
Academic Editor: Costas H. Vlahos

Received: 26 February 2025

Revised: 27 March 2025

Accepted: 28 March 2025

Published: 3 April 2025

Citation: Polanowski, P.; Sikorski, A.

Monte Carlo Simulations of Polymer

Collapse in an Explicit Solvent of

Varying Quality. Polymers 2025, 17, 978.

https://doi.org/10.3390/

polym17070978

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Monte Carlo Simulations of Polymer Collapse in an Explicit
Solvent of Varying Quality
Piotr Polanowski 1 and Andrzej Sikorski 2,*

1 Department of Molecular Physics, Technical University of Łódź, 90-924 Łódź, Poland;
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Abstract: The behavior of a single homopolymer chain in an explicit solvent in a wide
range of poor and good solvents was investigated. For this purpose, a two-dimensional
coarse-grained model based on a triangular lattice was used. Simulations were carried
out by the Monte Carlo method using the Cooperative Motion Algorithm to study high-
density systems. The scaling relations of the parameters describing the phase transitions
of the chain were determined. For systems with polymer–solvent attraction, significant
changes in chain size and shape were observed. This was associated with the mechanism
of chain penetration by solvents and the formation of structures via a mechanism called
‘Bridging-Induced Attraction’, similar to those discovered for three dimensions.

Keywords: coil-to-globule transition; lattice models; Monte Carlo method; polymer
solutions

1. Introduction
The effect of solvent quality on the conformation of a macromolecule and the

coil–globule transition in polymer chains in solution has been a subject of research for
many years, both experimental and theoretical. Experiments were carried out to study the
conditions under which this phenomenon occurs and to determine the parameters of this
transition, using various techniques such as light scattering, viscometry and NMR [1–18].
Theoretical studies of various models of a macromolecule in solution have been carried
out primarily using mean-field theory and scaling analysis [19–31]. Numerous polymer
chain models have also been studied by computer simulation techniques, using Monte
Carlo methods [25,32–43], Molecular Dynamics [38,44–50], Brownian Dynamics [51–55]
and Dissipative Particle Dynamics [56–58]. For homopolymers, decreasing the temperature
and therefore the quality of the solvent causes a transition from a loose coil to a densely
packed globule, and then crystallization takes place. These two transitions correspond to
gas–liquid and liquid–solid transitions in simple liquids [4,59–63]. Simulation studies of
chain collapse in the presence of explicit solvent molecules are much less numerous due to
computational difficulties. Longer chains placed in sufficiently poor solvents seemed to
collapse through the crushed globule into the equilibrium globule [56]. The effect of solvent
molecule size on the globule–globule transition [21] and the effect of the presence of other
objects in the system (crowding), which shifts the globule–globule transition toward higher
temperatures, have also been studied [64].

Two-dimensional models, which formally can be thought of as representations of
strongly adsorbed macromolecules and very thin polymer films, are particularly difficult
for simulation studies because of the stronger effect of excluded volumes (not to mention
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the problems of designing efficient and correct simulation algorithms). Chain collapse in
two dimensions has also been the subject of theoretical studies and simulations. Theories
have shown that the collapse transition is second-order, using scaling analysis [65] and
determining the exact partition function for short chains [66,67]. Monte Carlo simulations
have also been performed, confirming that the coil–globule transition is second-order,
while the crystal–globule transition is first-order, and providing an analysis of critical
exponents [35,66–77]. The molten globule state has also been found for two-dimensional
systems [77]. Two-dimensional polymer systems can thus adopt crystal, disordered globule
and swollen coil states. Recently, the position of the theta temperature, the globule–globule
transition and the critical exponents for the chain in a dense system, that is, when all the
space is filled by the solvent, have been determined, while indicating the differences in
structure between such a globule and the chain conformation in a dense polymer melt [78].

In this work, we studied the properties of single flexible homopolymer chains over a
wide range of temperatures, but with a different set of interaction potentials than usual,
namely, the repulsion of polymer and solvent. Therefore, we developed our work [78] by
extending the study to the area of good solvents. In the current work, we focused on study-
ing the differences in the properties of chain phase transitions in good and poor solvents.
Such systems have been studied recently, but the simulations concerned three-dimensional
systems [37,49,50,54,55], while we wanted to deal with exactly two-dimensional systems.
Moreover, the chains studied were not very long, and the volume concentrations in the
system were rather low (the total volume concentration of polymer and solvent did not
exceed one-third). This weakness of these calculations is crucial, especially since in the
high-density systems we were studying, it is the interaction of solvent molecules in the
chain that forces changes in its conformation. It is therefore worth investigating what
the coil–globule transition will look like when the space is completely filled with solvent
molecules. In the model, a coarse-grained representation of the chain was introduced and
a lattice approximation (triangular lattice) was used. The chain was placed in a system
completely filled with explicit solvent molecules. The Cooperative Motion Algorithm
(CMA), which works efficiently in macromolecular systems at high densities and for long
chains, was used for the simulations. We focused our study on scaling relationships near
the coil–globule transition point, as well as static and scattering properties. In our previous
work [78], we investigated the same polymer model in the case of a poor solvent, for which
the chain–coil transition temperature and the position of the maximum in the specific heat
curves were determined. The results obtained were generally in agreement with existing
knowledge. In the current work, we compared the results of that model with the properties
of the chain in a wide range of good solvents.

2. The Model and the Method
Due to the complexity of macromolecular systems, simplified models were used for

simulations. A coarse-grained representation of polymer chains was chosen for this study
because of the need to simulate systems containing only one chain but many solvent
molecules. The simulations also had to be long enough, due to the rather long relaxation
times of macromolecules, which are particularly evident in two-dimensional systems. Our
goal was to study the coil–globule transition, a phenomenon occurring at the scale of the
entire chain, which means that a low-resolution model was most appropriate here. The
model homopolymer chain was made up of N identical beads, each corresponding to a
certain number of chemical mers. It was also assumed that the solvent molecules were
the same size as the polymer beads; atomic details were therefore omitted in the model.
This allowed a further approximation, i.e., the discretization of space: all objects (polymer
beads and solvent molecules) were placed at the nodes of a triangular lattice. This lattice
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was chosen because of its high coordination number (z = 6). Due to the adoption of the
lattice model, it was possible to use simplified interaction potentials, which were in the
form of a square well [78]. The interacting objects in the system were polymer beads (P)
and solvent molecules (S), which meant that there were three possible interaction potentials
in the system: EPP, EPS and ESS. In most theoretical considerations, it is assumed that the
polymer beads interact with each other with an attractive potential (EPP < 0), and the other
interaction potentials are ignored: EPS = ESS = 0. This set of potentials leads to a positive
Flory–Huggins parameter, χ, defined as

χ =
z

kT

(
EPS −

EPP + Ess

2

)
(1)

where z is the lattice coordination number, k = 1 is the Boltzmann constant and T is the
temperature. For this standard set of interaction parameters, we were dealing with the
well-known chain collapse at lower temperatures (or in the poor solvent), as demonstrated
by numerous theoretical works [19,20]. But we could have also used a different model with
interactions specific to the poor solvent: EPP = ESS < 0, EPS = 0 [78], which led to positive
values of χ, and this model was also examined. Besides this model of interactions, we
could have also chosen a set of potentials, corresponding to a negative χ value, for example,
EPP = ESS = 0, EPS < 0, so here we considered only polymer–solvent attractions. As
mentioned above, this is a similar model to that studied a dozen years ago [37] and can be
treated as a good solvent.

Since one of the goals of this work was to study various interactions of the dense
macromolecule with the solvent, the CMA algorithm was used [79]. It allows a chain
to be studied in a space completely filled with solvent molecules, while almost all other
simulation algorithms at such densities become completely ineffective [78]. CMA uses
the idea of the cooperative movement of objects along closed paths in a lattice, where a
chain element can change position only if neighboring polymer beads or solvent molecules
(located at adjacent lattice sites) change their positions simultaneously with it. The basis,
therefore, lies in finding such paths and then moving the elements forming the path by
one place in the lattice, as long as such movement is possible, i.e., the integrity of the
chains is not violated as a result of the movement and the movement does not lead to a
situation in which the polymer bonds are crossed. This procedure leads to closed loops
with a wide distribution of lengths but without self-movement (a loop can repeatedly
cross itself). The sum of the displacements of the elements involved in the regrouping
loop is zero (a continuity condition). During these rearrangements, the chain undergoes
conformational transformations but retains its length and all bonds between the beads. The
algorithm can be described as follows: (1) we temporarily remove one randomly selected
element (temporary vacancy = TV); (2) the direction of movement of the TV is chosen
randomly from among the adjacent points; (3) the element located at the randomly selected
location swaps places with the TV, i.e., the TV moves to the selected location (the TV cannot
move in any direction, as the continuity of the chain would be violated, but only along
the chain until it encounters the end of the chain or a loop. In either case, there will be
an interchange between the TV and a given element); (4) after passing through the end
of the chain, the TV can again choose the direction of travel randomly from among the
possibilities; (5) the TV can move to a new chain. The Monte Carlo step corresponds to an
attempt to move, on average, each molecular element in the system. A detailed description
of the CMA algorithm and a discussion of its applicability are presented elsewhere, to
which we refer the interested reader [79,80]. The chain was first relaxed in the athermal
system (without interactions, with excluded volume only), and then interactions were
turned on and the relaxation was carried out to equilibrium, that is, until quantities such
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as parameters describing the chain’s size, energy and specific heat became stable. Each
equilibration lasted for 107 CMA steps. Once the system reached the equilibrium, the
production run begun and lasted 107 steps. Data were collected during the production runs
every 105 steps. For a given chain length, simulations were repeated 8–10 times, starting
from different initial configurations. The author of the code is P. Polanowski. Simulations
were performed on a PC with an Intel Core™ i-7 -2600 CPU @ 3.40 GHz under Linux and 8
Gb of memory. A single simulation run lasted about one week.

3. Results and Discussion
3.1. Phase Transitions

Below, we present the properties of the two models of polymers in solvents under
consideration and their comparison. We further measured the quality of the solvent
using the expression εPS − (εPP + εSS)/2, where ε = E/kT. This expression corresponds
to χ/z, and its value varied between −2 and 2, broadly covering the range of good and
poor solvents. It was assumed that the values of non-zero interaction potentials were
equal to −1: in the poor solvent model, EPP = ESS = −1, and in the good solvent model,
EPS = −1. The temperature is defined as kT = z/χ|EPS − (EPP+ESS)/2|. The chain length
was varied between N = 16 and N = 512. The size of the Monte Carlo box was 256 × 256.
The edge of this box was an order of magnitude larger than the size of the longest chain
under consideration (2 < Rg

2 > 1/2 << L, where < Rg
2 > is the mean-square radius of gyration

of the chain). Periodic boundary conditions were also introduced.
A convenient parameter that is sensitive to the occurrence of a phase transition in

the system is the heat capacity. It can be determined directly from simulations using
the expression

CV/k = β2
(
⟨E2⟩ − ⟨E2⟩

)
(2)

where E is the total energy of the system and β = 1/kT. Figure 1 shows the value of heat
capacity as a function of the χ/z parameter. For positive χ/z values (hereafter referred to
as the good solvent), we see that all Cv curves have a similar shape with a well-defined
maximum. The Cv value increases with chain length, and the maximum on the Cv curve,
indicating the location of the phase transition, shifts toward larger χ values (which means
that it increases with temperature) with increasing chain length. For the second model with
χ/z < 0 (hereafter referred to as the poor solvent), we again see an increase in Cv values with
the number of segments in the chain. Maxima on the Cv curves also appear, but the peaks
are significantly less steep and wider compared to the model with the positive χ value. The
maxima on the Cv curves, as in the previous case, move toward higher temperatures with
increasing chain length. The maxima in the Cv curves on either side of χ/z = 0 indicate the
presence of phase transitions, but the considerable difference in the shape of the curves
suggests that these are completely different transitions.

One can also analyze the temperatures, Tp, corresponding to the phase transition
indicated by maxima on the CV/k curves presented above in Figure 1. Figure 2 shows the
reduced transition temperature, Tp/N, versus the chain length, N, at the double logarithmic
scale. This quantity in both cases, i.e., for χ/z < 0 and χ/z > 0, scales with the chain length,
as Tp ~ N−α, where α = −0.91 for χ/z > 0 and α = −0.87 for χ/z < 0.
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Figure 1. The heat capacity, C/k, as a function of χ/z. The lengths of the chain are given in the inset.

Figure 2. Scaling behavior of the phase transition reduced temperature, Tp/N, as a function of chain
length, N. See text for details.

Thus, as mentioned above, the exact values of the phase transition temperature, Tp,
can be determined form the positions of the maxima on the Cv(T) curves. In Figure 3,
we present transition temperatures, Tp, as a function of chain length, N. From the scaling
relations discussed above, this dependency can be described as Tp = 1.7 × N0.09 in case
χ/z > 0 and Tp = 0.63 × N0.13 for χ/z < 0. These relations are also marked in Figure 3a. It
can be seen, indeed, that the temperature of Tp increases with chain length, and this increase
clearly decelerates for longer chains. The large differences in the pre-factors, 1.7 vs. 0.63,
show, according to Figure 1, that in the good solvent the transition temperature is located
considerably closer to χ/z = 0 than in the bad solvent. Figure 3b shows the changes in the
maximum value of the reduced heat capacity (calculated per polymer bead, Cv/kN) as a
function of chain length. Here, the behavior of this parameter in the two models is different:
it increases with the number of chain beads as N0.27 for χ/z > 0 (already determined in
Ref. [68]) and decreases as N−0.11 for χ/z < 0.
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Figure 3. The transition temperature, Tp, in cases of good and poor solvents obtained directly from
simulation data (solid points) (a) and maximum values on the heat capacity curves in both cases as a
function of chain length, N (b).

3.2. Size and Shape of the Chain

The next parameters considered are the mean-square end-to-end distance, < Ree
2 >,

and the mean-square radius of gyration, < Rg
2 >. These are parameters commonly used to

describe chain size, defined as

⟨R2
ee⟩ = ⟨(r1 − rN)

2⟩ (3)

⟨R2
g⟩ = ⟨ 1

N

N

∑
i=1

(ri − rcm)
2⟩ (4)

where r1 and rN are the coordinates of the two ends of the chain, rcm denotes the coordinates
of the center of mass of the chain and ri denotes the coordinates of the i-th bead. Figure 4a,b
present < Rg

2 > and < Ree
2 > as a function of chain length, N. Let us first discuss the results

obtained in the case of χ/z > 0 presented in Figure 4a,b as dotted lines. The scaling behavior
< Rg

2 >, < Ree
2 > ~ N2ν, is visible for all χ/z > 0: the exponent 2ν varies between values

close to 3/2 and 1. Near χ/z = 0, the configuration of the polymer chain corresponds to a
self-avoiding walk in two-dimensional systems and the exponent 2ν approaches theoretical
value 3/2. For high χ/z close to 1, the polymer chains take the form of a compact disk and
2ν approaches the value 1. At the globule–coil phase transition temperature, χ/z ≈ 0.32, the
polymer is in a critical state and theories predict that the scaling exponent takes the value
8/7 [30,31,81], which has been confirmed by most reliable simulations [35,78], although it
should be remembered that older simulations delivered values for this exponent between
1.006 and 1.2 [35]. In general, the exponent 2ν weakly depends on the length of the chain.
The situation changes significantly when χ/z becomes less than zero. In this case, both
< Rg

2 > and < Ree
2 > exhibit the scaling behavior for χ/z ≥ −0.1 only. For lower χ/z

values, a clear deviation in the scaling behavior of the quantities characterizing the chain
dimensions is visible. The reasons for this behavior will become clear after examining the
behavior of the chain’s characteristics as a function of χ/z for individual chain lengths, as
will be shown below.
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Figure 4. Log–log plot of the mean-square radius of gyration, < Rg
2 > (a), and the mean-square

end-to-end distance, < Ree
2 > (b), vs. chain length, N. The values of χ/z are given in the inset.

Figure 5a,b show the changes in both of these size parameters along with the value of
χ/z for different chain lengths. It can be seen that both parameters behave very similarly,
with the only difference being greater fluctuations in the value of < Ree

2 > at low values
of χ/z, which is understandable, since < Rg

2 > as the average value for the chain is more
stable. It can be seen that for negative values of χ/z, we have a decrease in the size of
the chain at temperatures corresponding to the Tp values discussed above. The change
becomes steeper as the number of beads in the polymer increases. This is the expected
behavior, as it is characteristic of widely and deeply studied systems with EPS < 0 and
ESS = EPP = 0. It can be seen that the introduction of an additional interacting solvent,
EPP ̸= 0, does not qualitatively change the behavior of the chain in the χ/z > 0 region. In
the χ/z < 0 region, the changes in chain size are much more interesting and surprising.
Short chains (N = 16 and 32) behave differently here than long chains; however, it cannot
be ruled out that all strings behave in the same way, and only this effect for short strings
is weak. The difference is that with the increase in the strength of interactions, short
chains decrease in size, similar to the model with χ/z > 0. For long chains, however, the
course of change of < Rg

2 > and < Ree
2 > is not monotonic. An initial decrease in size

with temperature is followed by an increase in chain size, and further cooling leads to a
decrease in size again. Models of three-dimensional systems containing explicit solvents at
low concentrations indicated similar behavior of the chain radius of gyration, but the effect
of non-monotonicity was significantly weaker there [37,49,50,54,55]. The reasons for this
behavior will be discussed below.
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Figure 5. The mean-square radius of gyration, < Rg
2 > (a), and the mean-square end-to-end distance,

< Ree
2 > (b), as a function of χ/z. The lengths of the chain are given in the inset.

We can also determine the shape of the chain from the analysis of the inertia tensor, Tkl:

Tkl = ⟨ 1
N

N

∑
i=1

(rik − rcm,k)(ril − rcm,l)⟩ (5)

where k and l are the coordinates x and y, rik is the k-th coordinate of the position ri and
rcm,k is the k-th coordinate of the chain’s center of mass. The eigenvalues of this tensor, λ1

and λ2, define for us the axes of the equivalent ellipse, which determines the shape of the
chain [82,83].

Figure 6 shows the changes in both λ1 and λ2 along with the parameter χ/z. In this
figure, we can see that the nature of the changes in λ1 and λ2 is exactly the same for the size
of the chain, that is, < Rg

2 >. That is, we have a decrease in the values of both axes as the
temperature decreases for χ/z > 0 and clear maxima appearing in the curves for χ/z < 0,
while the changes in λ1 are more pronounced.

Figure 6. Plot of the mean values of λ1 (a) and λ2 (b) as a function of χ/z. The lengths of the chain
are given in the inset.
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We can obtain additional information about the shape in a more convenient form from
the analysis of the asphericity factor, A2. It is defined as follows [84,85]:

A2 =
⟨(λ1 − λ2)

2⟩
⟨(λ1 + λ2)

2⟩
(6)

This parameter takes a value of 0 for the disk and 1 for the rod. Figure 7a shows
the change in the asphericity factor, A2, with the parameter χ/z, and Figure 7b shows the
change in the ratio of the shape ellipsoid axes, λ2/λ1, with χ/z. Again, we see a monotonic
decrease in the value of the A2 parameter with decreasing temperature for χ/z > 0 and a
quick decrease in the asphericity for χ/z < 0. The ratio of the two λ2/λ1 axes shown in
Figure 7b shows that for χ/z near zero, the chain has an ellipsoid shape because λ1 >> λ2.
For χ/z > 0, when increasing its value, there is no stabilization of the chain’s shape but a
temporary increase in λ2/λ1, that is, toward the disk.

Figure 7. Asphericity A2 (a) and the λ2/λ1 ratio as a function of χ/z (b). The lengths of the chain are
given in the inset.

The dependence of the temperatures corresponding to the minima in the A2(χ/z)
curves on the length of the chain is presented in Figure 8. It is clear that this character-
istic temperature decreases with the length of the chain. From this figure, it can be seen
that the change in the position of the point where the asphericity reaches a minimum
value with the increase in the length of the chain has a semi-exponential character. Thus,
it can be conjectured that this behavior indicates the entropic nature of the effect, since
entropy increases with increasing chain length, which requires a shift toward lower temper-
atures and therefore a stronger interaction. On the other hand, the exponent is very small
(TMin = 0.71 × 10−4), so the position of minima on A2(χ/z) curves depends very weakly on
the length of the chain.
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Figure 8. Position of minima on A2(χ/z) curves as a function of the chain length, N. Simulation
results are shown as points, and the dashed line shows the fit (see text for details).

3.3. Scattering Properties

Figure 9 visualizes the conformations of the long polymer chains (N = 512) tested
for varying solvent quality. Since the structure of macromolecules in the negative χ/z
region is well known, we present example conformations for positive χ/z values only.
Looking at the conformations, one can see that as χ/z increases, the chain slowly begins
to seem to collapse until it reaches χ/z = −1.40, that is, the point where the chain has the
lowest value of asphericity. This effect seems to be due to the fact that with increasingly
strong polymer–solvent interaction, different parts of the chain begin to be somehow
bridged together by the solvent molecules. A similar mechanism called ‘Bridging-Induced
Attraction’ was suggested for three-dimensional polymer chains in explicit solvents but at
low densities [49,50,54,55]. In other words, the increase in the polymer–solvent potential
leads to an increase in the number of polymer–solvent contacts, which must result in
the transformation of a collapsed disk, where there are not too many contacts, into a
more stretched form, as visible in Figure 9. This is because a single solvent molecule can
effectively bridge two different parts of the chain together, resulting in something like a
coil or at least something that looks like a coil. For stronger interactions (χ/z < −1.40), the
chain loses the shape of a coil; however, its shorter elements still look bridged (for higher
χ/z, the chains look like model illustrations of blobs).

Figure 9. Snapshots of a polymer chain consisting of N = 512 beads for various negative values of
χ/z indicated at the right.
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Direct observation of single polymer chains in real experiments concerning two-
dimensional polymer systems is not a simple matter. A very effective but rarely used
technique that allows such observation is Fourier-transform fluorescence spectroscopy
(FT-FS) [86,87]. In practice, this is a commonly used technique due to the simplicity of
small-angle X-ray scattering (SAXS). Using this technique, we can obtain the so-called
static structure factor, which tells us about the scattering intensity as a function of the wave
vector, q:

S(q) = ∑ij γ(r)
sin(qr)

qr
(7)

where γ(r) is the intramolecular site–site correlation function of sites i and j separated by
r = |ri − rj|, defined as

γ(r) =
1
N
⟨c(→ri )·c

(→
rj

)
⟩ (8)

where c is a contrast operator, assuming values of 1 for the sites occupied by elements of the
same chain and assuming 0 everywhere else. We can obtain γ(r) via Fourier transforms of
the structure factor, S(q). Knowledge of this function allows us to draw conclusions about
the chain topology. Figure 10a depicts the single-chain structure factor, S(q), as a function of
the scatter vector, q, for the chain length N = 512, for various values of χ/z. A clearer picture
can be obtained from Figure 10b, which shows the Kratky plot, i.e., q2S(q) as a function
of q. This type of plot makes it much easier to determine the structure of a chain than the
usual S(q) [88,89]. Special attention has to be paid to the area between the two vertical
dashed lines, which correspond to the so-called intermediate (scaling) regime. In this area,
plateaus are clearly formed in the q2S(q) curves. The plateau widens and rises as the value
of χ/z decreases. But for χ/z > −1.40 in the considered q range, decreasing width and
q2S(q) values of the plateau are observed in the area. The presence of a plateau indicates
the formation of a more compact (disk-like) chain structure, but, as we can see, only in
the limited range of χ/z. This behavior is related to the change in chain conformation
observed in Figure 9. At the point χ/z = −1.40, the chain takes a shape most resembling a
disk, which corresponds to the highest value of q2S(q), and then because a further decrease
in χ/z leads to chain stretching, the value of q2S(q) decreases and a stretched but locally
folded (bridged) chain appears.

Figure 10. Single-chain scattering factor, S(q), for various values of χ/z (a) and the Kratky plot for
various values of χ/z (b). The case of chain N = 512. Two vertical dashed lines mark the intermediate
scaling regime.
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The next visualization, presented in Figure 11, shows chain conformations for the
parameter χ/z near the minimum of chain asphericity (i.e., for poor solvent conditions) for
different lengths of the macromolecule. It can be seen that the longer the chain is, the more
spherical its shape is, which is in complete agreement with the sequence of A2(χ/z) curves
for the poor solvent presented in Figure 7a. Moreover, it turns out that the longer the chain,
the more places there are where its fragments can be bundled by the solvent, maximizing
the number of polymer–polymer and solvent–solvent contacts, and thus forming some kind
of a disk. This can also explain the fact that as the chain length increases, the asphericity
minima become deeper.

Figure 11. Snapshots of a polymer chain near the minimum value of asphericity for various chain
lengths indicated at the right side.

4. Conclusions
Simulations of a boundary-diluted two-dimensional polymer solution were carried out

for two rarely used sets of interactions: polymer–polymer and solvent–solvent attraction
(the Flory–Huggins parameter, χ > 0) and polymer–solvent attraction (χ < 0). A model of
such systems based on a triangular lattice was used. The system was completely filled, that
is, there were objects at all nodes of the network: beads of polymer or solvent. Due to the
high density, simulations were carried out using the Cooperative Motion Algorithm.

It was shown that for a system where only polymer beads interact with each other
and solvent molecules interact with each other (i.e., a system with a positive value for the χ

parameter), a single-phase transition occurs, as in systems where only a polymer exists, as
well as a polymer in an inert solvent. This transition involves the formation of a densely
packed disk-like arrangement by the chain at lower temperatures. In a system where
we have only polymer–solvent interactions (i.e., for negative χ), when the temperature
increases, we observe an unexpected increase and decrease in the size of the chain, which is
also associated with its more spherical shape. Similar and even more pronounced behavior
was found for the chain shape expressed by the asphericity factor. The explanation for
this non-monotonic behavior of the size and shape of the chain is the mechanism of chain
penetration by the solvent. This is because solvent molecules interacting with the polymer
bridge its fragments (a mechanism called ‘Bridging-Induced Attraction’) to form a pseudo-
coil, and further worsening of the solvent leads to more extended conformations with
shorter chain fragments bridged by the solvent. The influence of bridging is stronger that
in three-dimensional systems.



Polymers 2025, 17, 978 13 of 16

Author Contributions: Conceptualization, A.S. and P.P.; methodology, A.S. and P.P.; software, P.P.;
validation, A.S. and P.P.; formal analysis, A.S.; investigation, A.S. and P.P.; resources, P.P.; data
curation, P.P.; writing—original draft preparation, A.S. and P.P.; writing—review and editing, A.S.
and P.P.; visualization, P.P.; supervision, A.S.; project administration, A.S.; funding acquisition, P.P.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Polish National Science Center, grant number Opus
27 2024/53/B/ST5/03923.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Dataset available on request from the authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ziv, G.; Thirumalai, D.; Haran, G. Collapse transition in proteins. Phys. Chem. Chem. Phys. 2009, 11, 83–93. [CrossRef] [PubMed]
2. Baysal, B.M.; Karasz, F.E. Coil-globule collapse in flexible macromolecule. Macromol. Theory Simul. 2003, 12, 627–646. [CrossRef]
3. Chu, B.; Ying, Q.C.; Grosberg, A.Y. 2-stage kinetics of single-chain collapse—Polystyrene in cyclohexane. Macromolecules 1995, 28,

180–189. [CrossRef]
4. Chu, B.; Ying, Q.C. Single-chain expansion from the collapsed globule of polystyrene in cyclohexane to the Θ coil. Macromolecules

1996, 29, 1824–1826. [CrossRef]
5. Nakamura, Y.; Sasaki, N.; Nakata, M. Kinetics of the coil–globule transition of poly(methyl methacrylate) in a mixed solvent.

Macromolecules 2001, 34, 5992–6002. [CrossRef]
6. Kayaman, N.; Gürel, E.E.; Baysal, B.M.; Karasz, F.E. Kinetics of coil–globule collapse in poly(methyl methacrylate) in dilute

solutions below ϑ temperatures. Macromolecules 1999, 32, 8399–8403. [CrossRef]
7. Xu, J.; Zhu, Z.; Luo, S.; Wu, C.; Liu, S. First observation of two-stage collapsing kinetics of a single synthetic polymer chain. Phys.

Rev. Lett. 2006, 96, 027802. [CrossRef]
8. Ye, X.; Lu, Y.; Shen, L.; Ding, Y.; Liu, S.; Zhang, G.; Wu, C. How many stages in the coil-to-globule transition of linear homopolymer

chains in a dilute solution? Macromolecules 2007, 40, 4750–4752. [CrossRef]
9. Wu, C.; Zhou, S. First observation of the molten globule state of a single homopolymer chain. Phys. Rev. Lett. 1996, 77, 3053–3055.

[CrossRef]
10. Nakata, M.; Nakagawa, I. Coil-globule transition of poly(methyl methacrylate) in isoamyl acetate. Phys. Rev. E 1997, 56, 3338–3340.

[CrossRef]
11. Baysal, B.M.; Kayaman, N. Coil–globule transition of poly(methyl methacrylate) by intrinsic viscosity. J. Chem. Phys. 1998, 109,

8701–8707.
12. Kayaman, N.; Gürel, E.E.; Baysal, B.M.; Karasz, F.E. Coil to globule transition behaviour of poly(methyl methacrylate) in isoamyl

acetate. Polymer 2000, 41, 1461–1468.
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