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Abstract: This study presents the development of ecological compounds using polylactic acid (PLA)
and artichoke flour with the aim of obtaining materials with properties like commercial PLA. PLA
biocomposites with different concentrations of green artichoke (HV) and boiled artichoke (HH)
(1, 3, 5, 7, 10 and 20% by weight) were manufactured through an extrusion and injection process.
Structural, mechanical, physical and color tests were carried out to analyze the effect of lignocellulosic
particles on the biopolymeric matrix. The Shore D hardness, elongation at break and heat deflection
temperature (HDT) of the PLA/HV and PLA/HH samples showed similar values to pure PLA,
indicating that high concentrations of both fillers did not severely compromise these properties.
However, reductions in the tensile strength, impact strength and Young’s modulus were observed,
and both flours had increased water absorption capacity. FTIR analysis identified the characteristic
peaks of the biocomposites and the ratio of the groups regarding the amount of added filler. The SEM
revealed low interfacial adhesion between the polymer matrix and the filler. This study represents a
significant advance in the valorization and application of circular economy principles to agricultural
waste, such as artichoke waste. PLA/HV biocomposites make a substantial contribution to sustainable
materials technology, aligning with the goals of the 2030 agenda to reduce environmental impacts
and promote sustainable development.

Keywords: circular economy; artichoke; PLA; revaluation

1. Introduction

Artichoke, scientifically known as Cynara cardunculus var. Scolymus, has gained
great relevance in agriculture in regions with temperate climates, with Spain being one of
the main producing countries, producing 185.6 tons in 2023. Regarding the management of
by-products, 60% of by-products from the total production process of artichoke is destined
for the canning industry, while the remaining 40% is consumed fresh [1]. In the artichoke
industry, the inner bracts are used along with the artichoke receptacle, while the leaves and
stems are discarded. These wastes, which represent approximately 70% by weight of the
artichoke flower, have been subject to transformation, revaluation and/or elimination. The
aim of this study is to revalue these wastes, which contain a significant amount of crude
fiber composed of cellulose (65%), hemicellulose (21%) and lignin (14%) [1]. Artichoke
residues, especially the leaves, have a remarkable concentration of the enzyme ascorbate
peroxidase (APX) along with kinarin and other phenolic compounds. These plant fibers are
made up of cellulose, lignin, hemicellulose and pectin, each of which plays a crucial role in
their structural properties.

Cellulose, for example, significantly influences the macroscopic characteristics of plant
fibers, increasing their tensile strength and Young’s modulus; this results in greater struc-
tural rigidity and stability. Lignin, on the other hand, provides an effective defense against
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attacks from microorganisms, contributing to the durability of the fibers. Pectin is responsi-
ble for giving flexibility to the fibers, allowing them to maintain some elasticity. In addition,
these two components act as adhesive agents [2]. In contrast, a higher hemicellulose content
improves the moisture absorption capacity and accelerates the biodegradation process,
thus facilitating faster and more efficient decomposition [3].

This knowledge of the properties of artichoke residues is essential in industry, where
they are used in the production of polymer matrix compounds. By taking advantage
of these characteristics, the strength and flexibility of the products are demonstrated,
contributing to the reduction in waste and the development of more sustainable solutions.

The widespread use of plastics in various sectors has also given rise to concerns
about their negative environmental impact, reaching a global figure of 400.3 million tons
in 2022 with projections that it will continue growing. To address this problem, the ex-
ploration of more sustainable alternatives such as biopolymers derived from renewable
and/or biodegradable sources has increased [4–6]. In response to growing environmental
awareness, polylactic acid (PLA) has emerged as a biodegradable alternative to conven-
tional plastics [7–9]. PLA is a synthetic thermoplastic polymer derived from renewable
sources, such as corn starch or sugar cane, and it comes from the lactic acid generated
by the iron–anaerobic digestion of carbonated materials [10]. The characteristics of com-
mercial PLA are a tensile strength of 32.22 MPa, an elongation at break of 30.7% and a
glass transition temperature (Tg) of 63.8 ◦C [11]. However, the physical properties and
biodegradability of PLA depend on its stereochemistry and molecular weight. In the case
of L-lactide, a semi-crystalline crystallinity of 37% is obtained, and it is a transparent and
hard polymer which has a tensile strength of 4570 MPa and an elongation at break ranging
from 85 to 105%. Between the thermal characteristics, it has a vitreous transition (Tg) of
53 ◦C and a melting point (Tm) of 170–180 ◦C [12,13]. PLA (DL-Lactida) is considered
an amorphous polymer that has no melting point and achieves a glass transition (Tg)
of 55 ◦C. Also, it has a low tensile strength [11,14]. However, PLA has drawbacks such
as low thermal stability and brittleness [15]. In addition, its rapid degradation into the
environment makes it more sustainable than conventional plastics. It is used in a wide
range of applications, from packaging to the construction sector, due to its properties and
renewable origin. Research continues to focus on improving the properties of PLA with
lignocellulosic reinforcements, thus contributing to reducing the environmental impact of
plastics in the future. For example, in a previous study, lignocellulose-rich biowaste with
a booster charge (pecan nut (PNS)) and chemically modified polylactic acid were used,
revealing an improvement in the behavior of PLA regarding biodegradation [16]. Another
example is the work carried out by several authors on the biodegradation process of PLA
and TPS, which are compounds used in the manufacture of packaging, in which the stages
of biodegrading are detailed. The main features of this process are disintegrating, fragmen-
tation and mineralization [17]. In addition, another study investigated the swelling and
biodegradability properties of a biocomposite based on low-molecular-weight polylactic
acid (ELP) combined with wheat straw and wood sawdust with the aim of using it as a
soil conditioner. The results show that the incorporation of lignocellulosic material into
the ELP improved the water retention capacity by 10% as well as its stability in the soil
environment. Likewise, the rate of swelling of the biocomposite increased to 300% [18]. On
the other hand, another recent investigation revealed that the incorporation of chemically
modified rice straw improved the thermal and mechanical properties of PLA, such as its
tensile strength, Young’s modulus and glass transition temperature (Tg) [19]. Likewise,
an additional study demonstrated that it has excellent mechanical properties due to the
strong adhesion between the reinforcement of date palm fibers and low-molecular-weight
polylactic acid (ELP) [20].

To sum up, the main objective of this study is to develop materials for industrial
applications based on PLA (polylactic acid) with additives from artichoke waste. Research
is carried out on the interaction between two types of waste, green artichoke (HV) and
boiled artichoke (HH), with a PLA matrix in injection-molded tensile samples with different
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weight contents. The obtained materials were characterized mechanically by tensile tests.
In addition, a thermal analysis (TGA) and a structural analysis (FTIR) were performed.
The morphology of the fracture surfaces was analyzed using scanning electron microscopy
(SEM). Colorimetry and water absorption tests were also carried out.

2. Experimental
2.1. Materials

In this study, we used polylactic acid (PLA) RXP 7053 NATURAL (PLA/9/1000µ),
manufactured by NatureWorks (Plymouth, MN, USA) and supplied by the Resinex Group
(Tarragona, Spain). This commercial grade is characterized by being a completely amor-
phous polymer with a glass transition (Tg) of 55 ◦C that is obtained by polymerization of
the racemic mixture D, L-LA [21] with a melt flow rate of 0.9 g/min (210 ◦C) and a density
of 1.24 g/cm3 [22]. Artichoke, provide by Conservas El Raal, S.L.U (Murcia, Spain), had
a cellulose content of 21 wt.%, a hemicellulose content of 21 wt.% and a lignin content of
14 wt.% This residue was provided in green (HV) and boiled (HH) states.

2.1.1. Sample Preparation

First, the leaves of both types of artichoke were dried at 50 ◦C for 72 h in an oven to
remove moisture. The leaves were then ground to obtain HV and HH powders.

After the processing, PLA powders and artichokes were manually pre-mixed in
different containers according to the formulations described in Table 1 and left to dry
in an oven at 50 ◦C for 12 h to prevent the hydrolysis of PLA. The extrusion process
followed by injection molding was performed on an Xplore MC 15HT microcomponent
and an Xplore IM12 microinjection molding machine, which were both supplied by Xplore
Instruments BV (Sittard, The Netherlands). The temperature profile for the extrusion
process was 145–160–155 ◦C with a speed of 100 rpm. The mixture was kept in the chamber
for 1 min to ensure homogeneity. To produce 1BA type samples, the material mixed in the
microinjector was introduced at a temperature of 170 ◦C (injection nozzle) and 30 ◦C in the
mold with a pressure of 16 bar, and the injection and cooling time was 4 s.

Table 1. Summary of compositions according to the weight content (wt.%) of PLA and different
proportions of raw artichoke (HV) and boiled artichoke (HH).

Code PLA (wt.%) Artichoke (wt.%)

PLA 100 0

PLA/1HV 99 1
PLA/3HV 97 3
PLA/5HV 95 5
PLA/7HV 93 7

PLA/10HV 90 10
PLA/20HV 80 20

PLA/1HH 99 1
PLA/3HH 97 3
PLA/5HH 95 5
PLA/7HH 93 7

PLA/10HH 90 10
PLA/20HH 80 20

2.1.2. Particle Size Measurement

To obtain the particle sizes, a Microtrac MRB particle analyzer with a Sync particle
analyzer (Hann, Germany) was used. This equipment is characterized for analyzing the size
and shape of particles from 0.01 to 4000 microns using the laser diffraction ISO 13320:2020
standard and dynamic image analysis ISO 13322-2:2006 standard.
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2.1.3. Thermal Properties Measurement

To obtain the mass percentage during the material decomposition stages, the STA 449F5
Jupiter® thermobalance from NETZSCH, (Weimar, Germany) was used. The equipment
offers high resolution, a wide temperature range, low balance drift and a highly sensitive
DSC signal. The samples were placed in a standard 85 µL alumina (Al2O3) crucibles with
an average weight between 7 and 9 mg. For the tests, mass flow controllers (MFCs) used
oxygen and argon at rates of 252.5 mL/min and 249.3 mL/min, respectively. These were
subjected to a heating program from 40 to 700 ◦C with a heating rate of 10 ◦C/min in
air atmosphere.

2.1.4. Mechanical Properties Measurement

The mechanical properties of the samples were evaluated using an ELIB 30 universal
electromechanical testing machine manufactured by Ibertest (Madrid, Spain) with a 5 kN
load cell. All tests were carried out following the UNE-EN ISO 527 standard at a speed of
5 mm/min.

The impact test used a 6J Charpy pendulum from Metrotec S.A. (San Sebastián, Spain)
in accordance with the ISO-179 standard.

To obtain a complete mechanical characterization, the Shore D hardness was measured
with the JBA 673-D durometer from J. Bot S.A. (Barcelona, Spain) in the injection-molded
samples with dimensions of 80 × 10 × 4 mm according to the ISO 868:2003 standard,
applying a force of approximately 20 N, using an indenter with an angle of 30◦ and a tip
radius of R0.1. In this test, measurements were made at five different points of the samples
with a stabilization time of 15 s.

The values of all mechanical parameters were calculated as an average over 5 speci-
mens for each composition. All tests were carried out at room temperature.

2.1.5. Electron Microscopy (SEM)

An analysis of the morphology of the fractured surfaces of the PLA/HV and PLA/HH
tensile specimens was performed using a ZEISS ULTRA 55 field emission scanning electron
microscope (FESEM) from Oxford Instruments (Abingdon, UK), operating at an accelerating
voltage of 2 kV. Before observation, samples were coated with a 5–7 nm Au layer under
vacuum conditions.

2.1.6. Colorimetry

To measure the color of the samples, a Hunter Diffuse model colorimeter (Hunterlab,
Reston, VA, USA) was used. The color indices (L*, a* and b*) were measured according
to the following criteria: L* is the luminosity and varies from 0 to 100; a* represents the
chromatic variable from green (−a*) to red (+a*), and b* represents the chromatic variable
from blue (−b*) to yellow (+b*). In the test, 3 measurements were taken, determining their
average. The total color difference (AE) was studied using expression (1):

AE =

√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2 (1)

where ∆L*, ∆a*, and ∆b* are the differences in color parameters between the samples and
the control film (L* = 30.9; a* = −0.4; b* = 3.8).

2.1.7. Water Uptake Characterization

The water absorption capacity was studied using injection-molded samples of
80 × 10 × 4 mm, which were immersed in distilled water at a temperature of 23.1 ◦C.
Previously, all samples had been dried at 50 ◦C for 24 h. Samples were then cooled to room
temperature, and the initial weight (Wi) of the samples was measured using the electronic
analytical balance AG245 from Mettler Toledo Inc. (Schwerzenbach, Switzerland). After
obtaining the initial weights, samples were immersed during the established time, and
each time, the surface water of the samples was removed with a paper. This process was
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repeated for a total of 7 weeks with weight change assessments performed every 24 h
during the first 3 days and every 7 days for the rest.

2.1.8. FTIR Analysis

Attenuated total reflectance–Fourier transform infrared spectroscopy (FTIR-ATR) was
carried out using a Perkin Elmer Spectrum Two FT-IR spectrometer (PerkinElmer, MA,
USA) equipped with a universal ATR accessory to identify the functional groups of HV
and HH and the different samples of PLA/HV and PLA/HH blends. For this test, FTIR
spectra were recorded with a wavenumber range from 4000 to 600 cm−1 with a resolution
of 4.0 cm−1 and an interval of 1.0 cm−1.

3. Results and Discussion
3.1. Particle Size Measurement

The results of the analysis of the particle size distribution by laser diffraction and
dynamic analysis are presented in Figures 1 and 2. These graphs show the size of the
particles (µm) on the horizontal axis, while on the vertical axes, both the accumulated
percentage of particles larger than or equal to that size in relation to the total particles,
called Q3 (%P), and the accumulated percentage of particles smaller or equal to that size in
relation to the total particles are represented, which are called q3 (%).
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Figure 1. Particle size distribution of HV. 

Analysis of the graph in Figure 1 provides a detailed understanding of how the par-
ticle size distribution changes in the green (HV) artichoke leaf sample. It is highlighted 
that the line representing the accumulated percentage of large particles (Q3 (%P)) shows 
a clear tendency to decrease as the particle size decreases, suggesting a reduction in the 
accumulation of larger particles in the distribution. For example, between 2000 and 500 
µm, this reduction is gradual but constant, while for even smaller particles, this trend ap-
pears to be more pronounced. On the other hand, the curve that represents the accumu-
lated percentage of small particles (q3 (%)) follows a different pattern: it is initially low 
and gradually increases with decreasing particle size. However, it reaches a point where 

Figure 1. Particle size distribution of HV.

Analysis of the graph in Figure 1 provides a detailed understanding of how the particle
size distribution changes in the green (HV) artichoke leaf sample. It is highlighted that
the line representing the accumulated percentage of large particles (Q3 (%P)) shows a
clear tendency to decrease as the particle size decreases, suggesting a reduction in the
accumulation of larger particles in the distribution. For example, between 2000 and 500 µm,
this reduction is gradual but constant, while for even smaller particles, this trend appears
to be more pronounced. On the other hand, the curve that represents the accumulated
percentage of small particles (q3 (%)) follows a different pattern: it is initially low and
gradually increases with decreasing particle size. However, it reaches a point where it
stabilizes at a lower value. For example, for particles of around 1000 µm, the percentage is
relatively low, but as the particles become smaller, it increases significantly until it reaches
approximately 3.5%, remaining stable thereafter. An inverse relationship between Q3 (%P)
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and q3 (%) was observed at certain points on the graph, where while Q3 (%P) decreases, q3
(%) increases.
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Analysis of boiled artichoke leaf (HH) shows a clear decrease in the accumulated
percentage of large particles as its size decreases, indicating a trend toward a greater
accumulation of larger particles in the distribution. On the other hand, the accumulated
percentage of smaller particles initially increases with decreasing particle size, although
it later stabilizes at low values. This trend suggests a more uniform distribution of small
particles. Furthermore, an inversion is observed in the relationship between the cumulative
percentages of large and small particles at certain points on the graph, which could indicate
changes in the particle size distribution depending on their size.

The analysis of the particle size of artichoke leaves reveals a complex distribution
ranging from 2.13 to 2000 µm for HV and from 1.635 to 2000 µm for HH. This difference
indicates that leaves subjected to a boiling process are broken down into smaller particles.
These differences therefore have significant implications for their application.

3.2. Thermal Properties

Thermogravimetric analysis is important to determine the mass percentage of samples.
The degradation start temperatures (T5%) were obtained when a mass loss of 5% was
reached. The maximum decomposition temperatures (Tmax) were calculated from the first
derivative of the thermal decomposition rate curves (DTG). The combustion characteristics
of HV and HH flour are shown in Table 2.

Table 2. HV and HH combustion characteristics.

Material
Weight Loss (%)
in a Temperature
Range of 40–180

I Degradation Stage II Degradation Stage Lignin
Decomposition
(% by Weight)

T5%
(◦C)

T90%
(◦C)

Tmax
(◦C)

Weight
Loss (%)

T5%
(◦C)

T90%
(◦C)

Tmax
(◦C)

Weight
Loss (%)

HV 5.76 181.5 235.5 217.5 11.49 368.8 235.5 314.4 40.94 13.38
HH 3.50 181.7 265.1 222.7 17.38 373.5 262.7 309.4 37.04 11.49

In Figure 3, the different TGA curves for each type of artichoke leaf are presented. It can
be observed that the degradation onset (T5%) takes place at almost identical temperatures:
181.5 ◦C for the leaf in the green state (HV) and 181.7 ◦C for the boiled leaf (HH) [22,23]. At
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first glance, a difference is noticeable in the representation of the curves, where the boiled
leaf shows a slightly lower percentage of lignin: 11.49% compared to 13.38% for the green
leaf [24]. This is due to the process of citric acid addition to the artichoke leaf, which causes
changes in the chemical composition, especially in the reduction in lignin content.
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Figure 4 shows a comparison of the thermal decomposition rate (DTG) curves of
various artichoke flours. In these curves, the decomposition stages associated with the
peaks of hemicellulose, cellulose and lignin can be clearly distinguished. It is notable to
highlight the maximum peaks for each type of artichoke flour examined. For example,
artichoke leaf flour in the green state reaches a maximum peak of 314.4 ◦C, while the boiled
leaf reaches a maximum peak of 309.3 ◦C [22,24,25]. The only significant difference is
observed in the hemicellulose decomposition stage, where the boiled leaf presents a curve
with two peaks due to the decomposition of citric acid at around 250 ◦C [26].
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The last graph can be related to a previous study that is based on the thermal char-
acterization of okra fibers as a reinforcement of polymeric compounds, in which TG and
DTG curves with a similar pattern were obtained [22]. In Figure 5, the degradation onset
of okra fibers (220 ◦C) and their different decomposition stages are shown. The first stage
(220–310 ◦C) causes a weight loss of 16.1%; while the second stage at 310–390 ◦C produces
a weight loss of 60.6% [27] and lignin decomposition (an extended range of temperatures).
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In conclusion, in the present project, the thermal analysis curves reveal that the
artichoke leaves are stable until around 180 ◦C in both cases. This is related to the values of
natural fibers provided in the literature [28,29].

3.3. Mechanical Properties

The mechanical properties of a material are critical in determining its suitability for
specific applications. Tensile and impact testing is essential, as it provides vital information
on properties such as tensile strength, elongation at break and the ability to withstand
impacts. These characteristics are detailed in Table 3.

Table 3. Mechanical characteristics of the PLA blends.

Code τmax (MPa) εb (%) E (MPa) Shore D Hardness Impact Strength (kJ/m2)

PLA 60.9 ± 2.2 6.9 ± 0.3 1133.7 ± 129.4 77.0 ± 0.5 25.6 ± 5.0
PLA/1HV 59.6 ± 0.55 6.9 ± 0.3 1176.2 ± 58.3 79.0 ± 0.0 20.5 ± 3.1
PLA/3HV 58.2 ± 1.62 7.0 ± 0.9 1141.2 ± 54.2 79.2 ± 0.4 16.4 ± 1.2
PLA/5HV 56.4 ± 0.87 6.3 ± 0.5 1153.2 ± 43.3 79.6 ± 0.5 15.7 ± 0.7
PLA/7HV 55.9 ± 0.76 5.8 ± 0.2 1201.8 ± 7.8 78.8 ± 0.5 14.8 ± 0.4
PLA/10HV 52.8 ± 0.71 5.8 ± 0.3 1120.0 ± 23.2 80.2 ± 0.5 12.1 ± 1.2
PLA/20HV 43.2 ± 2.96 4.4 ± 0.4 1125.4 ± 38.5 80.6 ± 0.9 11.5 ± 0.9

PLA/1HH 57.6 ± 0.6 6.4 ± 0.3 1159.5 ± 36.9 78.6 ± 0.4 19.2 ± 2.9
PLA/3HH 56.3 ± 1.6 6.1 ± 0.3 1172.2 ± 24.6 79.2 ± 0.5 17.4 ± 1.2
PLA/5HH 52.4 ± 0.9 6.3 ± 1.0 1133.9 ± 32.7 79.8 ± 0.0 16.0 ± 2.3
PLA/7HH 50.7 ± 0.8 5.7 ± 0.3 1133.9 ± 34.7 80.0 ± 0.0 15.6 ± 0.7
PLA/10HH 43.9 ± 0.7 5.0 ± 0.2 1085.0 ± 46.7 80.2 ± 0.4 13.5 ± 1.0
PLA/20HH 40.6 ± 2.9 4.5 ± 0.3 1075.7 ± 34.5 80.4 ± 0.5 13.1 ± 1.3

PLA exhibits brittle behavior, with low elongation capacity but high tensile strength,
with typical values of 60.9 MPa for tensile strength, 1134 MPa for Young’s modulus (E) and
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7% of elongation at break. The incorporation of HV into PLA clearly showed a significant
reduction in the maximum stress as the filler content increased. Several investigations have
examined the mechanical properties of natural flours in combination with a polymeric
matrix [23]. One of these studies by Ki Wook Kim reveals that the tensile strength of
PLA in biocomposites decreases as the amount of added cassava and pineapple flour
increases [30]. In the current project, the incorporation of 20% by weight of artichoke in
the green state decreased by 29.06%, and it decreased by 33.33% in the boiled state. This
phenomenon could be attributed to the milling method applied, which affects the grain size
of the different artichokes as well as their physical and morphological characteristics [31].
Likewise, a trend is observed toward a reduction in the elongation capacity with the
incorporation of these flours up to 20%. As for the Young’s modulus, in the case of HV,
the stiffness increases up to a maximum of 1201.8 MPa at 7% by weight and decreases
when raising the added load to a minimum value of 1120 MPa. On the other hand, in the
case of HH, a slight increase in the Young’s modulus is observed with the addition of 1
and 3% by weight; however, at higher load values, like 20%, Young’s modulus values are
obtained below that of the polymer matrix (1133.7 MPa). This makes sense, because by
adding a charge to a polymer, its elasticity and ductility are reduced. Instead of acting as a
reinforcement, the load mechanically weakens the sample, decreasing the tensile modulus.
At higher concentrations, the particles cluster together, creating weak points and negatively
affecting the stiffness of the material [32]. On the other hand, the differences in HV and
HH are due to the boiling process that could alter the structure of the leaves, affecting how
they disperse.

Among other mechanical characteristics are the hardness and impact strength. In
relation to hardness, a slight increase is observed with the addition of the filler, which
may be related to the reinforcing effect caused by the hard filler in the polymer matrix.
Specifically, the initial hardness value of PLA is 77, and an increase of 4.41% in HV and
4.68% in HH has been experienced.

Finally, the impact strength values of pure PLA are between 28 and 34 kJ/m2, which
are values close to the one in this work, which was 26 kJ/m2. The incorporation of this filler
caused a notable decrease in the Charpy impact strength, which was initially 25.6 kJ/m2 in
the PLA, being reduced to values between 11.5 and 13.1 in the developed biocomposites.
This reduction represents a decrease of 44.92% in HV and 51.17% in HH. This effect can be
attributed to the high artichoke content (20% by weight), which possibly causes high tensile
stresses and limited deformation along the sample [33]. As a result, a reduced ability to
absorb impact energy is observed.

3.4. Morphology

Microscopic analysis is crucial to examine the failure surface of materials and under-
stand their mechanical behavior. The image (Figure 6) of the PLA fracture is characterized
by the presence of large areas of smooth appearance located at different planes of little
unevenness, which is very typical of fragile breaks. Several studies support the low fracture
toughness of the polymer [34].

Figures 7 and 8 show that the incorporation of artichoke particles, both green and
boiled, causes a substantial change in the breaking surface as the particle percentage
increases, being more abrupt as the particle percentage increases. This is a consequence of
the presence of cavity particles generated by their removal. In addition, larger particles can
be visualized. It is in this type of particles where the lack of adhesion between the matrix
phase and the particles can be observed [35]. This phenomenon is seen in both green and
boiled particles.

Fractured surfaces of the PLA mixtures with the addition of 20% of HV and HH are
contrasted in Figure 9. In Figure 9a, a certain number of incrustations and voids generated
by the material can be seen, as well as artichoke particles of various sizes, ranging from 2
to 10 µm. On the other hand, Figure 9b shows a torn surface with depressions, where holes
are larger.
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The results obtained show that the PLA/HV biocomposites exhibit a clearer surface
with more dispersed particles, while in the PLA/HH biocomposites, a greater presence of
voids is easily seen. This fact reinforces the initial need to introduce a compatibilization
agent in these mixtures to strengthen the adhesion between the PLA and the lignocellulosic
filler of the different artichokes.

3.5. Color Tests

Figure 10 shows the visual appearance of pure PLA and PLA mixtures with both
artichokes, HV and HH, which resembles the color of wood. The brown tone has been
induced by the injection method due to the temperature reached to inject the PLA.
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and PLA/HH.

In addition to the previous qualitative evaluation, color parameters have been studied
using the CIELab* system and the total color difference (∆E) found in Table 4. A marked
difference is observed between the polylactic acid samples with and without fillers. Initially,
the L* value for PLA is 30, which is considered average due to its natural transparency.
With the increase in the loading percentage, the samples acquire a darker tone, going from
a light brown tone to a darker one, which translates into a reduction in the luminance value
(L*). Other investigations have confirmed these results, demonstrating that the brown color
intensifies with the incorporation of more filler to the matrix [36]. Furthermore, the values
of the parameters a* and b* are positive, indicating the presence of red and yellow tones,
respectively. It is important to note that at the beginning, the different flours had visibly
different colors: one was dark brown (HV), and the other was lighter with a yellowish tone
(HH). When combined with the transparency of PLA, a similar color was created. This
darker tone is confirmed by the L* values obtained for the loaded compounds, which vary
between 27 and 29 for a 10% artichoke load.

Table 4. Optical parameters of pure PLA and the PLA/HV and PLA/HH blends.

Code L* a* b* ∆E (Control)
PLA 30.9 −0.4 3.8 -

PLA/1HV 25.6 0.4 3.0 5.4
PLA/3HV 24.6 1.5 3.5 6.6
PLA/5HV 25.2 2.4 3.4 6.4
PLA/7HV 25.4 1.7 3.9 5.9

PLA/10HV 26.9 1.9 3.3 4.6
PLA/20HV 29.4 2.4 3.5 3.2

PLA/1HH 25.1 1.9 5.4 6.4
PLA/3HH 27.6 1.7 5.0 4.1
PLA/5HH 27.9 2.1 4.7 4.0
PLA/7HH 27.8 2.1 4.6 4.1
PLA/10HH 28.9 2.6 4.6 3.7
PLA/20HH 28.2 2.9 4.1 4.5
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3.6. Water Absorption

Polylactic acid is characterized for being a naturally hydrophobic material that could
negatively affect water absorption. For example, several studies have been carried out
on the water absorption characteristics of different biomaterials. In particular, the water
absorption capacity of a Kenaf core has been examined as an animal bedding material and
has shown promising results comparable to commercial materials such as straw and wood
chips [37]. Cellulose, which is the most abundant material, shows a strong affinity for water
due to the presence of numerous hydroxyl groups [38].

In an additional study, the use of oat husks as a bioabsorbent for natural gas dehydra-
tion was investigated, demonstrating a higher water absorption capacity than commercial
adsorbents. The oat husk showed a water absorption capacity of 0.63 (g/g), while for
molecular sieves, alumina and silica gel values were recorded in the ranges of 0.21–0.26,
0.25–0.33 and 0.35–0.5, respectively [39].

In this case, different artichoke flours were incorporated into the PLA to improve
the hydrophobic nature of PLA and take advantage of the management of agricultural
waste from artichokes. This by-product contains a high proportion of lignin, cellulose
and hemicellulose.

Figure 11 illustrates the evolution of the water absorption capacity of the samples
manufactured during 52 days of water immersion.
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Figure 11. Water uptake of PLA/HV and PLA/HH composites.

It is evident that pure PLA experienced minimal water absorption, recording a value
of 0.05% by weight. This can be attributed to the low affinity that PLA has with water, since
it is a hydrophobic polymer. By adding the artichoke filler (HV) to the polymer matrix, the
water absorption capacity of the biocomposites increases. Artichoke samples of 1%, 3%,
5% and 7% by weight recorded maximum absorption values of between 1% and 3.5% after
52 days. A 10% of HV and HH loading reached values close to 4% by weight, while the 20%
sample increased the maximum water absorption capacity to values of 7.4% and 5.03% by
weight. This increase is due to the artichoke’s rich composition of cellulose, hemicellulose,
pectin and lignin, which can bind functional groups (hydroxyls) with water molecules.
However, the difference in water absorption values between HV and HH is because the
HH load contains less hemicellulose, lignin and pectin due to the boiling process with
citric acid. In summary, the increase in water absorption increases with the percentage of
load per age and is most noticeable for HV. However, the incorporation of this residue
could improve the water absorption capacity of the polymeric matrix. There was also a
gradual degradation of PLA as the percentage of lignocellulosic fillers increased, as shown
in Figure 12, which is considered beneficial to accelerate the degradation process of PLA.
In addition, color changes and an increased porosity of the material are observed, which
facilitates water absorption through the generated pores.
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3.7. FTIR

The FTIR spectra of PLA, HV and HH chemical function assignments for each ab-
sorption band are listed in Table 5. Figure 13 shows the most relevant peaks of PLA. The
absorption bands at 1747 cm−1 and 1090 cm−1 are related to the C=O and C-O groups,
respectively. The peaks at 1452 cm−1 and 1360 cm−1 correspond to the characteristic bands
of the symmetric and asymmetric vibrations of the groups [40].

Table 5. Characteristic peaks of PLA, HV and HH.

PLA HV-HH

Assignment Wavenumbers (cm−1) Assignment Wavenumbers (cm−1)

CH3 2997 OH 3500–3000
-C-CH3 2947 CH 2918

-CH, -CH3 2882 (Carbonyl, ketone and ester) C=O 1734
C=O 1747 OH hydroxyls 1645
CH3 1452 C=O 1618

-CH3, CH-CH3 1360 CH 1430–1407
COC, -CO 1180 CH, polysaccharides 1370

COC, ras CH3 1130 CO 1318
COC 1090 COC of phenol ether bond 1239

CC, COC 1045 CO 1034
CH3, C=O 760 CH 896

The FTIR spectra of the HV and HH materials are shown in Figure 14. Several
significant peaks stand out: at 3303 cm−1, corresponding to the stretching vibration of the O-
H group and the hydrogen bonding of the hydroxyl groups [41]; at 2910 cm−1, representing
the C-H vibration of the aliphatic groups present in cellulose and hemicellulose [42]; at
1734 cm−1, associated with the stretching of the carbonyl group of the ester groups [41];
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and at 1608 cm−1, related to the aromatic benzene of lignin [3]. Furthermore, peaks
are observed at 1370 cm−1 and 1318 cm−1, which are linked to the bending of the C-H
and C-O groups of the aromatic ring in the polysaccharides, respectively [43]. The band
at 1239 cm−1 is attributed to the stretching of the C-O group from the acetyl group of
lignin [44]. On the other hand, the intense band centered at 1034 cm−1 can be associated
with the stretching bond of C-O and O-H belonging to the ether and hydroxyl groups in the
polysaccharides, while the peak at 896 cm−1 is attributed to the presence of β-glucosidics
bonds in monosaccharides [22].
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Observing these FTIR spectra, the height of the peaks in the spectrum of the boiled
leaf is lower compared to that of the green leaf. This is due to the treatment of the boiled
leaf with citric acid (C6H8O7), where similarities and differences between the characteristic
bands are identified. Among these similarities and differences are the functional groups of
hydroxyl groups (O-H) and carbonyl groups (C=O) [45].
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Figures 15 and 16 show the FTIR spectra, like those of pure PLA, with the addition of
HV and HH to the PLA matrix. In the range of 3500 to 3000 cm−1, the O-H functional group
was identified, which is possibly related to water absorption due to its hydrophilic nature.
This peak was present in all samples but disappeared in pure PLA. Furthermore, stretching
absorption peaks of C=O, which are associated with the interaction between the carbon
groups of PLA and the ester groups of HV and HH, were observed at 1747 cm−1, which
is in agreement with previous research [43]. Two bands of asymmetric and symmetric
bending of the methyl group (CH3) were also detected at 1455 and 1382 cm−1, respectively.
Furthermore, an increase in the bands at 1129 and 1080 cm −1 was noted, which was
possibly due to the presence of (C-O), (C=O) groups in hemicellulose and lignin. The O-H
stretching vibration was also detected at 1040 cm−1, which belongs to polysaccharides
in cellulose [46,47]. The difference in the intensity of the peaks between the PLA/HV
and PLA/HH samples is related to the content of both artichokes, while the slight shifts
between the peaks could be attributed to the interactions between the carbon groups of
PLA and the hydroxyl groups of the different artichokes.
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4. Conclusions

Six different formulations of PLA/HV and PLA/HH mixtures were prepared with
contents by weight of 1%, 3%, 5%, 7%, 10% and 20%. TGA revealed the stages of de-
composition of each lignocellulosic load, highlighting a greater difference in the stage of
decomposition of hemicellulose due to the process of boiling leaves in citric acid. Although
these biocomposites showed elongation at break and Shore D hardness values comparable
to those of pure PLA, decreases in the tensile strength, Young’s modulus and impact re-
sistance were observed, which were possibly due to low interfacial interaction. The SEM
analysis revealed a low adhesion between PLA and artichoke powders, which caused
tensile losses, especially in mixtures with HV artichoke powder. The first sample of this
type was used in its natural state without further treatment but showed a clearer dispersion
of the particles. The FTIR analysis highlighted the influence of the carbonyl group (C=O)
and the improvement in leaf dispersion due to ethanol in HV and HH, emphasizing how
the use of PLA compounds in plant-based materials, such as artichoke leaves, can affect
the properties of materials. The particle size measurement showed that the sample particle
size varies between 1.635 and 2000 µm. In the colorimetric test, both artichokes create
biocompounds with a brown color degradation, resulting in a visual appearance like wood.
The results of the water absorption capacity test indicate that PLA biocompounds with
artichoke flour accelerate the degradation process. Despite the mechanical properties of
the starting polymer and the antioxidant capacity of the artichoke residue, the process
of boiling leaves does not improve the material properties. These results highlight the
biocomposite PLA with a 5% load of HV, demonstrating that the HDT-TDF is a highly
dynamic system that presents an optimum balance, combining a high load content with
minimal losses in mechanical properties such as maximum stress of 7.3% and 6% in HDT.
Without any damage, it improves the Young’s modulus by 1.7% and the PLA hardness by
3.3%, in addition to accelerating its degradation with a water absorption of 2.5%. These
biocomposites are especially useful in sectors that demand materials with low tensile
strength and water degradability, such as biodegradable pots and disposable products. The
use of lignocellulosic fillers reduces PLA costs, and the elimination of the boiling process
reduces both production costs and time. In conclusion, PLA/5HV biocomposites represent
a significant contribution toward sustainable materials, aligning with the 2030 agenda goals
for minimizing environmental impacts and promoting sustainable development.
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