrier properties are essential to protect the
contents [48]. Transparency is another notable property of PET. PET is a highly transparent
material, allowing for excellent clarity and visibility. PET’s transparency is particularly
advantageous for packaging applications where product visibility is important, such as in
beverage bottles or food containers [49,50].

Table 1. Thermal, mechanical, and physiochemical properties of PET [42].

PET
Semi-Crystalline Amorphous

Thermal properties

Tg (◦C) 68–80 60–84
Tmax (◦C) 115–120 55–65

Tmould (◦C) 125–145 20–30
Tm (◦C) 255–265 -

Mechanical properties

E (GPa) 2.8–3.1 2.8–3.0
εb (%) 65–75 280–320

σmax (MPa) 70–75 55–60

Physiochemical properties

Density (g/cm3) 1.37–1.40 1.29–1.39

Permeability, 25 ◦C (cm3 mm)
CO2 14.0 15.7

O2 1.2–2.8 1.2–2.8
Transparency Opaque Transparent

Abbreviations: Transition temperature (Tg), maximum service temperature (Tmax), mold temperature (Tmould),
melting temperature (Tm), Young’s modulus (E), elongation at break (εb), maximum stress (σmax).

4. Polymerization and Conventional Recycling Process of PET
4.1. Polymerization Process of PET

The polymerization process of PET begins with the preparation of its monomers,
purified terephthalic acid (PTA), and ethylene glycol (EG), as shown in Figure 3 [51]. These
raw materials undergo an esterification step, where they are combined in the presence of
a catalyst, usually antimony trioxide, and subjected to a high-temperature reaction. This
produces a monomer called bis(2-hydroxyethyl) terephthalate (BHET) [52]. The BHET
monomer then goes through pre-polymerization, where it is heated at a lower temperature
in the presence of a metal-based catalyst. This step results in a low-molecular-weight
polymer. The prepolymer is further polymerized through a solid-state polycondensation
(SSP) process. It is heated under vacuum conditions to remove impurities and fed into
SSP reactors [53]. In these reactors, the prepolymer undergoes solid-state polymerization,
which gradually increases its molecular weight and viscosity. The process continues until
the desired properties are achieved. Once polymerization is complete, the molten PET
is extruded into long strands, cooled, and then cut into small pellets or granules, which
can be further processed into various products using techniques like injection molding or
extrusion [54]. While specific variations may exist among manufacturers, these general
steps provide an overview of the PET polymerization process.
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4.2. Conventional PET Recycling Process

The conventional recycling process of PET is shown in Figure 4. The conventional
PET recycling process begins with the collection of used PET products, such as plastic
bottles, from recycling bins or dedicated collection points [55,56]. Once collected, the PET
items undergo sorting to separate them from other types of plastics. This ensures the
purity of the recycled PET material. Following sorting, the PET is thoroughly cleaned
to eliminate any remaining impurities, including labels, caps, and residual liquids [57].
Cleaning methods can involve washing with water and detergent or using specialized
equipment with friction, heat, or chemicals [58]. After cleaning, the PET is crushed or
shredded into small flakes, which increases its surface area for easier handling and further
processing. The flakes then undergo a decontamination process to remove any remaining
impurities or residues, ensuring the quality and safety of the recycled PET material [59].
The next step involves melting the PET flakes to form molten PET through extrusion. This
process involves heating the flakes until they become a viscous liquid. The molten PET can
then be molded into pellets, fibers, or sheets, depending on the intended use. The molten
PET may undergo additional processing, such as solid-state polymerization, to enhance
its quality and performance. Solid-state polymerization involves subjecting the molten
PET to heat and pressure, which improves its molecular structure, making it stronger and
more suitable for specific applications. Finally, recycled PET material, in the form of pellets,
fibers, or sheets, is readily available as a raw material for the manufacturing of diverse
products including polyester fabrics, carpets, packaging materials, and new PET bottles.
Through this conventional recycling process, PET waste is effectively reduced, valuable
resources are conserved, and a more sustainable approach to plastic consumption and
production is promoted [60,61].
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5. Distribution and Placement of Recycled PET in Soil

The distribution and placement of PET fibers and strips in the soil play a crucial role
in soil stabilization. To effectively utilize PET for soil stabilization, several techniques are
employed. Firstly, the soil is prepared by ensuring proper compaction and uniformity.
Then, PET fibers and strips are evenly distributed throughout the soil using specialized
equipment, such as spreaders or mixers [63]. Depending on the application, the PET fibers
and strips may be incorporated at different depths within the soil profile. Techniques such
as soil mixing or injection may be employed for deeper placement. Once distributed, the
soil–PET fiber and strip mixture is compacted to ensure proper bonding and integration
of the fibers and strips. Additionally, geotextiles or geogrids made from PET fibers and
strips can be directly placed onto the soil surface or buried within the soil to provide
reinforcement [64]. Overall, meticulous attention to the application and placement of PET
is essential for optimizing soil stabilization and improving soil properties effectively.

6. Applications of Recycled PET Fibers in Soil Stabilization

Recycled PET fibers have numerous applications in geotechnical engineering, con-
tributing to both environmental sustainability and improved performance [65,66]. One
significant application of PET fibers classified as geogrids is soil stabilization, where these
fibers are incorporated into the soil to enhance its strength and resistance against ero-
sion, settlement, and shear forces. They can also be used in retaining walls and erosion
control systems, providing structural support and preventing soil erosion [67]. Further-
more, they find utility in land reinforcement, strengthening weak areas, and improving
load-bearing capacity in infrastructure projects [68]. Utilizing recycled PET fibers in geotech-
nical engineering helps to reduce plastic waste and embrace a more sustainable approach
to construction.

6.1. Influence of Recycled PET Fibers on Soil’s Stress–Strain Characteristics

The stress–strain characteristics of PET-fiber-stabilized soil exhibit distinct behavior
compared to unstabilized soil [69]. The behavior of reinforced and unreinforced specimens
was examined by Botero, et al. [70] by plotting stress–strain curves with the help of triaxial
test results. Figure 5 demonstrates that the stress–strain responses vary depending on the
quantity of recycled PET fiber and the level of confining pressure (σc) in silty soil. The
stress–strain behavior of the reinforced soil specimen, utilizing recycled PET fibers ranging
from 0.1 to 1%, demonstrates a linear response. Prior to the strain range of 10–15%, the
soil reinforced with PET fibers exhibits non-plastic behavior. Beyond this range, the soil
shows plastic behavior but does not display an increase in soil resistance until failure occurs.
Therefore, the addition of recycled PET fibers has a noticeable effect on the stress–strain
behavior of the soil. Specifically, specimens with fiber percentages of 0.60% and 1.00%
exhibit greater resistance increments near 10% strain. According to researchers Mariri,
et al. [71], recycled PET fibers into a mixture of zeolite, cement, and loess resulted in
an increase in the strain at failure. The addition of recycled PET fibers in soil has been
observed to influence the linear stress–strain response. This enhancement in the stress–
strain response is attributed to the reinforcing effect of the fibers, but variation in the
stress–strain behavior may occur depending on the soil type used [72–74].
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6.2. Influence of Recycled PET Fibers on Soil’s Liquid, Plastic, and Shrinkage Limits

The liquid, plastic, and shrinkage limits of the modified soil increase as the percentage
content of recycled PET fibers increases, as shown in Figure 6. For soil samples S0, S1,
S2, S3, and S4, the addition of recycled PET fibers with fly ash leads to liquid limit (LL)
increases by factors of 1.03, 1.05, 1.12, and 1.18, respectively. These alterations facilitate
the substitution of soil grains with recycled PET fibers, resulting in enhanced continuity
in the soil. The hydrophobic nature of recycled PET fibers prevents moisture absorption,
contributing to the higher liquid limit observed in the reinforced soil [14]. According to
the researchers Kinjal, et al. [75], the liquid limit of soil decreases as the content of recycled
polyester fibers increases in clayey soil. However, the variation in liquid limit becomes
significantly less after a fiber content of 0.5% is reached. Changizi and Haddad [76] found
that the addition of 0.5% recycled PET fibers leads to a 1.04-fold increase in the value of the
liquid limit. According to the research conducted by Arya, et al. [77] on black cotton soil,
the addition of bagasse ash and recycled PET fiber results in an increase in the liquid limit
value of the soil, as shown in Figure 6.

The plastic limit (PL) of the reinforced soil samples (S0, S1, S2, S3, and S4) shows an
increase by factors of 1.24, 1.37, 1.42, and 1.47, respectively. The plastic index (PI) value of
the soil decreases as the PET fiber content is increased in conjunction with fly ash. The PI of
soil reinforced by PET fibers decreases by factors of 0.74, 0.59, 0.69, and 1.03, respectively,
for different percentages of recycled fiber in conjunction with fly ash [14]. Kinjal, Desai
and Solanki [75] found that increasing the percentage of recycled PET fibers in the clayey
soil results in an increase in the plastic limit, but after a fiber content of 0.5% is reached,
the plastic limit starts to decrease. Similar outcomes were observed by Fauzi, et al. [78].
For recycled fiber percentages of 0.5%, 1.0%, and 1.5%, the inclusion of fibers results in
increases in the plastic limit by factors of 1.29, 1.42, and 1.44, respectively [76]. The study
performed by Arya, Patel, Bharti, Shukla and Hurukadli [77] found similar performance by
adding recycled PET fibers to black cotton soil, as shown in Figure 6. The shrinkage limit
of the soil samples (S0, S1, S2, S3, and S4) is increased by factors of 1.38, 1.47, 1.53, and 1.57,
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respectively, with the presence of recycled PET fibers in conjunction with fly ash [14]. The
same result was found by Kinjal, Desai and Solanki [75] up to a 0.5% increase in recycled
fiber contents, as shown in Figure 6. Therefore, the addition of recycled PET fibers in clayey
soil in conjunction with fly ash proves to be an effective way of enhancing tensile strength
and their ability to withstand volumetric changes in soil [14]. The study performed by
Harianto, et al. [79] revealed that increasing the fiber content to 1.0% resulted in a significant
20% increase in the shrinkage limit compared to no fiber addition. However, at a higher
fiber percent of 1.2%, the shrinkage limit slightly decreased. This can be attributed to the
filling of soil voids by fibers at 1.2%, which led to reduced contact between soil particles
and recycled PET fibers, resulting in less resistance and a lower shrinkage limit. Thus, an
increase in the percentage of fiber causes an increase in the shrinkage limit of soil [76].
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Figure 6. Variation caused by recycled PET fibers in liquid, plastic, and shrinkage limits of soil:
(a) [14] and (b) [77]. Abbreviations: S0: soil sample with 0% PET fiber; S1: soil sample with 0.4% PET
fiber; S2: soil sample with 0.8% PET fiber; S3: soil sample with 1.2% PET fiber; S4: soil sample with
1.6% PET fiber; BA: bagasse ash; BCS: black cotton soil.

6.3. Influence of Recycled PET Fibers on Soil’s Dry Density

Modified Proctor test results indicate that as the percentage of recycled PET fibers
increases, there is a minimal variation in both the moisture content and maximum dry
density of the soil [14,80,81]. These results were similar to the research conducted by
Yadav and Tiwari [82]. According to the findings of Miller and Rifai [80], the variations in
the maximum dry density and the optimum value of moister content, resulting from the
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addition of fibers, are less than 5%. These variations are considered insignificant in terms
of compaction. In other words, the addition of recycled fibers does not have a significant
influence on the maximum dry density and optimum moisture content values, suggesting
that compaction efforts may not be significantly affected by the fiber addition [83].

6.4. Influence of Recycled PET Fibers on Soil’s Normal–Shear Stress Characteristics

According to the research conducted by Mishra and Gupta [14], with an increase
in the percentage of recycled PET fibers with fly ash, there is an observed enhancement
in the strength behavior of the soil. The maximum rise in peak strength is observed at
different normal stress (σn) levels from 9.72 N/cm2 to 16.67 N/cm2, as shown in Figure 7.
For the soil samples S0, S1, S2, S2, S3, and S4, the peak shear stress increases by factors
of 1.12, 1.25, 1.40, and 1.35, respectively, at a normal stress of 9.72 N/cm2. Similar trends
are observed at higher normal stress levels. However, when the PET fiber percentage
exceeds 1.2%, the peak strength of the reinforced soil starts to decrease. This decrease
is due to the excessive fiber-to-soil ratio, leading to inefficient interlocking and reduced
load transfer mechanisms. At a fiber percentage beyond 1.2%, the contact between PET
fibers and the mixture decreases, and the fiber-to-fiber contact becomes dominant. This
relative volume engaged by the recycled PET fibers is a possible cause for the strength
reduction. The serration in Figure 7 shear test data is the result of “stick–slip” behavior
during the shearing process. This phenomenon happens when soil particles connect and
then break away, causing shear stress to fluctuate. Soil heterogeneity, strain localization,
instrument sensitivity, frictional sliding, and particle rearrangement all play a role in this
behavior [84,85]. Understanding these parameters allows for a more accurate interpretation
of shear test data, which provides insight into soil mechanical properties under shear stress.
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Interlocking between the particles of soil and the PET fiber surface plays a significant
role in improving shear strength. Changizi and Haddad [72] observed that the inclusion
of 0.5% recycled PET fiber resulted in a significant increase in the shear stress value from
111 kPa to 200 kPa when compared to natural clay. This increase signifies a remarkable
enhancement in shear strength, amounting to an 80% improvement due to the addition of
recycled PET fibers. Sarli, Hadadi and Bagheri [81] study found that the addition of 1.5%
recycled polyester fiber increased the peak shear stress from 55 kPa to 121 kPa, resulting in
a 53% increase in shear strength of soil as compared to natural loess. Moreover, when the
fiber percent content is 0.5% and 1%, peak shear stresses increased by 14% and 29% in loess
soil, respectively. However, at a higher fiber percentage of 1.5%, the rise in shear strength
value was only 53%, as shown in Figure 8. Based on the stress–displacement behavior
observed in Figure 9, it can be inferred that the peak strength of recycled fiber-reinforced
clayey soil was generally reached at larger horizontal displacements compared to the
unreinforced soil in most of the specimens examined [76]. The results of Kholghifard and
Amini Behbahani [86] obtained from clayey sand were similar to the research of [76,87].
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Figure 9. Shear stress vs. horizontal shear displacement at: (a) σn = 100 kPa, (b) σn = 200 kPa, and
(c) σn = 300 kP [76].

6.5. Influence of Recycled PET Fibers on Soil’s California Bearing Ratio

According to Mishra and Gupta [14], an increase in the percentage of recycled PET
fibers leads to an increase in the CBR (California Bearing Ratio) value, as depicted in
Figure 10a. The maximum CBR value is achieved at a fiber percentage of 1.2%. However,
after this peak is reached, further increases in the PET fiber percentage result in a decrease
in the value of the CBR, both for soaked and unsoaked conditions. The addition of recycled
PET fibers in soil improves the CBR by enhancing the interfacial friction and reducing
deformation, resulting in increased strength and performance. The results obtained by
Changizi and Haddad [76] demonstrate that the inclusion of fibers leads to an increase
in the CBR. The study further reveals that the CBR values show an upward trend with
increasing fiber content up to 0.3%. However, as the percentage of fiber continues to increase
beyond this point, the incremental improvement in CBR values diminishes, as shown in
Figure 10b. Therefore, an increase in recycled PET fiber content has a significant impact
on the CBR value of soil [88,89]. Arya, Patel, Bharti, Shukla and Hurukadli [77] revealed
that the inclusion of 4% bagasse ash along with recycled PET fiber led to a reduction in the
value of the CBR of black cotton soil (BCS). However, with a further increase in bagasse
ash to 8%, the CBR value reached its maximum at 2.847 with a fiber content of 0.3%, as
depicted in Figure 10c.
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Figure 10. Variation in CBR value with the use of recycled PET fibers: (a) [14], (b) [76], and (c) [77].

6.6. Influence of Recycled PET Fibers on Soil’s Indirect Tensile Strength

The addition of 1.2% recycled PET fibers in different soil types yields better perfor-
mance. The addition of recycled PET fibers minimizes the formation of tension cracks
through a bridge effect. The interfacial friction between recycled PET fibers and mix parti-
cles increases, leading to increased strength. However, when the PET fiber content exceeds
1.2%, the contact between the PET fibers and particles decreases, and fiber-to-fiber inter-
action becomes dominant, as shown in Figure 11a. This results in a reduction in strength,
possibly due to the increased volume occupied by the fibers [14,87]. According to Tafti
and Emadi [90], when the PET fiber content is increased up to 1.5%, there is an observed
increase in the indirect tensile strength of poorly graded soils. However, beyond this fiber
content, the strength begins to decrease with further increases in the PET fiber content, as
shown in Figure 11b.
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6.7. Influence of Recycled PET Fibers on Soil’s Crack Reduction Ratio

Cracked area refers to the surface area of cracks on the soil sample after it has under-
gone stress or drying [91]. To calculate this, images of the cracked soil surface are taken,
and image analysis software is used to measure the total area occupied by the cracks. This
involves processing the images to distinguish between cracked and uncracked areas and
then summing the areas of all detected cracks [92]. This measurement helps in assessing
how different contents of recycled PET fibers influence the reduction in soil cracking. A
smaller cracked area indicates that the fibers are effective in enhancing soil stability and
integrity by reducing the formation and propagation of cracks [93].

Chaduvula, et al. [94] examined the effect of recycled PET fibers in expansive soil.
According to Chaduvula, Viswanadham and Kodikara [94], fiber reinforcement results in a
reduction in the cracked area ranging from 26% to 66% in comparison to the soil specimen
without reinforcement. The specimen with a PET fiber content of 0.5% and fiber length
of 15 mm demonstrates the highest reduction in cracks, as shown in Figure 12a. This
reduction can be attributed to the enhancement of the clay mass’s tensile strength due to the
addition of fibers. The findings of Miller and Rifai [80] indicate that increasing the recycled
fiber content from 0.2% to 0.8% resulted in a significant improvement in crack reduction.
Specifically, the crack reduction increased from 12.3% to 88.6% across the range of fiber
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content, as shown in Figure 12b. Olgun [95] research indicates that the crack reduction
ratio increases with an increase in fiber content, as shown in Figure 12c. However, the
study also found that the crack reduction shows only a minimal increase after a PET fiber
content of 0.75% is reached. Harianto, Hayashi, Du and Suetsugu [79] conducted tests on
the crack intensity factor (CIF) of soil samples and presented that there was a decrease
in the volumetric change of compacted soil samples with the addition of recycled PET
fiber. In other words, the inclusion of fiber reduced the extent of shrinkage and cracking in
the soil, as indicated by the decreased volume change [96,97]. Gupta, et al. [98] reported
a significant reduction in cracking, reaching up to 89 percent compared to the control
specimen, through the incorporation of recycled polyester fiber.
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6.8. Influence of Recycled PET Fibers on Soil’s Hydraulic Conductivity

Miller and Rifai [80] examined the relationship between recycled PET fiber percent
content and hydraulic conductivity. The results show that the hydraulic conductivity of
the soil is influenced by the amount of fibers present, typically increasing with higher fiber
content. The most substantial increase in permeability is observed for fiber percentage
exceeding 1%, as shown in Figure 13a. The data presented in Figure 13b illustrate the
changes in soil hydraulic conductivity as the soil is combined with recycled PET. Initially,
there is a decrease in the value of hydraulic conductivity when the additive is introduced,
up to a concentration of 0.5%. However, beyond that point, the hydraulic conductivity
starts to increase with higher percentages of PET, up to 1.5%, indicating an upward trend
in the relationship between the additive and hydraulic conductivity [99]. For silty soil,
there was a slight reduction in hydraulic conductivity when the fiber content reached 0.25%
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and 0.50%, as presented in Figure 13c. However, when the fiber percentage increased to
0.75%, the hydraulic conductivity was nearly indistinguishable from that of the soil without
any reinforcement [100]. An increase in the value of the hydraulic conductivity of soil
indicates that the soil’s ability to transmit water or other fluids through its pore spaces has
improved [101,102].
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6.9. Influence of Recycled PET Fibers on Soil’s Elastic Modulus

Figure 14 illustrates that there is an increase in the elastic modulus as the content of
recycled PET fiber increases in expansive soil. This indicates that the addition of recycled
PET fibers contributes to the stiffness and rigidity of the material [72]. The higher elastic
modulus values signify an enhanced ability of the material to resist deformation under
applied stress, highlighting the reinforcing effect of the PET fibers on the geotechnical
material [103,104].
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6.10. Influence of Recycled PET Fibers on Soil’s Unconfined Compressive Strength

In soil stabilization, the use of recycled PET fiber contributes to an improvement in
the unconfined compressive strength (UCS) value. This enhancement in UCS indicates a
strengthening effect on the stabilized soil, making it more resistant to compressive forces.
Mariri, Ziaie Moayed and Kordnaeij [71,72] examined a progressive rise in UCS as the PET
content increased, reaching a peak at 0.5% in silty soil. According to Hassan, et al. [105]
research, with an increase in the amount of recycled PET fiber by up to 1% in the clayey soil,
the unconfined compressive strength (UCS) experienced a remarkable enhancement of up
to 76% in clayey soil. The strength of clay shows a significant improvement ranging from
50% to 68% with the incorporation of recycled PET fibers of 3 mm in size, comprising 0.5%
to 2% of the total mixture [106]. As the percentage of PET fiber reinforcement increased,
the UCS value demonstrated a corresponding increase, reaching its optimal point at 10%
reinforcement. At this point, the UCS showed the highest improvement of 11% compared
to its initial value of 325 kN/m2. However, the strength gradually declined once the
reinforcement reached 20% [107]. Furthermore, Bhardwaj and Walia [88] observed that for
a constant length of PET fibers, the unconfined compressive strength (UCS) value increases
by up to 68% as the fiber percentage rises to 0.75%. However, beyond this point, with
further increases in fiber content, the UCS value starts to decrease. According to Emmanuel,
et al. [108], with the increase in recycled PET fiber content from 0.5% to 1.9%, there is
an increase in UCS value. From the above observation, it is seen that clayey soils show
maximum improvement in UCS with the incorporation of PET fibers of more than 1%,
while silty soils show maximum improvement in UCS with the incorporation of PET fibers
of less than 1%. A comparison of the UCS results obtained by previous research is shown
in Figure 15.
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6.11. Influence of Recycled PET Fibers on Soil’s Cohesion and Frictional Angle

The introduction of recycled PET strips into soil has been found to have a significant
effect on both cohesion and friction angle, as shown in Table 2 [110,111]. By incorporating
these strips into the soil matrix, cohesion is enhanced, leading to increased stability and
improved shear strength [112]. Furthermore, the presence of recycled PET strips also
influences the soil’s friction angle. The strips create additional contact points and roughness
within the soil matrix, increasing the inter-particle resistance to sliding [113]. This enhanced
friction angle contributes to the soil’s resistance against shear forces and reduces the
likelihood of soil movement or failure. Sarli, Hadadi and Bagheri [81] conducted a study
investigating the impact of recycled PET fibers ranging from 0.5 to 1.5% on the cohesion and
angle of internal friction of silty clayey sand. The findings revealed that as the percentage
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of fibers increased, both the cohesion and internal friction angle of the silty clayey soil
increased. Similarly, Changizi and Haddad [72,86] conducted research using recycled PET
fibers ranging from 0.1 to 0.5% on fat clay soil and clayey sand and observed a similar
effect on cohesion and friction angle value. Additionally, Ahmadi, et al. [114] examined
the effects of recycled PET fiber content ranging from 0.2 to 1% on clay and found that
the presence of fibers led to a gradual increase in both cohesion and internal friction angle
values of the soil.

Table 2. Variation caused by recycled PET fibers in cohesion and frictional angle of soil.

References Specimen 1 2 3 4

Silty clayey [81]
PET fiber content (%) 0 0.5 1 1.5

Cohesion, c, (kPa) 11 18 24 32
Angle of internal friction, ϕ, (◦) 24 26 28 31

Fat clay [72]
PET fiber content (%) 0 0.1 0.3 0.5

Cohesion, c, (kPa) 38 56 59 64
Angle of internal friction, ϕ, (◦) 13.5 14.6 19.3 23.3

Clayey sand [86]
PET fiber content (%) 0 0.1 0.3 0.5

Cohesion, c, (kPa) 30.92 39.93 43.05 46.88
Angle of internal friction, ϕ, (◦) 27.04 32.85 34.51 35.9

Clay [114]
PET fiber content (%) 0 0.2 0.5 1

Cohesion, c, (kPa) 62 72.4 95.2 97.4
Angle of internal friction, ϕ, (◦) 17.2 21.8 25.2 27

7. Applications of Recycled PET Strips in Soil Stabilization

Recycled geotextile PET strips have found valuable applications in soil stabilization,
where they contribute to improving the engineering properties of soil [115,116]. One no-
table use is in the reinforcement of slopes and embankments. With the incorporation of PET
strips into the soil, a grid-like structure is created that enhances the soil’s tensile strength
and stability [117]. This reinforcement prevents erosion and reduces the risk of landslides,
providing long-term stability for slopes and embankments [118]. In road construction,
recycled PET strips are used to strengthen subgrade and sub-base layers, enhancing load-
bearing capacity and minimizing cracking [115,119]. Besides their functional benefits, the
use of recycled PET strips promotes sustainability by repurposing waste materials and
reducing the environmental impact associated with virgin materials [120,121]. Overall,
incorporating recycled PET strips into soil stabilization techniques offers a range of advan-
tages, including improved strength, erosion control, and environmental sustainability, as
discussed below.

7.1. Influence of Recycled PET Strips on Soil’s Dry Density

When considering the effect of PET strips on the dry density of soil, studies and
research have shown that there is typically no substantial impact [115,122]. The addition
of PET strips is primarily aimed at reinforcing the soil and improving its mechanical
properties, rather than altering its density characteristics. Dry density is mainly influenced
by compaction efforts, water content, and the soil’s particle size distribution [123]. PET
strips, being lightweight and of relatively low volume compared to the soil mass, do not
significantly contribute to changes in the overall density. Their presence may slightly affect
the void ratio and porosity, but the overall impact on dry density is minimal. It is important
to note that other factors such as compaction energy and compaction moisture content have
a more significant influence on achieving the desired dry density.

7.2. Influence of Recycled PET Strips on Soil’s Normal–Shear Stress Characteristics

The incorporation of recycled PET strips into soil has been found to affect the normal–
shear stress characteristics of the soil, as shown in Figure 16 [124]. The presence of PET
strips can enhance the soil’s shear resistance, leading to increased shear strength and
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improved stability [125]. In the study of Al-Taie, Al-Obaidi and Alzuhairi [87], the influence
of incorporating 2% recycled PET fibers on the shear stress of poorly graded soil was
investigated. The results showed that as the normal stress (σn) increased at a constant
PET fiber content, the shear stress value of the poorly graded soil also increased. Castilho,
et al. [126] conducted a similar study on both sandy and clayey soil, using a 1.5% recycled
PET fiber content and σn value of 246 kPa. The findings indicated an improvement in the
shear stress value of the soil. Peddaiah, Burman and Sreedeep [115] examined the effect of
0.4% PET strip content on sandy soil with a σn value of 100 kPa, while Fathi, et al. [127]
studied the impact of a 1.5% PET strip fiber content on sandy soil with varying ranges of σn
(30, 61, and 122 kPa) and observed a rise in the shear stress of the soil. This improvement is
observed across different soil types and normal stress levels, suggesting that recycled PET
strips can be a valuable solution for improving the properties of soils.
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7.3. Influence of Recycled PET Strips on Soil’s CBR

Figure 17a–c illustrate the highest enhancement in the CBR resulting from the inclusion
of recycled PET strips by using the aspect ratios (ARs) of 1, 2, and 3, while Figure 17d
shows the highest improvement in the CBR resulting from the inclusion of recycled PET
strips with the moisture contents of 9.5, 11, and 12.5%. The maximum enhancement in the
CBR was observed when utilizing 4% PET strip content with the ARs of 1, 2, and 3 [128].
Malicki, Górszczyk and Dimitrovová [83] conducted a study to investigate how moisture
content and the addition of recycled PET strips impact the enhancement of the CBR. The
highest CBR value was attained with 11% moisture content and 2% PET strip content.
Sinha, et al. [129] stated that the highest CBR value can be achieved by incorporating 2%
recycled PET strip content. However, the findings of Rawat and Kumar [130] suggest that
a maximum CBR value is attained with 1.5% PET strip content at a penetration depth of
5 mm. Amena and Kabeta [119] conducted research to investigate how the inclusion of
recycled PET strips and marble dust affects the CBR swell value of expansive soil. Amena
and Kabeta [119] found that as the content of marble dust and PET strips increased, there
was a noticeable decrease in the CBR swell value. According to the findings of Peddaiah,
Burman and Sreedeep [115], an improvement in the value of the CBR was observed when
the PET strip percent content was increased up to 0.4%. However, beyond this threshold,
a decrease in the CBR value was observed. Niyomukiza, et al. [131] performed the CBR
test on soil samples soaked for four days and noted an increase in the CBR value up to
a recycled PET content of 0.3%. However, beyond this point, the CBR value started to
decrease. Through analysis of sandy and clayey soil, Marçal, et al. [132] investigated the
impact of recycled PET strips on the CBR value. Marçal, Lodi, Correia, Giacheti, Rodrigues
and McCartney [132] observed a significant improvement in the CBR, from 27% to 47%,
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when using recycled PET strip content in sandy soil. In contrast, in clayey soil, the value of
the CBR decreased from 20% to 18% with the use of recycled PET strips. Therefore, the use
of recycled PET strips in soil can potentially affect the CBR value. Incorporating recycled
PET strips into the soil can improve its strength and stability, resulting in an increase in the
value of the CBR [133,134].
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7.4. Influence of Recycled PET Strips on Soil’s Indirect Tensile Strength

The incorporation of recycled PET strips in soil has a beneficial impact on the soil’s
indirect tensile strength. This reinforcement leads to increased resistance to cracking and
deformation, resulting in improved stability and performance of the soil [135]. Khoury,
et al. [136] assessed the effect of recycled PET strips on the indirect tensile strength of
silty soil. Their study found that the inclusion of recycled PET strips resulted in a notable
enhancement, with the indirect tensile value experiencing an increase of up to 25%. In
Figure 18, the results of the tensile strength test indicate that the addition of recycled
PET strips to the soil specimens resulted in an improvement in their tensile strength. The
specimens reinforced with PET strips of 3 mm and 6 mm in width and of 12 mm, 15 mm,
and 18 mm in length were studied, with recycled PET strip content ranging from 0% to 1%.
The findings demonstrate that increasing the recycled PET content from 0.4% to 0.6% led to
a significant enhancement in the tensile strength of the reinforced soil specimens [137].
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Figure 18. Variation caused by recycled PET strips in indirect tensile strength of soil [137]: (a) PET
strip length 3 mm and (b) PET strip length 6 mm.

7.5. Influence of Recycled PET Strips on Soil’s Resilience Modulus

Recycled PET strips are utilized for soil stabilization, enhancing resilience modulus.
These strips reinforce the soil, increasing its load-bearing capacity and overall stability [138].
With the incorporation of PET strips, the soil’s resilience modulus is significantly improved,
ensuring long-term durability. El-Badawy [139] research demonstrates that the resilience
modulus exhibits a consistent increase with increasing content of PET strips, reaching a
peak improvement of 56%. However, once the PET strip content surpasses 0.6%, there is a
subsequent decrease in the resilience modulus, as depicted in Figure 19.
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Figure 19. Variation caused by recycled PET strips in resilience modulus of soil [139].

7.6. Influence of Recycled PET Strips on Soil’s UCS Value

Using PET strips in soil for enhancing UCS offers several advantages. PET acts as
a reinforcing material, improving the strength and stability of the soil. The addition of
recycled PET strips enhances the UCS value of soil, increasing its load-bearing capacity
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and performance [140,141]. Figure 20a,b illustrate the enhancement in UCS value resulting
from the incorporation of recycled PET strips in both clayey and sandy soil. The most
significant improvement in UCS value for both sand and clayey soil was observed when
1.5% of recycled PET strip content was added [126,142]. The results depicted in Figure 20c,d
demonstrate the increase in UCS value caused by the addition of 1% PET strips to clayey
soil and clayey soil with 20% sand [143]. According to Roustaei, Tavana and Bayat [137], the
specimens exhibited an increasing trend in UCS as the content of PET strips increased until
reaching 0.8%, after which the UCS began to decline. Among all the PET strip lengths tested,
the specimens with 0.8% PET strip content achieved the highest UCS value. Kabeta [140]
conducted a study on the influence of recycled PET strips (ranging from 0% to 0.4%) on
soft clay soil. The research revealed a significant increase in the UCS value of soil, reaching
up to 138% improvement with the use of 2 mm long PET strips. A gradual increase in the
UCS value was observed when utilizing PET strip lengths of 10 mm, 15 mm, 20 mm, and
30 mm and varying the recycled PET strip content from 0.25% to 2% in sandy and clayey
soils, as shown in Figure 20e,f [132].
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Figure 20. Variation caused by recycled PET strips in UCS value of soil: (a) for sandy soil, (b) for
clayey soil [126], (c) for clayey soil with 20% sand, (d) for clayey soil [143], (e) for sandy soil, and
(f) for clayey soil [132].
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7.7. Influence of Recycled PET Strips on Soil’s Cohesion and Internal Frictional Angle

The inclusion of recycled PET strips has been found to have a notable impact on both
cohesion and the frictional angle of soil. Cohesion, which represents the shear strength
of soil particles, tends to increase with the addition of recycled PET strips. On the other
hand, the frictional angle, which signifies the resistance to sliding between soil particles,
is observed to decrease when recycled PET strips are incorporated. These effects suggest
that the presence of recycled PET strips alters the mechanical properties of soil, enhancing
its cohesive strength while reducing its resistance to sliding. The findings of Marçal, Lodi,
Correia, Giacheti, Rodrigues and McCartney [132] indicate that the utilization of recycled
PET content in sandy soil results in an increase in the frictional angle by approximately
1.18%. Similarly, for clayey soil, the frictional angle increases by approximately 1.47% with
the addition of recycled PET content. Additionally, there is an increase in the cohesion value
of approximately 2.26% for sandy soil and 0.86% for clayey soil when incorporating recycled
PET strip content. Silveira, Lodi, Correia, Rodrigues and Giacheti [142] investigated the
influence of incorporating recycled PET strips, ranging from 0.75% to 2% by weight, into
cement-treated lateritic soil. The experiment included different lengths of PET strips (10, 15,
20, and 30 mm). However, the results, depicted in Figure 21, demonstrated no consistent
changes in the values of cohesion and frictional angle.
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Figure 21. Variation caused by recycled PET strips in: (a) cohesion and (b) frictional angle value of
soil [142].

8. Environmental Implication of PET Addition to Soil

The major environmental improvement concerns when adding PET to soil stabilization
include several key factors. Potential microplastic pollution arises from the degradation
of PET fibers, which can harm wildlife and enter the food chain. Chemical leaching of
toxic additives and byproducts into the soil and groundwater poses risks to soil health,
biodiversity, and human health [144]. The long-term persistence of non-biodegradable PET
in the environment complicates remediation efforts and raises sustainability issues [145].
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However, the use of recycled PET in soil stabilization also offers environmental benefits. It
aids in enhanced waste management by repurposing plastic waste, thereby reducing the
volume of plastic in landfills and oceans. This practice supports the circular economy by
conserving natural resources and energy compared to producing new materials [146]. Ad-
ditionally, PET reinforcement can improve soil stability, bearing capacity, and infrastructure
durability, leading to more sustainable construction practices. Balancing these concerns
requires effective monitoring and regulation to minimize negative impacts. Ongoing re-
search into biodegradable alternatives and sustainable practices is essential. Implementing
best practices for PET use in geotechnical applications, including proper installation and
limiting the amount used, can help maximize environmental benefits while mitigating
potential harms [147].

9. Economic Implication of PET Addition to Soil

The addition of PET to soil stabilization offers various economic implications that span
across cost savings, waste management efficiency, and market opportunities. Firstly, by
utilizing recycled PET fibers and strips, construction projects can achieve cost savings on
raw materials. The reduction in the need for new materials translates to lower procurement
costs, contributing to overall project affordability [148]. Moreover, the efficient management
of plastic waste through PET incorporation reduces municipal waste management expenses,
as less material is destined for landfills or costly recycling processes. This efficiency not
only benefits construction projects directly but also alleviates the financial strain on waste
management systems, potentially leading to broader economic savings [149]. Secondly,
the market demand for recycled materials is bolstered by the adoption of PET in soil
stabilization. As the construction industry increasingly values sustainable practices, the
demand for recycled PET grows, stimulating growth within the recycling sector. This, in
turn, creates economic opportunities for recycling industries and encourages innovation in
recycling technologies [150]. Additionally, the extended lifespan of infrastructure resulting
from PET reinforcement reduces maintenance costs over time, contributing to long-term
economic benefits [151]. While there may be initial investments in compliance and research,
the overall economic outlook for PET addition to soil stabilization is promising, with the
potential for significant cost savings and market growth.

As shown in Figure 22, Al-Taie, Al-Obaidi and Alzuhairi [87] conducted a compara-
tive cost analysis for the production of 1 kg of polypropylene fiber, polyester fibers, and
recycled PET. The findings indicated that the production cost for recycled PET was the
lowest, approximately USD 1, in comparison to the other materials. This demonstrates that
utilizing recycled PET is a viable and favorable option for the construction industry. The
availability and cost-effectiveness of recycled PET make it an attractive option for engi-
neers and project developers. By incorporating recycled materials, construction projects
can lower expenses, enhance sustainability ratings, and potentially gain recognition for
environmentally responsible practices.

Polymers 2024, 16, x FOR PEER REVIEW 27 of 34 
 

 

9. Economic Implication of PET Addition to Soil 
The addition of PET to soil stabilization offers various economic implications that 

span across cost savings, waste management efficiency, and market opportunities. Firstly, 
by utilizing recycled PET fibers and strips, construction projects can achieve cost savings 
on raw materials. The reduction in the need for new materials translates to lower procure-
ment costs, contributing to overall project affordability [148]. Moreover, the efficient man-
agement of plastic waste through PET incorporation reduces municipal waste manage-
ment expenses, as less material is destined for landfills or costly recycling processes. This 
efficiency not only benefits construction projects directly but also alleviates the financial 
strain on waste management systems, potentially leading to broader economic savings 
[149]. Secondly, the market demand for recycled materials is bolstered by the adoption of 
PET in soil stabilization. As the construction industry increasingly values sustainable 
practices, the demand for recycled PET grows, stimulating growth within the recycling 
sector. This, in turn, creates economic opportunities for recycling industries and encour-
ages innovation in recycling technologies [150]. Additionally, the extended lifespan of in-
frastructure resulting from PET reinforcement reduces maintenance costs over time, con-
tributing to long-term economic benefits [151]. While there may be initial investments in 
compliance and research, the overall economic outlook for PET addition to soil stabiliza-
tion is promising, with the potential for significant cost savings and market growth. 

As shown in Figure 22, Al-Taie, Al-Obaidi and Alzuhairi [87] conducted a compara-
tive cost analysis for the production of 1 kg of polypropylene fiber, polyester fibers, and 
recycled PET. The findings indicated that the production cost for recycled PET was the 
lowest, approximately USD 1, in comparison to the other materials. This demonstrates 
that utilizing recycled PET is a viable and favorable option for the construction industry. 
The availability and cost-effectiveness of recycled PET make it an attractive option for 
engineers and project developers. By incorporating recycled materials, construction pro-
jects can lower expenses, enhance sustainability ratings, and potentially gain recognition 
for environmentally responsible practices. 

 
Figure 22. Comparative cost analysis of different fibers [87]. 

10. Conclusions 
Considering the various studies conducted by researchers on the usage of recycled 

PET fibers and strips for soil stabilization and analysis of different soil properties, the main 
outcomes of the review are as follows: 

According to the majority of researchers, there exists an optimal content of recycled 
PET fibers and strips that leads to the maximum improvement in soil properties. How-
ever, this optimal percentage varies depending on factors such as soil classification and 
specific soil types. Through the examination of the impact of recycled PET fibers on soil 

0

2

4

6

8

10

Poylester fibers Polypropylene fibers recycled PET

1.42

8.6

1

Co
st

 ($
) f

or
 1

 k
g 

pr
od

uc
tio

n

Figure 22. Comparative cost analysis of different fibers [87].



Polymers 2024, 16, 1764 25 of 31

10. Conclusions

Considering the various studies conducted by researchers on the usage of recycled
PET fibers and strips for soil stabilization and analysis of different soil properties, the main
outcomes of the review are as follows:

According to the majority of researchers, there exists an optimal content of recycled
PET fibers and strips that leads to the maximum improvement in soil properties. How-
ever, this optimal percentage varies depending on factors such as soil classification and
specific soil types. Through the examination of the impact of recycled PET fibers on soil
stabilization, several studies have demonstrated that the enhancement in stress–strain
response is primarily recognized as the reinforcing effect of the PET fibers. These fibers
assist in the uniform distribution of stresses, resulting in a more desirable and controlled
deformation response.

Numerous studies have consistently demonstrated that the addition of recycled PET
fibers and strips does not considerably impact the dry density of soil. Instead, the primary
objective of incorporating PET fibers and strips is to strengthen the soil and enhance
its mechanical properties, rather than altering its density characteristics. Dry density is
primarily influenced by the compaction efforts employed during construction.

However, the addition of recycled PET fibers up to 1% and strips up to 2% has been
shown to have a positive and significant impact on the normal and shear stress values of
the soil, indicating mechanical improvements in soil stabilization. This reinforcement effect
contributes to the enhanced performance of the soil under loading conditions.

Furthermore, many researchers have examined the influence of increasing recycled
PET content on the CBR value. In general, the value of the CBR gradually increases with
the addition of PET fibers up to 1.2% and strips up to 4% with an aspect ratio of 3. Beyond
this optimum, the CBR value starts to decrease. It is worth noting that a study performed
by Kumar, et al. [109] on black cotton soil observed an initial decrease in the CBR value,
followed by a gradual increase as the content of recycled PET fibers increased up to 3%.

Various research studies have shown that the addition of recycled PET fibers up to
2% and 0.5% has a positive effect on the hydraulic conductivity and resilience modulus
of clayey soil, leading to their increased values. Additionally, many researchers have
reported an improvement in the UCS of soil by incorporating recycled PET fibers and strips.
The majority of studies have found that the maximum UCS value is achieved with a 1%
content of recycled PET fibers and 1.5% of PET strips in clayey soil, although there may be
variations depending on the soil type. When it comes to the cohesion and internal friction
angle of soil, the addition of recycled PET fibers has been found to gradually increase both
parameters. The extent of this increase depends on the specific soil type. The maximum
improvement is seen in clayey soil when using PET fibers up to 1% and PET strips up to
2% with a length of 20 mm. In the case of recycled PET strips, the values of cohesion and
friction angle of the soil gradually increase, considering both the soil type and the length of
the strips.
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