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Abstract: Gene therapy is the technique of inserting foreign genetic elements into host cells to achieve
a therapeutic effect. Although gene therapy was initially formulated as a potential remedy for specific
genetic problems, it currently offers solutions for many diseases with varying inheritance patterns
and acquired diseases. There are two major groups of vectors for gene therapy: viral vector gene
therapy and non-viral vector gene therapy. This review examines the role of a macromolecule’s
chemical and physical architecture in non-viral gene delivery, including their design and synthesis.
Polymers can boost circulation, improve delivery, and control cargo release through various methods.
The prominent examples discussed include poly-L-lysine, polyethyleneimine, comb polymers, brush
polymers, and star polymers, as well as hydrogels and natural polymers and their modifications.
While significant progress has been made, challenges still exist in gene stabilization, targeting
specificity, and cellular uptake. Overcoming cytotoxicity, improving delivery efficiency, and utilizing
natural polymers and hybrid systems are vital factors for prospects. This comprehensive review
provides an illuminating overview of the field, guiding the way toward innovative non-viral-based
gene delivery solutions.

Keywords: gene delivery; non-viral vectors; DNA complexation; poly-L-lysine; poly(ethylene
imine); dendrimer; linear polymers; star polymers; hyperbranched polymers; brush polymers; comb
polymers; hydrogels; natural polymers

1. Introduction and Background to Gene Delivery

Gene therapy is a promising field in personalized medicine thanks to its efficient
molecular mechanisms combating diseases. The use of viral vectors, the most common
delivery vehicle currently employed in clinical trials, allows for the precise delivery of ther-
apeutic genetic material to cells [1]. Gene therapy is an emerging science that uses genes to
prevent or treat infections, allowing medical practitioners to address diseases by inserting
genes into patients’ cells rather than using drugs or surgery. Researchers are investigating
a variety of gene therapy procedures, including replacing mutant genes with healthy ones,
deactivating faulty genes, and introducing new genes to protect against disease. Therapeu-
tic genetic agents must enter host cell nuclei to cause gene expression [2]. Gene therapy
offers hope for treating incurable diseases [3], but the chemical fragility of therapeutic
genes limits its applicability. Naked genes lose bioactivity quickly due to serum nuclease
degradation [4]. Since therapeutic genes possess a negative charge and are hydrophilic,
this, coupled with the fact that they are most often of high molecular weight, results in poor
membrane permeability, low cellular uptake, and limited blood circulation stability. Gene
therapy faces numerous extracellular and intracellular barriers, including rapid clearance,
the immune response, lack of tissue specificity, endosomal escape issues, and offloading
of gene cargo from delivery vectors [3]. Gene therapy provides somatic cells with genetic
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information to produce therapeutic proteins, requiring an effective delivery system that
includes a plasmid-based gene expression system, a gene encoding the therapeutic protein,
and a stable mechanism to deliver the plasmid to target cells [5]. Gene delivery vectors
are crucial in overcoming these obstacles by transporting inheritable factors to targeted
cells, facilitating intracellular unpacking, and ensuring successful transfection processes [6].
Using appropriate gene delivery vectors maximizes the transfection efficiency of therapeu-
tic genes while minimizing adverse effects in patients. These vectors are essential for the
effective application of gene therapy. In achieving effective gene delivery, vectors must
ensure efficient cellular entry, endosomal escape, cytoplasmic trafficking, and offloading of
genetic material without eliciting immunogenic or cytotoxic responses [7,8]. Viral vectors
like retroviruses and adenoviruses are used in 70% of gene therapy trials. Despite high
efficiency, they pose safety risks, have low gene capacity, and are difficult to prepare [9].
Viral vectors, first used in the 1980s, employed the vaccinia virus to protect chimpanzees
from Hepatitis B. Non-viral delivery systems were also developed to induce phenotypic
changes via DNA exposure [10]. Non-viral vectors like lipid nanoparticles and cationic
polymers offer high gene loading capacity, safety, simplicity, and practicality, showing
significant potential for further clinical development and application [11]. Ideal non-viral
vectors for gene therapy should be therapeutic systems with low toxicity, efficient DNA
complexation, membrane penetration ability, and intracellular plasmid release capability.

The genetic manipulation of animals has significantly transformed the in vivo mod-
eling of human diseases. Mice and rats are frequently subjected to germline mutations,
ensuring that gene modifications are present in all cells. These genetically modified animal
models play a vital role in preclinical research across various diseases [12]. However,
it is now acknowledged that many disorders originate from somatic mutations during
early embryonic development, resulting in tissue mosaicism and impacting multiple organ
regions. The specific gene, nature, and timing of these mutations determine the severity of
the phenotype. Within the field of neuroscience, studies have demonstrated a correlation
between somatic mutations during brain development and neurological conditions, such
as cortical malformations and brain tumors. These conditions are often associated with
epilepsy [13,14]. Gene delivery has been explored in various real-life cases involving both
humans and animals. Non-viral methods are particularly desirable due to their reduced risk
of immune responses and insertional mutagenesis. Some examples include the following:
Electroporation is the most frequently utilized non-viral gene delivery technology because
of its precise dose control, diversity in suitable varieties of cells, and high effectiveness of
transfection and survival of cell levels [15]. Electroporation, initially identified by Neu-
mann et al. in 1982, allows for the intracellular transport of genetic material by sending
electrical impulses to cells. This electrical impulse causes a potential differential within
the cell membrane, breaking the lipid bilayer and creating transitory holes called aqueous
routes [16].

Frangoul et al. [17] sed MaxCyte GTx to electroporate the CD34+ hematopoietic stem
and progenitor cells from healthy donors with CRISPR-Cas9. They modified the BCL11A
gene to create an indel, which represses fetal hemoglobin. Two patients, one with sickle
cell disease and one with transfusion-dependent β-thalassemia, received a single CTX001
infusion and improved their conditions [17]. Electroporation can also be performed in living
organisms using methods like genome editing via oviductal nucleic acid (NA) delivery
(GONAD). Takahashi et al. developed GONAD, a technique for germline genome editing
via oviductal nucleic acid delivery and in situ electroporation in pregnant mice, achieving
successful editing at the two-cell embryo stage [18,19]. Liposomes, recognized in the 1980s
for drug delivery due to their biocompatibility and size flexibility, led to the global approval
of liposome-based drugs, paving the way for developing lipid nanoparticles (LNPs) as
gene delivery systems [20]. The Food and Drug Agency (FDA) has approved liposomal
formulations of drugs like doxorubicin for treating cancers such as Kaposi’s sarcoma, breast
cancer, ovarian cancer, and multiple myelomas. Cationic liposomes transfect cultured cells
via pH-triggered fusion and membrane content release [21]. Francia et al. showed that
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tailoring LNP properties, such as size and charge, can improve gene delivery specificity
and efficacy. Cationic lipid composition can alter biodistribution, shifting from the liver
to the spleen and lungs and enhancing delivery to target sites [22]. This review aims to
provide a comprehensive overview of macromolecules’ chemical and physical architecture
in non-viral gene delivery, explicitly focusing on polymeric systems. It will explore various
types of macromolecules utilized, discussing their performance, toxicity, and the challenges
encountered in gene delivery. It will also explore the prospects for polymers in non-viral
gene delivery, including potential solutions to enhance delivery efficiency and overcome
cytotoxicity. Furthermore, it will touch on utilizing natural polymers and hybrid systems.
Ultimately, the goal is to present a thorough understanding of the role of polymers in
non-viral gene delivery and their potential for future advancements.

2. Introduction and Background to Non-Viral Systems

Gene delivery is categorized into two distinct groups: non-viral and viral, where
non-viral is further subdivided into chemical and physical, as shown in Figure 1 below.
Chemical and physical techniques are referred to as transfection technologies. Adeno-
associated virus, herpesvirus, and lentivirus are examples of viruses utilized for viral gene
delivery. Non-viral gene delivery techniques can be classified as chemical or physical.
Chemical approaches include polymers and lipids, whereas physical methods use phys-
ical qualities and pressures to carry genetic code into cells. Biological strategies are also
known as transduction technologies. Biological approaches of direct injection of DNAs
and RNAs are based on hereditarily designed diseases to transfer non-viral DNAs into
cells by viral delivery. This method targets hard-to-transfect cell types for protein overex-
pression or knockdown [23]. Numerous biological obstacles, such as extracellular matrix
trapping, cell membrane piercing, endosomal escape, and nuclear transport, affect gene
delivery. Chemical–physical structures that improve stability, absorption by cells, and
endosomal escape—such as cationic polymers, PEGylation, and the surface modifications
of nanocarriers—assist in getting past these obstacles. Future approaches may concentrate
on stimuli-responsive substances that adjust to cellular conditions, maximize delivery, and
reduce off-target effects to achieve more efficient gene therapy.
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Non-viral gene delivery, otherwise known as transfection, involves introducing ex-
ogenous nucleic acids into target cells [24]. It is pivotal in nanomedicine for genetic-level
disease prevention and treatment in nano-biotechnology for recombinant protein produc-
tion [25]. Non-viral vectors have gained significant attention over the past two decades
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due to their advantages, such as low immunogenicity, safety, high gene loading capacity,
stability, and flexible chemical design, as shown in Figure 2 [11].
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Non-viral gene delivery, large-scale production, and chemical modification are rel-
atively straightforward. Crucially, non-viral vector systems are not limited by the gene
size to be delivered [26,27]. Non-viral gene delivery vectors are categorized into physical
methods—electroporation, sonoporation, magnetoporation, microinjection, needle injec-
tion, gene gun—and chemical systems, including polymeric materials. Most chemical
systems are cationic, allowing them to bind with negatively charged DNA through elec-
trostatic interactions, forming positively charged complexes. These complexes bind to
negatively charged cellular membranes and internalize into cells. Once inside, they must
escape endosomal and lysosomal degradation to deliver the transgene to the nucleus (for
DNA) or cytoplasm (for mRNA) [28]. Figure 3 below demonstrates the mechanism of
non-viral gene delivery [29].

Polymeric gene delivery systems employ biocompatible polymers to encapsulate ge-
netic material primarily via electrostatic complexation (DNA or RNA), preserve it from
degradation, and enhance cellular uptake. These systems provide design versatility, scala-
bility, and reduced immunogenicity. Over the past two decades, significant efforts have
focused on creating advanced tools and materials for nucleic acid delivery into cells [30].
Cationic lipids and polymers, known as transfection reagents, are widely used due to their
effectiveness and ease of use. They form lipoplexes and polyplexes with anionic NAs,
facilitating intracellular delivery [31]. Gene delivery has been transformed by mRNA tech-
nology, which offers a flexible platform for quick development and tailored treatments [32].
In some aspects, it is an ideal regimen to treat a variety of illnesses, including genetic
problems and infectious diseases, since it can direct cells to manufacture particular proteins.
Recent developments in targeted delivery, cellular uptake, and mRNA stability have been
greatly enhanced by the use of lipid-based nanoparticles and other nanoparticle-based de-
livery methods. This has demonstrated the promise of mRNA in customized medicine and
pandemic preparation, leading to effective uses in vaccinations and treatments. The current
research and development demonstrate the revolutionary effect of mRNA on gene ther-
apy [33]. Liposome and cationic lipid transfection have become among the most commonly
used methods for gene delivery, introducing foreign genes into cells. In most gene therapy
efforts, the primary goal of using liposomes for transfecting foreign genes is to prevent their
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toxicity from harming the body. Consequently, factors such as the liposome-to-plasmid
ratio, cell density, transfection time, and serum level in the medium all affect transfection
efficiency. To improve transfection efficiency and safety, ongoing research is necessary to
explore optimal transfection conditions [34]. The development of polymer systems for
gene delivery has been slower than lipid systems due to the complexity of polymer design,
synthesis, and optimization. Polymers often face challenges with biocompatibility and
toxicity, requiring extensive modifications to ensure safety and efficacy. In contrast, lipid
systems benefit from established, proven technologies and simpler formulation processes.
Despite these hurdles, ongoing research aims to address polymer limitations and enhance
their development pace.
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Polymer-based drug delivery systems (DDSs) have received considerable attention
for their ability to target tumor tissues and enhance therapeutic efficacy. FDA-approved
biodegradable polymer poly(L-lactide-co-glycolide) (PLGA) has led to clinically approved
formulations like Decapeptyl, Suprecur MP, and Lupron Depot [35]. Polymer-based
drug delivery systems (DDSs) enhance therapeutic bioavailability, safety, and efficacy
by regulating drug release rates targeting specific biological sites. Utilizing biodegradable,
bio-absorbable polymers, these systems offer a safe and effective strategy to overcome
chemotherapy limitations in cancer treatment [36]. An effective non-viral systemic gene
vector was created by covering the polyplex micelle with a hydrophobic layer between
poly(ethylene glycol) shells and complexed pDNA cores. The hydrophobic layer was
created by easily complexing pDNA with mixed block copolymers [37]. Polymeric systems
show capacity for non-viral gene delivery, with cationic polymers forming DNA complexes
and facilitating cellular delivery. These polymers have been extensively studied for their
potential in gene delivery applications.

3. Macromolecules Used in Gene Delivery

Over the past few decades, biotechnological developments have driven the explosive
growth of macromolecular drug discovery, which includes DNA, RNA, peptides, and
proteins [38]. These bio-macromolecules are used in drug delivery in several ways, such
as carrier materials, active pharmaceutical components, and targeting agents. The U.S.
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FDA categorizes macromolecules into various categories: vaccines, blood products, al-
lergenic extracts, transplantable human tissues, DNA therapy preparations, therapeutic
cell preparations, and reagents for detecting infectious agents [39]. Macromolecules as
potential therapeutic options have attracted more attention because of their unique affinity,
target specificity, and multifaceted functions, especially when treating cancer, a widespread
and rapidly rising worldwide health issue [40]. Non-viral gene delivery systems utilize
biocompatible materials like lipids, DNA, and cationic polymers, reducing immune re-
sponse risks. These approaches enable safe, effective gene delivery, leveraging conjugate
complexes and plasmids [41]. Physical non-viral gene delivery methods, such as microin-
jection, gene gun, electroporation, and sonoporation, introduce genetic material into cells,
as illustrated in Figure 4 below [42]. Needle injection directly delivers genetic elements,
while ballistic DNA injection uses gold-coated DNA particles. Electroporation, sonopora-
tion, and photoporation create membrane pores with electric pulses, sound waves, and
laser pulses. Magnetoporation concentrates nucleic acids into target cells using magnetic
particles and an external magnetic field, and hydroporation manipulates cell permeability
via the hydrodynamic capillary effect.
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Non-viral chemical techniques use synthetic or natural substances to generate parti-
cles enhancing gene transfer into cells [10,44]. Non-viral chemical vectors enter cells via
endocytosis. Two types, liposomes and polymers, facilitate this process. Liposomal vectors
form lipoplexes, enhancing gene delivery, while polymer-based vectors create polyplexes
through DNA interaction. These approaches efficiently transfer genetic material into cells
without viral vectors.

3.1. Role of the Chemical and Physical Architecture of Macromolecules for Non-Viral Gene Therapy

Non-viral gene delivery strategies use different macromolecules to convey genetic
information to cells. The toxicity, chemical functionality, and physical architecture of these
macromolecules differ. This article covers six classes of macromolecules involved in non-
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viral gene transport. Linear polymers are synthesized via living polymerization methods,
such as atom transfer radical polymerization (ATRP) [45], which is a very efficient method
for producing well-defined polymers or copolymers having a predefined molecular weight,
a narrow molecular weight dispersion, and a high degree of chain end functionality, the
controlled/living polymerization process, or reversible addition-fragmentation chain trans-
fer (RAFT) [46]. The controlled/living radical polymerization process enables exact control
over the molecular weight, polydispersity, and polymer design, and is functionalized with
amine or carboxyl groups to enhance DNA binding for moderate transfection efficiency.
Polymers as non-viral vectors are advantageous because they are simple to synthesize, inex-
pensive, can be designed to be biodegradable, are non-immunogenic, and can be extensively
modified [42–45]. They protect nucleic acid drugs by forming polyelectrolyte complexes.
Commonly used polymers in gene therapy include poly-L-lysine (PLL), poly(ethylene
imine) (PEI), polyamidoamine (PAMAM), poly-L-lysine-grafted-polyethylene glycol (PLL-
g-PEG), hydrogel, and natural polymers. Their characteristics and limitations are detailed
in Table 1 below.

Table 1. Structural characteristics and limitations of various polymeric materials used in non-viral
gene delivery.

Polymers Structure Characteristics Limitations

Poly-L-lysine (PLL)
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Table 1. Cont.

Polymers Structure Characteristics Limitations

Natural polymers include
chitosan, pullulan, dextrin,

and hyaluronic acid.
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Limited mechanical
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3.1.1. Linear Polymers

Linear polymers are a crucial class of materials for non-viral gene delivery, valued for
their straightforward structure and ease of functionalization. Below are some commonly
used linear polymers in this field.

Poly-L-lysine (PLL)

Poly-L-lysine (PLL) is a synthetic linear polypeptide made of repeated L-lysine
residues. PLL is well-known for its capacity to bind DNA that is negatively charged
and form stable complexes for gene delivery, particularly when the molecular weight of
the DNA is more than 3000 Da. PLLs are met with difficulties such as complex instability
in serum, poor endosomal escape, and cytotoxicity, despite their ease of chemical manipu-
lation and promise for functionalization. These restrictions can be lessened, however, by
making changes like PEGylation, which improves stability and decreases toxicity, or by
adding reduction- or pH-sensitive groups to increase transfection efficiency and target-
ing [47]. Both PLL and its low molecular weight analogs, oligolysines, were studied for
their ability to condense DNA into nanoparticles and facilitate its delivery to cells [48], as
shown in Figure 5.
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Nayvelt et al. proposed that DNA can condense into nanoparticles with various
shapes, such as toroids, spheroids, cubes, and rods, through the action of oligo- and poly-
L-lysine [49]. Korolev et al. identified salt-dependent and salt-independent interaction
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regimes between oligolysines and plasmid DNA [50]. Modifying PEI with PLL improved
transfection efficacy in HeLa cells and decreased toxicity [51]. Malik et al. demonstrated
that polylysine-modified PEI can activate genetically engineered mesenchymal stem cells
for combinational suicidal gene therapy in glioblastoma, presenting a promising treatment
strategy [52]. Kodama et al. developed dendrigraft poly-L-lysine for gene delivery, creating
a ternary complex with γ-PGA and DNA that showed high transfection efficiency in various
tissues.

In contrast, others synthesize poly-L-lysine copolymers to enhance gene delivery [53,54].
Yu et al. created a copolymer by grafting poly-L-lysine onto chitosan, which improved trans-
fection effectiveness and reduced cytotoxicity in vivo. Combining PLL’s strong DNA bind-
ing capabilities with the degradation and compatibility of chitosan produced higher trans-
fection effectiveness than using either polymer alone [55]. PLL, a cationic homopolypeptide
with positively charged amino groups at pH 7, forms replica particles (RPs) that co-adsorb
plasmid DNA for gene delivery, enabling crosslinked PLL-based gene transfer systems.

Linear Poly(ethylene imine) (PEI)

Poly(ethylene imine) (PEI) is a cationic polymer composed of secondary amino groups
and ethylene units (-NH-CH2CH2-). It is widely used as a transfection reagent and nanocar-
riers in drug delivery systems, improving the effectiveness of targeted therapies and gene
treatments. While PEI has been extensively studied and utilized as a carrier for gene deliv-
ery, its main drawback is its toxicity [56–58]. PEI is also known as polyfunctional aziridine,
originating from aziridine ring-opening polymerization. Its high positive charge density
potential arises from protonated amino groups in the chain on every third atom [58,59].
The linear (CH2CH2NH)n structure is illustrated below in Figure 6 [60,61].
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The diverse PEI compositions provide unique structures with different characteristics
and relativities. Zhou et al. developed a modified PEI derivative with reduced cytotoxicity
that was obtained by treating PEI with a cyclic amine derivative. This derivative showed
promising anti-tumor properties, inhibiting CXCR4 and tumor cell invasion [62].

Gupta et al. demonstrated enhanced gene delivery to hepatocytes using a novel formu-
lation called Glc-PEG-PEI, composed of galactose, poly(ethylene glycol) (PEG), and (PEI).
Their study suggests that Glc-PEG-PEI has superior transfection efficiency compared to
conventional PEI carriers. This finding highlights Glc-PEG-PEI as a promising candidate for
liver-targeted gene delivery [63]. He et al. synthesized poly(5-methyl-5-allyloxycarbonyl-
trimethylene carbonate) using immobilized porcine pancreas lipase [64]. Researchers
enhanced PMAC by incorporating epoxide groups and PEI to create PMAC-g-PEI, which
exhibited improved transfection efficiency and reduced cytotoxicity in 293T cells compared
to PEI alone. Subsequent modification with DTC produced P(MAC-co-DTC)-g-PEI, a
promising gene delivery vector [65]. Scheme 1 below depicts the synthesis process for
P(MAC-coDTC)-g-PEI. The investigation of several facets of PEI utilization is presently
in progress.
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PEI as a Co-Delivery System for Drugs

PEI utilized as a drug co-delivery system can be found in linear and hyperbranched
(or branched) forms, with its properties and applications varying significantly depending
on the structure. PEI is known for its effectiveness and cost-efficiency and is widely used in
various applications, particularly as a nucleic acid transfection agent. Studies have shown
its potential as a co-delivery system, such as when combined with amine-functionalized
biochar or PEI-functionalized magnetic Fe3O4 systems. These combinations enhance drug
release and functionality [66,67]. Additionally, PEI and its derivatives, like N-Ac-L-Leu-PEI,
show promise for gene delivery, particularly for CpG oligo-deoxy nucleotides. These oligo-
deoxy nucleotides are crucial for inflammation resistance, bone resorption, and modulation
of cell apoptosis [68]. Yoshitomi et al. observed an enhanced accumulation of astaxanthin
in Haematococcus pluvialis cells upon PEI addition, attributed to increased reactive oxygen
species production and oxidative stress [69]. PEI versatility extends to serving as a co-
delivery system in various research areas, including anticancer drug delivery, cancer gene
therapy, and drug adsorption enhancement.

Docetaxel stands as a cornerstone in chemotherapy, particularly for resistant prostate
cancer [70], yet formidable drug resistance impedes its clinical efficacy. Combining gene
therapy with chemotherapy, a durable strategy, is proposed due to DTX’s varied resistance
mechanisms, although the differing properties of DNA and chemotherapy drugs pose
challenges in carrier delivery [71]. TAT peptide, derived from HIV-1, enhances gene vector
uptake and transfection efficiency, offering a potential solution. Dong et al. engineered
TAT-PEG-PEI-OA, a sophisticated PEI-based carrier integrating TAT peptide, oleic acid, and
PEG, facilitating the concurrent delivery of pDNA and DTX. Characterized by a particle
size of 270 nm and a zeta potential of 22 mV, the complex exhibited notable cytotoxicity
against tumor cells, with 1.5 times higher transfection efficiency than control groups after
24 h, suggesting potential for sustained drug delivery within tumor tissues [72].

3.1.2. Hyperbranched Polymers

Hyperbranched polymers are synthesized through a one-pot polymerization process
involving multifunctional monomers, which leads to a highly branched structure.
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Hyperbranched PEI

Branched polyethyleneimine is a hyperbranched polymer synthesized via the acid-
catalyzed ring-opening polymerization of aziridine monomers. Each branch contains
3–35 nitrogen atoms, forming a spherical internal structure that can encapsulate nanoparti-
cles, drug molecules, and other small molecules [73]. PEI is a synthetic branched polymer
of ethylene imine monomers [74]. Branched PEI has a unique structure containing nu-
merous primary, secondary, and tertiary amines [75]. The synthetic structure of branched
H(NHCH2CH2)nNH2) is shown below in Figure 7.
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Chen et al. created a high-performance PEI-graphene oxide (GO) composite gene
vector by reacting carboxyl groups with amino groups. The resulting branched PEI-
GO showed reduced toxicity and increased transfection efficiency compared to 25 kDa
PEI [76]. Cook et al. synthesized a hyperbranched poly(ethylene imine-co-oxazoline)
via thiol-yne reaction and acid hydrolysis. While it showed reduced cytotoxicity, its
transfection efficiency was slightly lower than the standard, indicating a need for further
modifications to enhance performance and suitability for various applications [77].
Hyperbranched poly(ethylene imine) (HPEI) is a leading non-viral gene vector but faces
challenges with dose-dependent cytotoxicity and lack of targeting. PEG was grafted
onto HPEI to address these issues, lower cytotoxicity, and improve gene transfection.
A folate moiety was also attached to PEG for targeted delivery to cancer cells. This led
to the development of folate-targeted, PEG-modified HPEI (FA-PEG-HPEI), as shown
below in Scheme 2A,B [78].

FA-PEG-HPEI, with its hydrophilic FA-PEG chains and a hyperbranched HPEI core
rich in amines, chelates ferrous ions and provides alkali for Fe3O4 nanocrystal synthesis. In
a nitrogen atmosphere, ferrous ions bind to the amines and react with the alkali, forming
ferrous hydroxide/FA-PEG-HPEI. Through microwave digestion, heating, aging, and
dialysis, Fe3O4 NCs stabilized by FA-PEG-HPEI are produced, forming Fe3O4/FA-PEG-
HPEI nanocomposites, as shown in Scheme 2B–D. Exposure to air during synthesis and
transfer converts some ferrous hydroxide to ferric hydroxide, which forms Fe3O4 NCs
upon microwave heating. These nanocomposites are magnetic, folic acid-targeted gene
vectors, as illustrated above in Scheme 2E [78].
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(A,B), preparation of Fe3O4 nanocarriers (NCs) within FA-PEG-HPEI (B–D), and their subsequent
magnetofection study (E) [78].

Poly(β-amino ester) (PβAE)

PβAE is a cationic polymer synthesized by reacting acrylates with amines via Michael
addition reactions [79]. PβAE is biodegradable, biocompatible, and pH-responsive, making
it an attractive option for nucleic acid delivery applications [80]. The polymer forms
backbones with ester bonds easily degraded by hydrolysis under physiological conditions.
Upon hydrolysis, the polymer breaks down into small molecules, such as bis(β-amino
acids) and diols, which are considered harmless to mammalian cells [81]. Highly branched
PβAEs are synthesized using triacrylates and an amino moiety with two reactive sites, as
illustrated below in Figure 8. Moreover, highly branched PβAEs have been used to deliver
minicircle DNA to treat neurological diseases [82].
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PβAEs are excellent transfection agents, and they have been used in many gene
delivery applications. For example, PβAEs have demonstrated great transfection efficiency
with little cytotoxicity when employed to introduce plasmid DNA into cells for gene
therapy. PβAEs formed stable polyplexes with nucleic acids, which allowed them to
transfer genes more effectively than traditional cationic polymers like PEI, according to
one research. Utilizing PβAEs to transfect primary cells was another application that
demonstrated the potential of these particles for therapeutic gene transfer. PβAEs have also
been investigated for the delivery of RNA molecules, such as messenger RNAs (mRNAs)
and small interfering RNAs (siRNAs), with encouraging outcomes for research on protein
expression and gene silencing [84].

3.1.3. Dendritic Polymers

Dendrimers are highly branched polymers with well-organized 3D morphology that
possess perfect symmetry or near-perfect symmetry to deliver drugs, including biological-
based drugs, such as genes. Dendrimers are 3D structures that could be described as
resembling snowflakes. They feature a central core with branches extending outward in
a perfectly ordered, repetitive pattern, creating a precise and uniform architecture. They
are produced by repeatedly assembling many layers around a central molecule through
covalent conjugation [85].

Dendrimers

Dendrimers are a revolutionary tool for non-viral gene delivery, offering a safe and
efficient alternative to traditional viral methods. These nanoscale polymers have a unique
tree-like branching structure, allowing precise control over their size, shape, and surface
functionality. The highly branched and regularly repeating building blocks of dendrimers
effectively isolate the core, creating a specific microenvironment. This isolation of an
encapsulated redox-active core has gained attention as a model for biological systems and
charge injection into nanoscale devices [86]. As shown in Figure 9 below, due to the highly
symmetrical physical architecture of the dendrimer, it mimics a snowflake that is capable
of featuring a unique electron-carrying path within an encapsulated π-conjugated system.
Unlike previously reported types, this dendrimer cannot be synthesized using standard
divergent or convergent methods. Site-selective synthesis is crucial, as the encapsulating
part’s size varies with the π-conjugation sites, and is larger in the inner and outer regions.
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capable of featuring a unique electron-carrying path within an encapsulated π-conjugated system [87].

A successful synthesis method utilizing a dialkyltriazeno group as a key protecting
group demonstrates the formation of snowflake-like dendrimers A and B. These dendrimers
contain linear oligo(phenylene ethynylene) molecular wires within branched poly(benzyl
ether)s, as illustrated above in Figure 9 [87,88]. By complexing with genetic material,
snowflake dendrimers protect it from degradation and facilitate cellular uptake through
endocytosis. Once inside, the dendrimer releases the genetic payload, enabling the ex-
pression of the intended gene. With their high degree of branching and biocompatibility,
snowflake dendrimers have shown great promise in delivering large genetic payloads with
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high efficiency and specificity. Snowflake dendrimers are poised to make a significant
impact in the field of gene therapy, potentially treating a wide range of genetic diseases.
Dendrimers have several uses in medication delivery and biomedicine. Poly(amidoamine)
(PAMAM) dendrimers, for example, are employed for targeted drug administration as well
as nanoparticles in imaging. PAMAM dendrimers also promote transdermal medication
administration by enhancing drug penetration through the skin [89].

PAMAM–Polyamidoamine

The branched, tree-like structure of hyperbranched and dendritic polymers, such
as PAMAM dendrimers, is produced via repeated chemical synthesis processes. These
polymers have a high concentration of amine groups on their surfaces, enabling effec-
tive condensation and DNA binding. Compared to linear polymers, hyperbranched and
dendritic polymers exhibit higher transfection efficiencies. PAMAM is the dendrimer
most frequently used for non-viral gene delivery, as shown in Figure 10 below. “PAMAM
generation” describes the number of consecutive steps synthesizing PAMAM dendrimers.
PAMAM’s molecular weight, surface charge, and cytotoxicity increase with each increasing
generation [90].
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PAMAM has substantial cytotoxicity and quick bloodstream clearance but has superior
flexibility, lesser immunogenicity, and higher transfection efficiency compared to other poly-
meric carriers [92]. The positive charge on PAMAM’s surface induced by its terminal amino
groups causes cytotoxicity [93]. Due to their high reactivity, chemical changes are typically
made to the terminal primary amine groups that exist on the surface of the dendrimers
to reduce their toxicity. Various chemical modifications of PAMAM dendrimers serve to
address specific challenges in biomedical applications as shown in Table 2 below. These
modifications include enhancing hydrophobicity/lipophilicity balance by incorporating
alkyl carboxyl, PEG, and cholesteryl chloroformate [93]. Biodegradability is improved by
introducing GLFG oligopeptide and a thioketal core [94,95]. PEG attachment via a disul-
fide bond and carboxy betaine acrylamide incorporation prolongs circulation and reduces
clearance. This modification enhances the vector’s stability and bioavailability [96,97].

Additionally, cell binding and nucleic acid binding improvements are achieved by uti-
lizing a gold nanoparticle core and PAMAM-coated liposomes [97,98]. Modifications such
as ASSLNIA oligopeptide and the inclusion of monosaccharides like glucose and mannose
are implemented to target specific tissues [99,100]. Pishavar et al. varied PEGylation, alkyl
carboxylation, and cholesteryl chloroformate addition ratios to enhance the complexes’
hydrophobicity and lipophilicity balance [93].
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Table 2. Modification of PAMAM.

Problem Being Solved Modification Ref.

Hydrophobicity-to-lipophilicity ratio Alkyl carboxylate, PEG, and
cholesteryl chloroformate [93]

Improvement of biodegradability GLFG oligopeptide, thioketal core [94,95]

Prolonged blood circulation half-life
and reduced clearance

PEG attached via a disulfide bond,
carboxy betaine acrylamide [96,97]

Enhanced cell binding and nucleic
acid binding

Gold nanoparticle core with
PAMAM-coated liposomes [97,98]

Tissue targeting
ASSLNIA oligopeptide,

monosaccharides (glucose and
mannose)

[99,100]

PAMAM is the most extensively studied and well-characterized dendrimer class,
being the first to be synthesized and commercialized [101]. Dendrimer synthesis can
be conducted in various ways, the most widely utilized being convergent and divergent
methods. Some innovative techniques have been developed in the past few years, including
joint convergent–divergent, click synthesis, hyper cores, branching monomers, double
exponential, and Lego chemistry [102]. Primary amine-containing linear chain molecules
can make up the PAMAM dendrimer core. As seen below in Figure 11, the most common
dendrimer core molecules are ethylenediamine, ammonia, and cystamine, offering multiple
branching points for dendrimer growth.
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Dendrimer generations are produced through a repetitive two-step process involving
Michael addition reactions and alkyl acrylate, yielding terminal ester groups [103,104].
PAMAM dendrimer generations are produced through ester amidation with ethylenedi-
amine, resulting in exponential increases in molecular weight, atoms, and terminal amine
groups, with a 10 Å radius increase per generation. Dendrimer growth patterns shift
from linear to globular shapes with increasing generations, creating cavities suitable for
encapsulating and adsorbing biomolecules, making them ideal for biomedical applica-
tions [104]. PAMAM’s dendritic properties, characterized by tree-like architecture and
exponential growth, distinguish it from other polymers, enabling enhanced drug delivery,
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controlled release, and encapsulation of imaging agents [105]. Mastorakos et al. show
that amine-functionalized hydroxyl-terminated (PAMAM) dendrimers efficiently compress
plasmids. They also showed that triamcinolone acetonide improves the dendrimer-gene
complex’s nucleus localization, significantly increasing cell intake and transfection effi-
ciency [106]. At the same time, high-generation PAMAM dendrimers are highly effective
for gene transfection, but their cytotoxicity and high cost limit their broad applicability. To
address this, conjugation with reactive oxygen species (ROS)-responsive poly(propylene
sulfide) (PPS) has led to the development of low-cost amphiphilic PAMAM dendrimers
that exhibit high transfection efficiency, low cytotoxicity, and efficient DNA compression
and release capabilities [107].

The primary concerns regarding PAMAM dendrimers are toxicity and safety, as their
cytotoxicity—predominantly higher in cationic derivatives compared to neutral or neg-
atively charged ones—depends on concentration, charge, and generation, with toxicity
increasing with higher generation and concentration [108,109]. Several studies, including
those by Wang et al., have demonstrated a decrease in PAMAM toxicity through PEGyla-
tion [110], as shown below in Figure 12.
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Najlah et al. functionalized PAMAM-G0 and PAMAM-G3 with diethylene glycol and
lauroyl chains to reduce naproxen’s cytotoxicity and enhance its pharmacokinetic profile,
introducing a novel surface modification approach [111]. This study showed improved
transport of naproxen conjugates across Caco-2 cells with reduced cytotoxicity, using DEG,
lauroyl, and pyrrolidone derivatives of PAMAM-G0 and PAMAM-G3, enhancing their
potential for drug delivery applications [112,113], and half-generation anionic PAMAM
has shown very low cytotoxicity, lytic, and hemolytic properties across a wide concen-
tration range, as well as no in vivo toxicity, indicating its potential for future biomedical
applications.

3.1.4. Comb Polymers

Comb polymers are polymers characterized by a main backbone (the shaft) with
a dangling functional group that is part of the repeat unit (the teeth). Comb polymers
have emerged as a promising tool in gene delivery, offering high transfection efficiency
and low cytotoxicity. These polymers comprise a hydrophobic backbone with oligolysine
pendent groups, forming stable polyplexes with DNA [114]. Studies have shown that
comb polymers outperform many commercial reagents in transfection efficiency while
maintaining high cell viability, as shown in Figure 13A. The hydrophobic backbone con-
strains interactions with DNA, reducing binding free energy and enhancing transfection
efficiency. Further modifications, such as incorporating zwitterionic components, aim to
reduce cytotoxicity and enhance colloidal stability.
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Figure 13. Typical chemical structures of comb polymers comprised of hydrophobic backbone with
oligolysine pendent groups [114].

Olden et al. showed that poly(2-dimethylaminoethyl methacrylate) (pDMAEMA)-
grafted comb polymers have demonstrated high transfection efficiency and cell viability
in human T-cell transfection, as shown above in Figure 13B [115]. The success of comb
polymers in gene delivery has led to the exploration of their combination with physical
delivery techniques, such as sonoporation, for enhanced in vivo delivery. Overall, comb
polymers offer a promising approach to gene delivery, with their unique structure and
properties enabling efficient and safe transfection of cells [114]. Polylactic Acid (PLA) is an
aliphatic polyester formed via the ring-opening polymerization of lactide monomers. The
homopolymerization of methacrylate-functional PLA macromonomers via RDRP creates
PLA comb polymers with a polymethacrylate backbone, as shown in Figure 14 below.
Synthetic methods include grafting from surfaces, chain extension with small monomers,
and copolymerization with other macromonomers. Research focuses on comparing these
dense polymers with their linear counterparts [116].
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Figure 14. Schematic of comb polymer synthesis with PLA side chains via the macromonomer
approach. (A) Surface-initiated polymerization of the macromonomer. (B) Use of a macroCTA
for macromonomer polymerization, followed by NiPAm chain extension, forming a palm tree-
like structure. (C) Copolymerization of different macromonomers to produce heterografted comb
polymers [116].
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Wu et al. synthesized a triblock copolymer (PEO-b-PHEMA-g-PLA-b-PNiPAm;
Ð = 1.35) via RAFT polymerization of LA5MA using a PEO macro-CTA, followed by
NiPAm chain extension [117]. PLA macromonomers with a methacrylate ω-end function-
ality were synthesized using functional initiators during ROP. Following the post-radical
polymerization of the comb polymer backbone, the α-end functionality decorates the
side chain ends, as shown in Figure 14 [116]. Poly(L-lysine)-grafted-poly(ethylene glycol)
(PLL-g-PEG) is an example of a comb polymer.

Poly(L-lysine)-grafted-poly(ethylene glycol) (PLL-g-PEG)

Nanomaterials are widely used to deliver treatments, including anticancer medicines,
peptides, proteins, and nucleic acids [118,119]. One critical aspect of nanoparticle (NP)
delivery systems is the material utilized for NP synthesis. The cationic grafted copolymer
PLL-g-PEG, where the hydrophilic PEG component is extensively used to reduce clearance
and enhance the biocompatibility of biomaterials, NPs, and pharmaceuticals [120], as
shown below in Figure 15. PEGylation, or PEG coating, effectively prevents liver and
kidney clearance of molecules and is commercially employed to improve the circulation
characteristics of several proteins, including asparaginase and interferon [121,122].
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PEG imparts beneficial properties by reducing serum protein adsorption onto NP
surfaces, preventing protein adsorption, and decreasing NP cellular uptake to about 10% of
that observed with comparable uncoated NPs [123], with its molecular properties—such as
the molecular weight and extent of copolymer grafting—also influencing this adsorption.
Rausch et al. discovered that the 10–20% PEGylation of PLL effectively prevents the
formation of large aggregates with serum proteins [124]. At the same time, Gref et al.
determined that 5 kDa PEG is optimal for avoiding plasma protein adsorption on the
surface of PLA NPs [125]. PLL-g-PEG’s ϵ-amino groups, which are cationic at physiological
conditions, allow the polymer to electrostatically self-assemble with negatively charged
molecules, generating nanoparticles called polyion complexes [126]. Synthetic gene delivery
applications have used PLL and other cationic polymers to form complexes with nucleic
acids, leveraging specific properties to enhance delivery efficiency [127–129].

3.1.5. Brush Polymers

The brush-like polymer is a unique branching structural polymer created by grafting
short-side chain molecules onto the backbone chain [130]. Macromonomers are macro-
molecules with one or more functional groups that allow them to act as monomers for
polymerization [131]. The three methods of “grafting-through” (the brush-like polymer
is polymerized via macromonomers polymerization), “grafting-to” (the brush-like poly-
mer is prepared by grafting the side chain integrally to a backbone), and “grafting-from”
(the brush-like polymer is constructed through monomers’ polymerization from a back-
bone) were generally used in the synthesis of the brush-like macromolecules [132,133].
Well-defined brush polymers with a high grafting density can be achieved through the
polymerization of macromonomers [133].

Li et al. discovered that brush cationic polymers, namely poly(oligoethylene glycol)
methacrylate-cationic hyperbranched polymers, exhibit enhanced biocompatibility, lower
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steric hindrance, and improved siRNA binding and gene silencing efficacy, making them
promising for treating heterotopic ossification [134]. Burdynska et al. used the grafting-
from method to generate bottle-brush polymers with shorter and longer grafted chains or a
limited molecular weight variation [135]. Nese et al. created a pH-responsive fluorescent
brush polymer by grafting fluorescein in O-methacrylate onto the brush polymer’s side
chain using ATRP. This polymer showed prominent fluorescence intensity characteristics in
essential situations and did not fluorescent in neutral or acidic environments [136]. Chen
et al. developed a unique brush-on-brush architectural polymer by integrating ATRP,
ring-opening polymerization (ROP), and a click chemical reaction, with poly(oligo(ethylene
glycol) acrylate) acting as the brush. Brush-on-brush architectural polymers show different
chain lengths to mitigate the repulsion between them, which can be achieved by increasing
the density and dimensionality of the chains on each side [137].

Polymer brushes are materials with ultra-dense chains extending from a surface
where the distance between neighboring chains is less than twice the gyration radius
of a free polymer chain [138]. A well-defined coil-comb poly-cationic brush with “CD-
containing cationic star polymers” as side chains were synthesized via atom transfer radical
polymerization, as illustration below in Scheme 3.
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ticles (DOX-NPs), and multifunctional DOX-NPs/pDNA complexes [139].

Combining brush-like architecture with CD-based star polycations, this brush struc-
ture showed superior gene transfection efficiency in COS-7 and 293T cells compared to
individual star polycations or PEI25K. We used it to develop a multifunctional carrier
for the co-delivery of doxorubicin (DOX) and a p53-encoding plasmid [139]. Wang et al.
suggested that a PEG-based brush polymer containing disulfide links may facilitate the
particular release of siRNA to cancer cells [140]. Also, cellular intake, in vitro transfected
efficiency, and post-transfection survival of cells all indicated that the brush-like shape
improved nuclease stability, cell uptake, and siRNA distribution. In particular, its blood
removal half-life was raised 19 times. The PEG-bottle brush polymers’ anti-tumor prop-
erties and safety in vivo supported their use as an efficient long-circulating carrier for
siRNA silencing therapies. Blum et al. found that the amount of cell penetration peptide
arms significantly impacts the gene editing efficacy of brush polymers, emphasizing that
functionalized arms efficiently promote the editing of genes and protein delivery [141].

Additionally, Ahern et al. showed that the hydrophobicity and charge density of the
arms affected the cytotoxicity and efficacy of polymer-mediated transfection [142]. Nie et al.
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prepared organic base brush polymers for gene transfer by grafting polymethacrylic acid
onto the side chain of heparin, owing to the natural material’s high biocompatibility [143].
Therefore, various side chain changes can discuss several features of brush polymers to
fulfill the different needs of gene transport, such as toxicity to cells, mitochondrial escape,
and nuclear localization.

3.1.6. Star Polymers

Star polymers were frequently employed for gene transfer due to their precise struc-
ture, flexibility of modification, and increased transfection effectiveness [144,145]. Star
polymers are another example of branched macromolecules with linear polymer chains
covalently attached to a central core, so the final structure has one branched point per
macromolecule. Recently, their simplicity of synthesis, potential for high molar mass,
versatility, and distinct characteristics have sparked great interest for use in gene delivery
applications. Many star polymers with polycationic arms have been produced for gene
transfection. However, their efficacy is frequently hampered by toxicity [146,147]. Studies
have revealed that the chemical structure and molar mass of these star polycations substan-
tially impact their toxicity to treated cells [148,149]. Ding et al. created star polymers by
blocking polymer arms using electron transfer ATRP. Scientists first produced poly(butyl
acrylate-tert-butyl acrylate) using a linear block to make a multi-arm star block polymer.
Then, they crosslinked the end groups of the linear molecules with divinylbenzene [150].
To create a multi-arm star polymer using an arm-first method that produced a 70% yield in
two steps, Zhang et al. used double styrene-functionalized tetraphenylethene displaying
aggregation-induced emission (AIE) traits as the core and polystyrene, polyethylene, or
polyethylene-b-polycaprolactone as the arms, as shown below in Figure 16 [151]. Yoshizaki
et al. used the arm-first approach to rapidly and quantitatively create different star poly(p-
methoxystyrene) using active cationic polymerization [152].
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Figure 16. Arm-first synthesis of a star-shaped polymer that employs the use of double styrene-
functionalized tetraphenylethene displaying aggregation-induced emission (AIE) traits as the core
and polystyrene, polyethylene, or polyethylene-b-polycaprolactone as the arms (A–E) [151].

Cho et al. demonstrated in vitro that PEG-armed star polymers could efficiently
transfer DNA and siRNA to S2 cells [153]. This study explores the potential of star- and
sun-shaped polymers with hyperbranched cores for gene delivery, providing a valuable
reference for future research. A polypeptide-PEG miktoarm star copolymer showed high
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cellular uptake and transfection efficiency in A549 cells, with moderate cytotoxicity, as
shown below in Figure 17 [154].
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The miktoarm star copolymer achieved 68% luciferase gene silencing efficiency at a
150 nM siRNA dose and enabled intracellular transport pathway visualization, allowing for
combined gene delivery and bioimaging. A star polymer with P(DMAEMA-co-OEGMA-
OH) arms efficiently delivered DNA and mRNA, providing insights for creating versatile
genetic material delivery systems [148]. Building on the advantages of PEI and PAE in gene
transfer, Huang et al. utilized a grafting-to technique to develop a distinctive star-shaped
PAE polymer, as shown above in Figure 17. This polymer consists of low molecular weight
PEI at the core, with low molecular weight LPAE forming the arms. This modified star-
shaped PAE displayed improved gene transfection efficacy and reduced cytotoxicity in
ADSCs, outperforming individual PEI and LPAE by 264-fold and 14,781-fold [155]. Wang
et al. proposed using hyperbranched-star PEI-g-PEG as a polycationic gene carrier to create
non-viral vectors for potential retinoblastoma gene therapy. The PEI-g-PEG effectively
condenses genes, and by optimizing the composition proportions, cationic nanoscale
complexes with PEG shells were obtained, ensuring efficient uptake and low toxicity [156].

3.1.7. Hydrogels

Hydrogel, a three-dimensional (3D) hydrophilic polymer network primarily composed
of water, is analogous to the physical microenvironment [157]. Hydrogels, which come in
a variety of physical forms including slabs, microparticles, nanoparticles, coverings, and
films, are frequently utilized in clinical practice and scientific research for applications such
as transplantation and regenerative medical testing, cellular immobilization, which involves
biological molecules or cell division, and as obstacle materials to regulate physiological
adhesions [158]. Hydrogels are excellent delivery vehicles for hydrophilic macromolecules
such as DNA due to their high loading ability and encapsulated vectors in the hydrated gel.
Their permeability, biocompatibility, and deformability make them ideal for applications
in medicine, with natural biological polymer hydrogels, such as chitin, alginate, gelatin,
collagen, and hyaluronic acid, demonstrating higher DNA encapsulation efficiency and
less DNA damage than synthetic polymers [159]. Hydrogel is a mesoporous polymer
network that can hold pharmaceuticals and be customized for target tissues. Hydrogels for
tendons or ligaments should have a tensile strength of 10–100 MPa, fracture toughness of
20–30 kJ m−2, and a fatigue threshold of 1000 J m−2. Additionally, hydrogels can prevent
tendon adhesion, demonstrating their versatility in treating tendon issues due to their
toughness, strength, and elasticity [160]. In Figure 18 below, one can see how the hydrogel
is applied in vivo.
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Schulze et al. encapsulated PEI-modified polyplexes and lipopolyplexes in PVA
hydrogels, forming NiMDS. These hydrogels offered targeted, long-term nanoparticle
release. This was achieved by controlling PVA crosslinkers and molecular weights [162].
Hydrogels manufactured from synthetic polymers, such as modified PEG and amphiphilic
block copolymers, provide more control over release characteristics [163,164]. Gelatin
hydrogels were utilized to distribute FGF plasmids, improving blood vessel development
by delaying gene breakdown for up to 28 days after being injected into hind limb skeletal
muscle, resulting in enhanced gene transfer capacity and decreased muscle necrosis for
four weeks [165].

Similarly, alginate hydrogels have been used for VEGF plasmid distribution [166],
while fibrin hydrogels have encapsulated and distributed HIF-1a plasmids [167]. Kong et al.
created a degradable hydrogel by combining different molecular weight alginates to regu-
late the rate of pDNA release [165]. The polymer segments responsible for ionic crosslinking
were designed to be mismatched in size. Using hydrogels to transport PEI/VEGF com-
pounds increased angiogenesis and blood perfusion in mice with ischemic hind limbs [166].
Despite their numerous benefits, hydrogel’s poor mechanical properties limit their use
in load-bearing applications. This disadvantage may result from the early dissolving or
movement of the gel in the targeted site [158].

3.1.8. Natural Polymers/Modification of Natural Polymers

Natural polymers have been explored for gene transfer because of their low toxicity
and biodegradability [168,169]. Natural polymers typically have changeable active sites,
allowing for improved physicochemical properties. Cationic polymers, whether linear
or branched, often have amine groups that can be protonated in acidic conditions. The
number of proton-able groups varies between cationic polymers, resulting in positive
charges dispersed along the leading chains and branches [170]. Natural polymers like
chitosan and pullulan are often considered more biodegradable and less toxic, but synthetic
polymers can also be engineered for adaptable degradation and high biocompatibility,
making both suitable for gene therapy [171,172]. Polysaccharides can adopt a helicoidal
structure and are classified as neutral (e.g., dextran), cationic (e.g., chitosan), as illustrated
below in Figure 19, or anionic (e.g., hyaluronic acid).
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Chitosan, a poly-D-glucosamine from deacetylated chitin, and its derivatives are
well-studied gene carriers. Transfection efficiency depends on the deacetylation degree,
molecular weight, plasmid concentration, charge ratio (amine to phosphate), serum concen-
tration, pH, and cell type [174]. Chitosan, a modified cationic copolymer of d-glucosamine
and N-acetyl glucosamine, is highly biodegradable, biocompatible, mucoadhesive, and an-
tibacterial. Its pH-sensitive nature, with a pKa of around 6.5, facilitates a soluble−insoluble
transition between a pH of 6 and 6.5, enhancing its use in tissue engineering, drug delivery,
and gene transfection [175]. Chitosan’s mucoadhesive properties enhance the oral and
nasal delivery of nucleic acid drugs. Modifications like methylation, PEGylation, and his-
tidinylation improve polyplex stability, endosomal escape, and cellular uptake. PEGylation
also increases water solubility and extends half-lives [176]. Nguyen et al. used sodium
tripolyphosphate (TPP) to encapsulate miR-33 in polyethylene glycol chitosan polymers
(chNPs), creating a vector that targeted mouse macrophages, reducing ABCA1 expression
and lowering liposterol outflow in cholesterol metabolism [177]. Zhou et al. modified
trimethyl chitosan (TMC) with the REDV peptide and PEG to deliver miR-126 into vascular
endothelial cells, enhancing cell proliferation and improving ischemic myocardial necrosis
through high transfection efficiency [178].

Chitosan derivatives:

Chitosan derivatives with improved solubility for gene delivery have been extensively
studied and reviewed [179,180]. Kritchenkov et al. explored hydrophilic and hydrophobic
covalent modifications of chitosan, with hydrophilic changes, such as conjugation with
PEG, being particularly effective in increasing solubility [181]. Hydrophilic modification of
chitosan, mainly through PEG conjugation, significantly enhances its solubility. Jiang et al.
found that PEGylation improved solubility, reduced nanoparticle size, and decreased zeta
potential without affecting siRNA binding. However, excessive PEGylation reduced cellular
uptake and transfection efficiency, making optimization essential. Other hydrophilic
modifications for gene delivery include dextran and poly(vinyl pyrrolidone) [179].

Hydrophobic modifications to chitosan, such as conjugation with stearic acid (SA) via
the EDC/NHS method, enhance cellular binding, nanoparticle stability, uptake, and DNA
dissociation [181–184]. Chitosan, a biocompatible and biodegradable cationic polysaccha-
ride, forms nanoparticles with negatively charged nucleic acids for intracellular transfection.
Its amino groups enhance lysosomal escape via the proton sponge effect. Chitosan is soluble
in acidic media but not in neutral or alkaline environments, limiting its gene transfection
use. Increasing solubility through low molecular weight chitosan or PEGylation expands
its application potential.
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Pullulan:

Pullulan (PULL), a water-soluble polysaccharide from Aureobasidium pullulans, con-
sists of maltotriose and maltotetraose units linked by α-d-(1 → 6) bonds, forming α-(1 → 4)
linked trimeric repeating units, and is ideal for drug delivery [185,186]. PULL is widely
used commercially in flocculants, blood plasma expanders, food additives, adhesives, and
dielectric materials. The FDA deems it “generally recognized as safe” for various uses,
including as an excipient in pharmaceutical tablets, and it is tested as a cancer vaccine
vehicle [187,188]. Due to their non-toxic, non-carcinogenic, and non-mutagenic properties,
PULL and its derivatives are extensively studied for medication and gene delivery. Addi-
tionally, PULL can be chemically modified by utilizing one or more of its nine hydroxyl
groups per repeating unit. These modifications can include hydrophobization, thiolation,
PEGylation, or conjugation with cationic substituents. PULL is often used for liver targeting
due to its strong affinity for the ASGPR in the liver [189–191]. PULL-PEI/siRNA complexes
were formed to deliver oligonucleotides to the liver [191] effectively. In another study,
PULL was used to create a polyplex with pDNA/siRNA for selective accumulation in
folate receptor-overexpressing HeLa cells, resulting in a low-cytotoxicity gene carrier that
successfully transmitted gene/siRNA [192]. PULL nanocarriers co-delivered doxorubicin
and beclin1 shRNA, enhancing the drug’s anticancer effect [193]. An amphiphilic cationic
polymer with deoxycholic acid, PEI, and PULL forms micelles with a PEI shell binding
shRNA and a DA core encapsulating anticancer drugs, overcoming chemotherapy resis-
tance [194]. Folate-coated PULL-based copolymer targets tumor cells, inhibiting cancer
growth more effectively than DOX or shBeclin1 alone [195]. Additionally, cationic PULL
derivatives, modified with quaternary ammonium groups, show promise as miRNA car-
riers. They form non-cytotoxic polyplexes with human umbilical vein endothelial cells,
suggesting their potential as delivery platforms for miRNA therapy [196].

Pullulan as a carrier for gene delivery:

Gene therapy applications of pullulan are being explored due to its biocompatibility
and non-toxicity, addressing the drawbacks of immunogenic and hazardous viral vectors.
Pullulan derivatives with metal chelating residues mixed with plasmid DNA in Zn2+

solutions create conjugates that target the liver. Chemically modified pullulan derivatives,
such as pullulan-Ti, pullulan-DTPA, and pullulan-Sm, show significant enhancement in
liver-specific gene expression when intravenously injected, outperforming free plasmid
DNA in gene delivery [187]. The pullulan-DTPA–plasmid DNA conjugate significantly
enhanced liver-specific gene expression, lasting over 12 days, and was higher than the
mixture form. Fluorescent microscopy confirmed liver localization and the pre-injection
of arabinogalactan and galactosylated albumin suppressed gene expression, indicating
hepatocyte transfection and the promise of Zn2+ coordinated pullulan for targeted gene
delivery [197].

Dextran:

Dextran, a benign and nonimmunogenic polysaccharide, is frequently utilized for
gene transfection and medication delivery due to its high water solubility and low tox-
icity. The chain is composed of α-d-glucose units joined by α-(1 → 6) glycosidic bonds,
with varying α-(1 → 4) or α-(1 → 3) links at the beginning [198]. Dextran, produced by
gram-positive bacteria like Leuconostoc and Streptococcus using sucrose, can be chemically
modified via etherification, esterification, amidation, and oxidation to enhance its trans-
port capacities [199]. Dextran, initially neutral, undergoes chemical modifications like
diethylaminoethyl-dextran [200] or aminoethyl methacrylate [201] to introduce positively
charged groups crucial for electrostatic interactions with genetic material [202]. Using
carboxymethyl β-dextran and protamine sulfate, a tri-drug carrier, enhances docetaxel
efficacy against drug-resistant cancers by combining DTX with chloroquine and ATG5-
targeting siRNA. This platform, assembled via hydrophobic and electrostatic interactions,
showed potent anticancer effects in vitro on MDA-MB-231 cells and in vivo in a mouse
xenograft model, effectively suppressing tumor growth and ensuring biosafety for treating
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triple-negative breast cancer [203]. A pH-sensitive biocompatible dextran nanocarrier for
prostate cancer gene delivery targets PSMA via urea-conjugated ligands. With a 40 kDa
dextran backbone and acetal-linked amine groups, it undergoes pH-triggered cleavage
in acidic endosomes to release siRNA, effectively downregulating the PD-L1 and CD46
genes crucial for immune evasion [204,205]. Dextran and chitosan-based nanoparticles for
miRNA delivery were developed, utilizing a redox-responsive polyelectrolyte complex
of thiolated dextran and chitosan with miR-145 [206], decorated with anti-nucleolin ap-
tamer AS1411 (apt-PEC) for targeted therapy [207], aimed at increasing the intracellular
expression of tumor suppressive miR-145 [208].

Hyaluronic acid:

Hyaluronic acid (HA) is an anionic linear polymer composed of non-sulfated gly-
cosaminoglycan chains with repeating disaccharide units of N-acetyl D-glucosamine and
D-glucuronic acid, as shown below in Figure 20, varying in molecular weight from 5 kDa
to 20,000 kDa; LMW HA is highly soluble in water, while HA polymers over 200 kDa
exhibit high water-holding capacity, crucial for maintaining hydration [209–212]. HA
polymers with molecular weights greater than 1.8 MDa are commercially available, ex-
hibiting remarkable physicochemical qualities like biocompatibility, biodegradability, and
non-inflammatory, non-toxic, and non-immunogenic activity [213,214]. Commonly used in
medicinal applications such as visco-supplementation, eye surgery, and drug delivery, HA
and its derivatives enhance medication delivery across various classes, including antibi-
otics, antiglaucoma medications, vasodilators, cytokines, and enzymes in both in vitro and
in vivo models [215]. It plays a vital role in cell adhesion, growth, and migration [216].
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HA’s high binding affinity for CD44 receptors is overexpressed on many tumor cells,
which makes it an effective targeting ligand for nanoparticle coating [217]. HA, known for
its receptor affinity, enhances cellular uptake synergistically. Its negative charge prolongs
therapeutic circulation, shielding against degradation by reactive oxygen species and
hyaluronidases in extreme pH conditions. HA nanoparticles (NPs), popular in DDSs, act
as carriers alone or with copolymers. They effectively target tumors, delivering genes,
xenobiotics, and prodrugs to combat chemo-resistance in cancer therapy [218]. Kim et al.
developed an HA-CH-NPs/PLXDC1 siRNA delivery system targeting CD44 receptors on
tumor endothelial cells for anti-angiogenic therapy in ovarian cancer [219]. The chitosan
particles labeled with HA were loaded with siRNA against PLXDC1, promoting tumor cell
migration and invasion. This system effectively targets siRNA to ovarian cancer-associated
endothelial cells, protects siRNA from degradation during circulation, induces target gene
silencing, and reduces tumor angiogenesis. Fallacara et al. comprehensively reviewed HA,
covering its physicochemical properties, biosynthesis, degradation, receptors, industrial
production, and cosmetic applications [220]. Knopf-Marques et al. provided an extensive
overview of HA and its derivatives in biomaterials, emphasizing hydrogels and coatings for
controlled cytokine delivery in implantable environments to mitigate immune responses
and enhance tissue healing [221].
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4. Challenges Facing Polymeric-Based Materials in Non-Viral Gene Delivery

Several challenges facing polymeric-based materials in non-viral gene delivery involve
the following:

4.1. Stabilizing Genes during Delivery

Ensuring genes remain intact and functional throughout the delivery process is crucial,
as degradation can occur due to enzymatic action or physical uncertainty. The intrinsic
biochemical properties of the Cas9 protein, plasmid DNA, mRNA, sgRNA, and exogenous
donor DNA lead to poor in vivo stability. The Cas9 protein is prone to protease-mediated
degradation and hydrolysis, while its positive charge in the blood attracts negatively
charged components, causing rapid clearance [222]. Free DNA/RNA is quickly degraded
by nucleases in blood and interstitial fluid, requiring protection by delivery vectors. Ex-
ogenous plasmid DNA, RNA, and proteins are immunogenic and can trigger immune
responses in vivo. The immunogenicity of plasmid DNA can be reduced by removing
CpG motifs [223]. Careful chemical modifications have reduced RNA immunogenicity and
improved stability. However, the immunogenicity of Cas9 nucleases from Staphylococcus
aureus and Streptococcus pyogenes remains problematic due to frequent human exposure,
with pre-existing anti-Cas9 antibodies identified in humans [224,225]. One approach to
address this challenge is to engineer bacterial Cas9 nucleases by removing their epitopes or
identifying alternative CRISPR nucleases. Despite ongoing efforts to find novel CRISPR
nucleases with improved editing efficiency, CRISPR-Cas9 components must be completely
encapsulated within delivery vectors to maintain stability and avoid immune responses
in vivo [226].

4.2. Increasing Capacity for Gene Cargo

Polymeric materials vary in their ability to carry gene cargo, and are influenced by
factors like polymer structure, size, and surface properties, limiting the amount of genetic
material they can effectively transport. Gene delivery methods vary in cargo capacity;
for instance, adeno-associated virus (AAV) vectors typically accommodate up to 4.7 kb of
genetic material, expandable to 5.2 kb through modifications. Other vehicles include retro-
viruses, adenovirus, HSV-1, transposon insertions, episomal vectors, and Sendai virus, each
offering distinct advantages such as non-integrating capability. Episomal and HSV-1 ampli-
con vectors, despite their ability to carry larger payloads, present challenges in purifying
supercoiled DNA, necessitating optimization for enhanced delivery efficiency [227,228].

Yu et al. pioneered an episomal reprogramming method for generating feeder-free
human induced pluripotent stem cells (iPSCs) using chemically defined media and a
small molecule. They successfully derived footprint-free iPSCs from diverse sources,
including skin fibroblasts, adipose tissue, and cord blood, showing effectiveness in neonatal
and adult fibroblasts. This technique offers promise for clinical applications due to its
efficient generation of iPSCs similar to embryonic stem cells (ESCs) [229]. Hou et al.
similarly achieved ESC-like iPSCs from mouse somatic cells using a combination of small
molecule compounds, showing potential for treating genetic disorders like hemophilia
A in a virus-free manner [230]. Stadtfeld et al. demonstrated the efficient generation of
mouse iPSCs from fibroblasts and liver cells using non-integrating adenovirus-mediated
OSKM expression. These adenoviral iPSCs exhibited typical DNA demethylation patterns,
expressed endogenous pluripotency genes, and contributed to various tissues in chimeric
mice, including the germline. Their findings support adenoviral reprogramming as a safe
alternative without insertional mutagenesis, offering the potential for patient-specific stem
cell research and comparative studies with ESCs [231].

Table 3 shows viral vectors and non-viral vectors for gene delivery vectors. Various
gene delivery vectors offer distinct cargo capacities and features for genetic manipulation.
Retroviruses, capable of integrating genetic material, accommodate 7–10 kb of DNA. Aden-
oviruses, non-integrating vectors, can carry payloads of approximately 36 kb. AAV vectors,
known for safe integration into host genomes, have a cargo capacity of 4.7 kb. HSV-1 am-
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plicon vectors, also non-integrating, boast a high cargo capacity of 150 kb. Tol2 transposon
systems, integrating with less frequency, handle payloads of about 10 kb. Episomal vectors,
another non-integrating option, range widely in capacity from 172 to 660 kb. Sendai virus
vectors, non-integrating as well, possess an enormous cargo capacity of 15,384 kb. These
vectors provide researchers with a range of options for delivering genetic material depend-
ing on the specific requirements of the experimental or therapeutic application. Cationic
polymers like linear PEI have a cargo capacity of approximately 30 kb and are known for
their non-integrating nature, making them suitable for transient transfections and effective
in plasmid DNA delivery. In contrast, branched PEI has a cargo capacity of around 30 kb
but features a branched structure that enhances its transfection efficiency. This structural
characteristic makes branched PEI useful for delivering plasmid DNA and RNA.

Table 3. Capacity and features of gene delivery systems [228].

Vectors Cargo Capacity Features Ref.

Retrovirus 7–10 kb Integrating [232]

Adenovirus ~36 kb Non-integrating [233]

AAV 4.7 kb Safely integrating [228]

HSV-1 Amplicon 150 kb Non-integrating [234]

Tol2 Transposon ~10 kb Less integrating [235]

Episomal 172–660 kb Non-integrating [236]

Sendai virus 15,384 kb Non-integrating [237,238]

Linear PEI ~30 kb
Non-integrating, suitable for

transient transfections, and good
for plasmid DNA delivery.

[91]

Branched PEI ~30 kb

Non-integrating, it has a higher
transfection efficiency due to its

branched structure, and it is
often used for plasmid DNA and

RNA delivery.

[239]

4.3. Targeting Specific Sells

Polymeric carriers can be tailored to target specific cell types through ligands or sur-
face modifications, improving specificity and minimizing off-target effects. DNA and
RNA molecules, due to their negative charge and hydrophilicity, struggle to penetrate the
hydrophobic, negatively charged cell membrane. While both viral and non-viral vectors
offer protection against degradation, they often lack cell type-specific delivery following in-
travascular administration [240,241]. For systemic CRISPR-Cas9 therapies, cell type-specific
delivery is ideal to minimize off-target effects. Nevertheless, local administration can still
achieve clinical success, which repairs target cells within specific tissues. Preclinical studies
have demonstrated promising results with local CRISPR-Cas9 injections in tissues such as
the inner ear, muscle, and brain [242–244]. Inspired by natural processes like leukocyte mi-
gration, researchers explore natural or engineered cells for site-specific targeting. Although
still early, cell-based targeting offers high specificity and versatility. Therapeutics can be
attached to or encapsulated within cells, including RBCs, leukocytes, stem cells, platelets,
dendritic cells, and bacteria [245,246]. Cell-based targeting leverages masked immune
recognition and intrinsic tropism. Cells loaded with therapeutics recognized as self are not
quickly cleared. Specific cell types migrate to target sites in response to pathological cues
via receptor-ligand interactions, co-delivering therapeutics for site-specific targeting, as
seen below in Figure 21.
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4.4. Combining Gene and Drug Delivery

Polymeric systems can integrate gene delivery with drug delivery, enabling synergistic
therapeutic effects or overcoming drug resistance mechanisms in targeted cells. Despite
over 2000 nanoformulations in clinical trials, only a few make it to the market due to
production procedure variances affecting efficacy and safety profiles. The EMA’s regulatory
recognition emphasizes the importance of precise nanomedicine development criteria,
highlighting their potential for greater specificity and efficacy than traditional chemothera-
peutics [247]. Numerous publications highlight challenges in anticancer nanomedicines
and propose strategies to overcome them [248–250]. AstraZeneca’s 5R principle—targeting
the right patient, tissue, safety, and commercial potential—seeks to tackle translational
challenges [251]. Hare et al. stress the importance of using clinically relevant models that
reflect tumor biology and patient diversity to improve clinical trial outcomes [252]. Despite
promising preclinical results, many nanomedicines fail in clinical trials, often because they
are compared to standard chemotherapy due to ethical considerations [253]. Nanoformula-
tions enhance anticancer drug efficacy and reduce toxicity by optimizing pharmacokinetics
through the EPR effect [254,255]. These formulations often exhibit prolonged circulation
and preferential accumulation in tumor tissues, minimizing the side effects in normal
organs [256]. Brand et al. compared the side effects of five nanomedicine groups and
found that cytotoxicity is primarily linked to the active substances, not the nanocarrier
or formulation [257]. Luan et al. found that anticancer nanomedicines like PEGylated
doxorubicin can reduce cardiotoxicity but may increase side effects such as hand–foot
syndrome, rash, and pigmentation [258]. Wolfram et al. detailed nanomedicines’ side
effects at molecular, cellular, and tissue levels, noting frequent immunological reactions due
to spleen and liver accumulation, foreign nature, and ROS [259]. The precise tuning of gene
and drug release kinetics in co-delivery systems is challenging, as interactions between
co-encapsulated agents can hinder individual release profiles. For instance, poly(lactide-co-
glycolide) microspheres demonstrated a significantly reduced release of the co-entrapped
epidermal growth factor receptor AODNs and 5-FU compared to individual formulations,
despite comparable initial loading efficiencies [260].
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4.5. Cellular Uptake and Intracellular Trafficking and Localization

Depending on particle size and surface properties, polymeric/gene particles are typ-
ically internalized by cells through endocytosis mechanisms, such as clathrin-mediated,
caveolae-mediated, or macropinocytosis. Gene cargo supplied by vectors usually exits
eukaryotic cells via the cytoplasm. The cargo must reach the nucleus from there to exercise
its genetic impact. Depending on the vector type, numerous methods help to transfer
genetic material into the nucleus. Viral vectors frequently use nuclear localization signals
(NLS) or hijack the host cell’s nuclear import machinery to move via nuclear pore com-
plexes. Non-viral vectors, such as lipid nanoparticles or polymer-based carriers, may use
endosomal escape mechanisms or nuclear localization signals to gain nuclear entrance.
Once within the nucleus, the payload interacts with the cell’s genetic machinery, causing
genes to be expressed or modified as planned [261].

Receptor-mediated endocytosis facilitates the uptake of CRISPR delivery vectors into
early endosomes, progressing to late endosomes and ultimately lysosomes, where the acidic
pH and enzymatic activity can degrade CRISPR-Cas9 cargoes. Overcoming this barrier to
release cargoes into the cytosol before lysosomal degradation is crucial, and is particularly
challenging for non-viral vectors compared to viral vectors. Strategies to achieve endoso-
mal escape include inducing membrane instability through cationic lipids and leveraging
the “proton sponge” effect with PEI polymers or any other polymer with a significant
secondary and/or tertiary amine character [262]. These approaches aim to enhance the
cytosolic delivery of CRISPR components for efficient genome editing. Despite efforts,
achieving efficient endosomal release remains challenging. Membrane fusion peptides
and cell-penetrating peptides have shown promise in disrupting endosomal/lysosomal
membranes, potentially enhancing delivery. Direct cytosolic delivery via nanoparticle
membrane fusion bypasses the endosomal pathway, improving cytoplasmic cargo avail-
ability. These strategies aim to optimize CRISPR-Cas9 delivery by overcoming endosomal
entrapment, which is critical for effective genome editing applications [263–265]. Upon
cellular uptake, particles often traffic through the endosomal pathway, where they may
escape into the cytoplasm to avoid degradation. Successful delivery to the nucleus, where
genetic material must ultimately exert its function, involves navigating through nuclear
pore complexes or utilizing mechanisms like nuclear localization signals. Unshielded com-
plexes with a positive surface charge facilitate the cellular internalization of nucleic acids,
which is crucial for their interaction with intracellular machinery [266]. Hao et al. utilized
electrostatic interactions to coat nanoscale red blood cell membranes (RBCM) onto gene
complexes, creating a biomimetic delivery system. This approach extended the circulation
time and enhanced biocompatibility [267]. Compared to controls, these biomimetic sys-
tems reduced phagocytic rates by 52%, highlighting a promising avenue for gene delivery
systems employing RBC membrane camouflage. In this study, a biomimetic gene delivery
system was developed using amphiphilic polymer PEI (10 kDa)-PLGA-PEI (10 kDa) NPs
complexed with the pEGFP-ZNF580 plasmid, coated with the nanoscale RBC membrane
via electrostatic interaction, as shown below in Figure 22.

This system showed low cytotoxicity, high transfection efficiency in ECs, enhanced
cell migration, and prolonged circulation in vivo, as evidenced by macrophage uptake
and in vivo imaging. The RBC membrane-coated gene delivery systems hold promise for
effective and biocompatible in vivo applications. To enhance the effectiveness of systemic
gene delivery systems, it is crucial to examine how the shell structure imparts stealth
qualities to nanoparticles. The shell design, including the use of hydrophilic polymers like
PEG and biomimetic elements, is essential for avoiding detection by the reticuloendothelial
system (RES) and extending the circulation time. PEGylation and other modifications,
such as incorporating erythrocyte membranes or CD47, a “don’t eat me” signal, help
reduce immune system detection and clearance. A thorough analysis of these shell designs
will provide valuable insights into optimizing gene delivery systems, enhancing their
bioavailability, and improving therapeutic efficacy [268].
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Prospects:

Gene delivery is defined as the transfer of genes into cells to achieve gene expression
to accomplish a cure against genetic disorders [269]. Polymers have significant potential
in developing non-viral gene delivery systems due to their chemical functional group
versatility, tunability, and ability to form various physical architectures. They will be
engineered to enhance gene transfer efficiency, biocompatibility, and biodegradability while
targeting specific cells or tissues, improving delivery efficiency, reducing off-target effects,
and altering immune responses. Despite recent advancements, the limited availability of
polymeric materials for drug delivery necessitates the development of novel polymers for
specialized targeting and delivery methods. Additionally, pharmaceutical businesses face
high clinical trial costs and decreasing success rates for new entities in the R&D pipeline.
The complexity of selective targeting, especially in cancer treatments with high toxicity,
challenges in clinical translation, high clinical trial expenses, and decreasing success rates
highlight the need for more clinical research [270].

One of the primary challenges in using polymers for gene delivery is their cytotoxicity.
However, ongoing research is focused on designing and synthesizing new polymers with
lower toxicity while maintaining or enhancing their gene delivery efficiency. Strategies
such as using biodegradable polymers, controlled polymer architecture, and incorporating
biocompatible elements are being explored to mitigate cytotoxicity. Regulatory agencies
prioritize therapeutic efficacy and toxicity. Despite biodegradable materials being less
harmful, developing effective RNA delivery systems is challenging due to high--throughput
screening requirements. Improved discovery efficiency of new non-viral RNA vectors
will lead to novel delivery methods addressing unmet therapeutic needs [271]. Non-
viral vectors have lower immunotoxicity than viral vectors, and the potential to engineer
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improved vector performance characteristics, such as size, surface charge, transfection,
cytotoxicity, and trafficking, holds promise for future developments [272].

Improving the delivery efficiency of non-viral systems is an essential topic of research.
Polymers can be designed to enhance cellular absorption, endosomal escape, and the
nuclear localization of genetic material. This can be accomplished by creating smart
polymers that respond to specific cellular conditions, incorporating targeting ligands, and
developing multifunctional delivery systems that overcome various hurdles to successful
gene transport [273].

Natural polymers, such as chitosan, pullulan, and hyaluronic acid, offer biocompat-
ibility and biodegradability, making them attractive candidates for gene delivery. These
polymers can be used in their native form or modified to enhance their gene delivery
capabilities. The use of natural polymers may also reduce the risk of adverse immune
responses and long-term toxicity [173].

Natural polymers can be chemically or physically modified to improve their properties
for gene delivery. Modifications may include the introduction of functional groups that
enhance DNA binding, the incorporation of stimuli-responsive elements, or the conjugation
of targeting moieties. These modifications can improve gene delivery systems’ stability,
efficiency, and specificity based on natural polymers [274].

Hybrid systems combining different materials’ strengths are gaining attention in gene
delivery research. For instance, nanoparticles coated with polymers can offer enhanced
protection and controlled release of genetic material. Similarly, combining man-made
polymers with natural polymers can result in systems that leverage the advantages of both
types of materials. These hybrid approaches can be designed to optimize biocompatibility,
reduce cytotoxicity, and improve overall delivery efficiency [275].

5. Conclusions

Considerable progress has been made in non-viral gene therapy in recent decades,
with advancements in various areas, such as the effectiveness and stability of nucleic
acids and the development of new delivery materials. Consequently, researchers have
focused on developing novel and efficient non-viral gene vectors. They carefully selected
the chemical and physical architecture of the polymeric vectors to enhance the delivery
while minimizing toxicity to the host cells. Non-viral gene vectors have shown promising
results in transfection, biocompatibility, safety, and stability, outperforming viral gene
vectors. Non-viral gene delivery has made significant progress using macromolecules
to overcome viral vector limitations, prioritizing safety, efficiency, and targeted delivery.
Polymeric materials like PLL, PEI, and PAMAM have shown promise in delivering genetic
cargo, while modifications like PLL-g-PEG and star polymers enhance biocompatibility
and specificity. Natural polymers and hydrogels offer biodegradable alternatives, but
challenges remain in optimizing delivery efficiency and addressing cytotoxicity. Hybrid
systems combining nanoparticles with polymers or natural materials represent a promising
frontier that needs considerable research and development efforts in the coming years.
Future research should prioritize overcoming current challenges, including enhancing gene
cargo stability and refining intracellular trafficking. Advancements in macromolecular
architecture and judicious selection of functional group chemistry hold promise for realizing
safer and more efficient therapeutic interventions for genetic disorders and diseases.
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