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Abstract: Dextran is an exopolysaccharide (EPS) synthesized by lactic acid bacteria (LAB) or their
enzymes in the presence of sucrose. Dextran is composed of a linear chain of D-glucoses linked by
α-(1→6) bonds, with possible branches of D-glucoses linked by α-(1→4), α-(1→3), or α-(1→2) bonds,
which can be low (<40 kDa) or high molecular weight (>40 kDa). The characteristics of dextran in
terms of molecular weight and branches depend on the producing strain, so there is a great variety
in its properties. Dextran has commercial interest because its solubility, viscosity, and thermal and
rheological properties allow it to be used in food, pharmaceutical, and research areas. The aim of this
review article is to compile the latest research (in the past decade) using LAB to synthesize high or
low molecular weight dextran. In addition, studies using modified enzymes to produce dextran with
specific structural characteristics (molecular weights and branches) are addressed. On the other hand,
special attention is paid to LAB extracted from unconventional sources to expose their capacities
as dextran producers and their possible application to compete with the only commercial strain
(Leuconostoc mesenteroides NRRL B512).
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1. Introduction

Lactic acid bacteria (LAB) are microorganisms that produce lactic acid as the main
or only product of carbohydrate fermentation (heterofermentation or homofermentation,
respectively). The nutritional requirements are complex, since they are based on vita-
mins, minerals, fatty acids, amino acids, peptides, and carbohydrates, which are usually
in their natural habitats [1]. LAB have been isolated from dairy foods, meats, cereals,
vegetables, soil, water, and vaginal waste. According to their characteristics and taxon-
omy, LAB include bacteria belonging to the genera Aerococcus, Alloiococcus, Carnobacterium,
Dolosigranulum, Enterococcus, Globicatella, Lactococcus, Lactobacillus, Leuconostoc, Oenococcus,
Pediococcus, Streptococcus, Vaiscoccus, and Weiscoccus [2]. LAB are considered probiotic
bacteria because they can be incorporated into food to improve the consumer′s intestinal
microbial balance, and they are also generally recognized as safe (GRAS) because they
are not pathogenic for humans [3]. On the other hand, they are responsible for a great
diversification of flavors and textures of food products, which is why they are mainly
used to produce different fermented products such as yogurt, cheese, sourdoughs, pickles,
sausages, and soy products [4]. In addition, some LAB can produce extracellular polysac-
charides (called exopolysaccharides, EPS) that are repeat units of sugars such as glucose,
galactose, and rhamnose, which are secreted during bacterial growth [5]. EPS can be
classified into two groups depending on the units that comprise it. Heteropolysaccharides
consist of different monosaccharide units, for example, xanthan and gellan. Homopolysac-
charides are composed of repeating units of a single type of monosaccharides (e.g., glucose
or fructose), for example, glucans and fructans. Levan and inulin are the fructans produced
by LAB, while the most commonly produced glucans are cellulose, pullulan, curdlan,
mutan, alternan, and dextran [6]. These natural polysaccharides have been used as carriers,
encapsulants, thickeners, binders, lubricants, and additives in the pharmaceutical and
food industries [7]. However, the most important EPS for medical and industrial use is
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dextran, which was initially believed to be synthesized only by Leuconostoc mesenteroides,
but subsequent research reported its segregation by another type of LAB (see Section 2) [8].
The literature on the identification or characterization of dextrans produced by LAB has
been increasing in the past decade, as can be seen in Figure 1. Therefore, the aim of this
review is to show the advances that have been made in the discovery and characterization
of new dextrans, their structural characteristics (molecular weight, links, and branches),
and a brief description of their possible applications in medical, food, and research areas. In
addition, emphasis is placed on extraction sources for dextran-producing bacterial strains.
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2. Synthesis of Dextran

Dextran is synthesized in a particular way by LAB when exposed to a medium with
sucrose as a carbon source [8]. In some LAB (e.g., Lactobacillus), sucrose can enter the
cell directly via the phosphotransferase system (PTS) and metabolize to form D-lactate
or become dextran [9]. Bacterial dextransucrases, located extracellularly, are responsible
for hydrolyzing sucrose in its fructose and glucose monomers, forming an intermediate
with glucose (glycosyl-enzyme) to later carry out their polymerization and form dex-
tran [10], while the resulting fructose enters the bacteria through PTS to meet its metabolic
demand [11], as shown in Figure 2. LAB that report dextran production are mainly of the
genus Leuconostoc, Weissella, Lactobacillus, and Streptococcus [10], which have been isolated
from different plant sources (e.g., Agave salmiana and pummelo) [12,13] and fermented
products (e.g., rice batter, cabbage, idli batter, and pickles) [14–17]. However, dextran can
also be synthesized via enzymatic, directly using dextransacarases (sucrose: 1,6-α-D-glucan
6-α-D-glucosyltransferase, EC 2.4.1.5) [18], which polymerize the glucoses of the sucrose in
dextran, as shown at the top of Figure 2.
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Figure 2. General carbohydrate pathways and dextran synthesis in lactic acid bacteria: Leuconostoc (black), Weissella (orange), 
Lactobacillus (blue), and Streptococcus (green). Adapted from [9–11,19,20]. 
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In industry, dextran is obtained through the culture of Leuconostoc mesenteroides NRRL
B512, because it is considered a bacteria generally recognized as safe (GRAS) and very
stable [21]. The fermentation of the NRRL B512 strain is carried out in a sucrose medium,
which is nourished with yeast extracts, malt extracts, casein, peptone, and tryptone; in
addition, low levels of calcium and phosphate are added [22–25]. During fermentation, the
pH drops from 7 to 5 due to the generation of lactic acid; therefore, non-ionic detergents are
usually added to maintain the stability of the bacteria and its enzymes [8]. In the clinical
area, dextran is usually obtained from the acid hydrolysis (e.g., sulfuric and hydrochloric
acids) of the native dextran from Leuconostoc mesenteroides NRRL B512, which allows
controlling the molecular weights of the resulting dextrans [26,27].

3. Characteristics of Dextran

Dextran is a complex glucan formed by a main chain of D-glucoses linked by α-(1→6)
bonds with possible branches of D-glucoses with α-(1→4), α-(1→3), or α-(1→2) bonds [28],
as shown in Figure 3. Dextrans have molecular weight of up to 440 MDa [29], and they can
be classified into two types according to the length of their chains—those with molecular
weight greater than 40 kDa are simply called dextrans [8], while those with molecular
weight less than 40 kDa can be called oligodextrans [30]. However, some authors name high
molecular weight dextran, low molecular weight dextran, and just dextran to generalize
(as in this review) [31].

Some reports affirm the synthesis of dextran is affected by the amount of substrate—
they already found the highest dextran production using sucrose between 10% and
20% [12,32], because sucrose causes an inhibitory effect that affects the production of
the EPS [33]. However, the variations in the molecular weight and the types and propor-
tions of branches in each dextran depend on the producing strain (or enzyme) and the
fermentation (or synthesis) conditions, making each glucan complex and different [15,34].
Table 1 compiles studies that report the synthesis of dextrans by different bacteria, in
which a variation in the molecular weight and the branches including dextrans produced
by bacteria of the same genus is appreciated. For example, the genus Leuconostoc mesen-
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teroides generally synthesizes dextrans with a main chain linked by α-(1→6) bonds and
branches with α-(1→3) bonds [12]; however, the study by Sawale and Lele [16] reported
that the UICT/L18 strain Leuconostoc mesenteroides synthesized a branched dextran with
α-(1→4) bonds. Siddiqui et al. [35] stated that the Leuconostoc mesenteroides KIBGE-IB22
strain produced a branched dextran with α-(1→3) and β-(2→6) bonds. However, most
of the dextrans synthesized by LAB (i.e., Leuconostoc, Lactobacillus, and Weissella) have
only α-(1→6) and α-(1→3) bonds with percentages between 52% and 97% and 3% and
48%, respectively.
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There are other factors that affect both the molecular weight and the branching of
dextran; for example, if fermentations with more than 25 ◦C are used, dextrans with greater
branching are produced [36,37], while at temperatures lower than 25 ◦C, they are obtained
with higher molecular weight [23,38]. In addition, with the increase in the concentration
of sucrose, the yield of dextran decreases, but so does its degree of branching [37,39]. The
commercial dextran synthesized by Leuconostoc mesenteroides NRRL B512 became the most
important glucan due to its stability caused by composition of 95% α-(1→6) bonds and 5%
branches with α-(1→3) bonds [21].

Table 1. Dextrans synthesized by lactic acid bacteria (LAB) isolated from different sources.

LAB
Substrates

Dextran
Reference

Genus Subspecies Source Molecular Weight Linkages

Leuconostoc
mesenteroides SD1 Agave salmiana Sucrose 10% α-(1→6) 93%

α-(1→3) 7% [12]

SD23 Agave salmiana Sucrose 10% α-(1→6) 95%
α-(1→3) 5%

SF2 Agave salmiana Sucrose 10% α-(1→6) 94%
α-(1→3) 6%

SF3 Agave salmiana Sucrose 10% α-(1→6) 74%
α-(1→3) 26%

NRRL B512 Milk permeate 5% <10 kDa [31]

NRRL B512 Sucrose 3% <40 kDa

NRRL B512 Molasses [40]

NRRL B512 Cheese whey 6%

NRRL B512 Molasses + Cheese
whey 2–10%

CM9 Camel milk Sucrose 2% 230 MDa [29]

CM30 Camel milk Sucrose 2% 390 MDa

SM34 Sheep milk Sucrose 2% 210 MDa

RTF10 Meat products Sucrose 2% 440 MDa
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Table 1. Cont.

LAB
Substrates

Dextran
Reference

Genus Subspecies Source Molecular Weight Linkages

BA08 Fermented
rice batter Whey + Sucrose 5% α-(1→6) 93%

α-(1→3) 7% [14]

KIBGE-IB22 Indigenous source Sucrose 10% 15–20 MDa
α-(1→6)
α-(1→3)
β-(2→6)

[35]

KIBGE-
IB22M20 Mutant Sucrose 10% 25–40 MDa α-(1→6)

α-(1→3)

BD1710 Tomato juice +
Sucrose 15% 635 kDa α-(1→6) 94%

α-(1→3) 6% [41]

ATCC 10830 Residual pineapple
juice + Sucrose 15% 960 kDa [42]

AA1 Fermented cabbage Sucrose 10% 10–40 MDa [15]

NRRL B-1149 Sucrose 10% +
Maltose 5%

α-(1→6) 52%
α-(1→3) 48% [43]

UICT/L18 Fermented
idli batter Sucrose 22% 970 kDa α-(1→6)

α-(1→4) [16]

Leuconostoc carnosum CUPV411 Apple must Sucrose 2% 358 MDa α-(1→6)
α-(1→3) [44]

Leuconostoc citreum SK24.002 Fermented pickles Sucrose 10% 46 MDa α-(1→6) 56%
α-(1→3) 44% [17]

Leuconostoc sp. LS1 Sauerkraut Sucrose 15% [45]

LI1 Idli batter Sucrose 15%

Lactobacillus mali CUPV271 Ropy slime of
cooked ham Sucrose 2% 123 MDa α-(1→6)

α-(1→3) [44]

Lactobacillus sakei MN1 Meat products Sucrose 2% 170 MDa [29]

Lactobacillus plantarum DM5 Ethnic fermented
beverage Sucrose 5% α-(1→6) 87%

α-(1→3) 13% [46]

LS3 Stool samples Sucrose 15% [47]

Lactobacillus gasseri LV1 Vaginal swabs Sucrose 15%

LV2 Vaginal swabs Sucrose 15%

LS1 Stool samples Sucrose 15%

Lactobacillus
acidophilus LV3 Vaginal swabs Sucrose 15%

LV4 Vaginal swabs Sucrose 15%

LV5 Vaginal swabs Sucrose 15%

Lactobacillus
fermentum LS2 Stool samples Sucrose 15%

Lactobacillus
satsumensis

NRRL
B-59839 Water kefir grains Sucrose 20% α-(1→6) 55%

α-(1→3) 45% [48]

Weissella cibaria 27 Kimchi Sucrose 20% 12 MDa α-(1→6) [49]

10M Sucrose 0.5 M 5–40 MDa [50]

YB-1 Pickle cabbage Sucrose 5% 390 kDa α-(1→6) 96%
α-(1→3) 4% [51]

RBA12 Pummelo Sucrose 2% α-(1→6) 97%
α-(1→3) 3% [13]

11GM-2 Sour milk Sucrose 20% >20 MDa α-(1→6) 95%
α-(1→3) 5% [52]

JAG8 Apple peel Sucrose 10% 800 kDa [53]
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Table 1. Cont.

LAB
Substrates

Dextran
Reference

Genus Subspecies Source Molecular Weight Linkages

JAG8 Apple peel Sucrose 2% 177 kDa α-(1→6) 93%
α-(1→3) 7% [54]

MG1 Sucrose 10% α-(1→6) [55]

CMGDEX3 Cabbage Sucrose 15% >2 MDa α-(1→6) 97%
α-(1→3) 3% [56]

Weissella confusa PP29 Romanian yoghurt Sucrose 8% 120–870 kDa α-(1→6) 96%
α-(1→3) 4% [57]

PP29 Romanian yoghurt Milk + Sucrose 8% 120–250 kDa α-(1→6) 96%
α-(1→3) 4%

R003 Sugar cane juice Sucrose 10% 10 MDa α-(1→6)
97%α-(1→3) 3% [58]

QS813 Sourdough starters Sucrose 5% 160 MDa α-(1→6) 97%
α-(1→3) 3% [59]

A3/2-1 Fermented cassava Sucrose 10% >20 MDa α-(1→6) 97%
α-(1→3) 3% [52]

A4/2-1 Fermented cassava Sucrose 10% >20 MDa α-(1→6) 97%
α-(1→3) 3%

F3/2-2 Fermented cassava Sucrose 10% >20 MDa α-(1→6) 97%
α-(1→3) 3%

E5/2-1 Fermented cassava Sucrose 10% >20 MDa α-(1→6) 97%
α-(1→3) 3%

G3/2-2 Fermented cassava Sucrose 10% >20 MDa α-(1→6) 97%
α-(1→3) 3%

8CS-2 Sour milk Sucrose 10% >20 MDa α-(1→6) 97%
α-(1→3) 3%

11GU-1 Sour milk Sucrose 10% >20 MDa α-(1→6) 97%
α-(1→3) 3%

11GT-2 Sour milk Sucrose 10% >20 MDa α-(1→6) 97%
α-(1→3) 3%

K1-Lb5 Kimchi Sucrose 20% 1158 kDa α-(1→6)
α-(1→3) [60]

Cab3 Fermented cabbage Sucrose 5% [61]

Weissella sp. TN610 Pear Sucrose 4% 180 kDa α-(1→6) 96%
α-(1→3) 4% [62]

Some researchers prefer the enzymatic use to produce dextran due to the advantages
it presents over fermentation; for example, microbial enzymes can be easily modified by
molecular engineering, they do not need growth factors such as yeast and meat extracts,
and they produce specific and pure metabolites, which translates into a reduction in pro-
cessing costs [63,64]. Table 2 shows high and low molecular weight dextrans produced via
enzymatic. In these studies, most of the enzymes have been modified to synthesize high
molecular weight dextrans (up to 23 MDa) [65]; however, enzymes have also been designed
to directly produce low molecular weight dextrans or even to achieve the synergic inter-
action between enzymes to obtain low molecular weight dextrans with varied molecular
weights [66]. Most of the characteristics of dextrans produced via enzymatic depend on
the type of enzyme (source or method of obtaining it); however, the molecular weights
are also directly related to the concentration of the substrate [67]. On the other hand, the
dextrans obtained by this via report a variation between α-(1→6) and α-(1→3) bonds;
specifically, they show a decrease in the percentage of α-(1→6) bonds compared to the
dextrans obtained by fermentation. It even allowed obtaining totally linear dextrans [65]
and with α-(1→6) and α-(1→2) bonds [68]. In general, the modification or transformation
of enzymes by engineering makes it possible to obtain dextrans with desired characteristics.



Polysaccharides 2021, 2 560

Table 2. Dextrans synthesized by enzymes isolated from different sources.

Enzyme Microorganisms Substrates Dextran Reference

Type Obtaining Genus Subspecies Molecular Weight Linkages

Glucansucrase
GTF180 Isolated Leuconostoc

reuteri 180 Maltose 100 mM +
Sucrose 100 mM ~23 MDa α-(1→6) 78%

α-(1→3) 22% [65]

Glucansucrase
L940G Mutated 180 Maltose 100 mM +

Sucrose 100 mM ~17 MDa α-(1→6) 85%
α-(1→3) 15% [65]

Glucansucrase
L940C Mutated 180 Maltose 100 mM +

Sucrose 100 mM ~17 MDa α-(1→6) 74%
α-(1→3) 26% [65]

Glucansucrase
L940A Mutated 180 Maltose 100 mM +

Sucrose 100 mM ~19 MDa α-(1→6) 84%
α-(1→3) 16% [65]

Glucansucrase
L940S Mutated 180 Maltose 100 mM +

Sucrose 100 mM ~20 MDa α-(1→6) 84%
α-(1→3) 16% [65]

Glucansucrase
L940M Mutated 180 Maltose 100 mM +

Sucrose 100 mM ~19 MDa α-(1→6) 72%
α-(1→3) 28% [65]

Glucansucrase
L940E Mutated 180 Maltose 100 mM +

Sucrose 100 mM ~19 MDa α-(1→6) 73%
α-(1→3) 27% [65]

Glucansucrase
L940F Mutated 180 Maltose 100 mM +

Sucrose 100 mM ~20 MDa α-(1→6) 93%
α-(1→3) 7% [65]

Glucansucrase
L940W Mutated 180 Maltose 100 mM +

Sucrose 100 mM ~6 MDa α-(1→6) 100% [65]

Dextransucrase
B-512FMC Mutated Leuconostoc

mesenteroides B-512FMC Sucrose 20 mM 20–341 kDa - [67]

Dextransucrase
B-512FMC Mutated B-512FMC Sucrose 50 mM 49–431 kDa - [67]

Dextransucrase
B-512FMC Mutated B-512FMC Sucrose 100 mM 63–514 kDa - [67]

Dextransucrase
B-512FMC Mutated B-512FMC Sucrose 200 mM 126–787 kDa - [67]

Dextransucrase
B-512FMC Mutated B-512FMC Sucrose 1000 mM 1645 kDa - [67]

Dextransucrase
FT045B-

Dextranase
Isolated

Leuconostoc
mesen-

teroidesPenicillium
FT045Bsp. Sucrose 400 mM ~92 kDa α-(1→6) 98%

α-(1→2) 2% [68]

Dextransucrase
(DE3)/pET28-

dexYG
Engineered Escherichia coli BL21 Sucrose 10% 5 kDa - [66]

Dextransucrase
(DE3)/pET28-

dexYG-Dextranase
Engineered

Escherichia
coliPenicillium

aculeatum
BL21- Sucrose 10% 10–20 kDa - [66]

Dextransucrase
WcCab3 Isolated Weissella confusa Cab3 Sucrose 5% 178 kDa α-(1→6) 97%

α-(1→3) 3% [69]

On the other hand, low molecular weight dextrans are obtained mainly through
acid hydrolysis of a high molecular weight dextran; however, there are studies that use
enzymatic hydrolysis to produce them [66,70], as shown in the Table 3. In these studies,
enzymes derived from LAB were modified or cloned to hydrolyze high molecular weight
dextrans to shorter chain dextrans (up to 500 Da) [71]. The dextrans obtained specifically
presented α-(1→6) and α-(1→2) bonds in different proportions depending on the enzyme
and the substrate (dextran). Furthermore, the cloning of enzymes allowed them to be used
not only for dextran hydrolysis, but also to polymerize high molecular weight dextrans
from short chain dextrans [72].
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Table 3. Dextrans synthesized by hydrolysis enzymatic.

Enzyme Microorganisms
Substrates

Dextran
Reference

Type Obtaining Genus Subspecies Molecular Weight Linkages

Dextranase Isolated Penicillium Sp. Dextran 40 kDa 5–8 kDa - [70]

α-1,2
transglucosidase Engineered Leuconostoc

mesenteroides NRRL B-1299 Dextran 70 kDa 0.5 kDa α-(1→6) 75%
α-(1→2) 25% [71]

α-1,2
transglucosidase Engineered Leuconostoc

mesenteroides NRRL B-1299 Dextran 70 kDa 1 kDa α-(1→6) 68%
α-(1→2) 32% [71]

Transglucosidase
GBD–CD2 Cloned Leuconostoc

mesenteroides NRRL B-1299 Dextran 70 kDa +
Sucrose 292 mM 10 kDa α-(1→6) 62%

α-(1→2) 38% [72]

Transglucosidase
GBD–CD2 Cloned Leuconostoc

mesenteroides NRRL B-1299 Dextran 70 kDa +
Sucrose 292 mM 40 kDa α-(1→6) 63%

α-(1→2) 37% [72]

Transglucosidase
GBD–CD2 Cloned Leuconostoc

mesenteroides NRRL B-1299 Dextran 70 kDa +
Sucrose 292 mM 70 kDa α-(1→6) 62–67%

α-(1→2) 33–38% [72]

Transglucosidase
GBD–CD2 Cloned Leuconostoc

mesenteroides NRRL B-1299 Dextran 70 kDa +
Sucrose 292 mM 70 kDa α-(1→6) 81–88%

α-(1→2) 12–19% [72]

Transglucosidase
GBD–CD2 Cloned Leuconostoc

mesenteroides NRRL B-1299 Dextran 70 kDa +
Sucrose 292 mM 2000 kDa α-(1→6) 64%

α-(1→2) 36% [72]

4. Properties of Dextran

Variations in dextran characteristics (e.g., molecular weight and branching) cause its
properties to be different [15,34]. The main chain of dextran with α-(1→6) bonds adopts
a helical shape, which is modified by the presence of branches (α-(1→2), α-(1→3) or
α-(1→4)), such that the linear structure of glucan is repeatedly folded [73–75].

The solubility and rheological properties of dextran are affected by its molecular
weight and branching [76]. The solubility of polymers refers to the interaction of the
molecule with water through interactions by hydrogen bridges [77]. Some research asserts
that if the dextran molecule were totally linear (without branches), it would be totally
soluble, because its hydroxy groups (–OH) would be exposed to interact with water
molecules [78]. Other investigations affirm that the greater the number of branches, the
greater the solubility of the dextran due to the increase in amorphous areas in the molecule
that favor water adsorption and retention [73–75]. There are even reports that, in general,
all low molecular weight polysaccharides have a higher solubility compared to long chain
polysaccharides [43]. There is no direct relationship between the characteristics of the
molecule and the variation of the properties [14,35,41,68,79]. However, regardless of the
degree of solubility, dextrans are considered soluble EPS due to their ability to incorporate
large amounts of water and form hydrogels [80].

The rheology and viscosity of polymers show their behavior as flow or deformation
under an applied force, respectively [81], which is associated with –OH groups that easily
interact with other molecules through hydrogen bonds, which are they break during
shear [80]. Generally, the viscosity of dextran is directly related to the concentration and
the shear rate, which means that at low concentrations they have a Newtonian behavior
(independent of the shear rate) and at high concentrations their behavior is non-Newtonian
(or pseudoplastic) [29]. Other studies show that the viscosity is also in direct relation to the
molecular weight of the dextran, since as one increases, the other increases [82].

On the other hand, the flexibility of the polymers is determined as a function of the
temperature; however, the temperatures vary depending on the intermolecular forces,
crystallinity, and the size of the polymer [83]. Linear amorphous polymers have charac-
teristics like glass at low temperatures—that is, little flexibility due to the zero mobility of
the polymer chains [84]. With increasing temperature, they tend to become leathery (at the
glass transition temperature, Tg), then rubbery and finally melt (at the melting temperature,
Tm) [83]. During this transformation process, polymers show their most flexible point [84].
In crystalline polymers, the Tg is high due to intermolecular forces between the polymer
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chains. In short chain polymers, the Tm is low because the entropy is low, whereas long
chains tend to be less mobile with high entropies, so the Tm is high [83].

5. Concluding Remarks and Future Perspectives

The production of dextran occurs mainly by a fermentation with LAB in a medium
with sucrose; however, the enzymatic route has been used because it is a direct method in
which other products or metabolites are not produced. The enzymatic pathway has also
allowed the modification of enzymes to produce dextrans with specific desired characteris-
tics. The characteristics of dextran depend on the LAB or enzyme of origin, which makes
each dextran unique in terms of molecular structure, molecular weight, and branching,
which cause variations in the viscosity and flexibility, and thermal and rheological proper-
ties. In addition, these properties vary depending on the temperature, concentration, and
force applied to each dextran, which allows its application in different areas such as food,
pharmaceutics, cosmetics, and research.

In medicine, high molecular weight dextran (between 40 and 70 kDa) has been used
as an extender, anticoagulant, antithrombotic, osmotic agent, and intravenous plasma
lubricant; in addition, it is used as a cryopreservative for vaccines and organs [8,28]. In
the cosmetic industry, dextran has been used as a thickening and moisturizing agent, and
its reducing property allows it to be used as an anti-aging agent. In the research area,
dextran is useful to generate chromatography matrices, immobilize biosensors, generate
nanoparticles, and form emulsions [28].

However, the most explored application of dextran is in the food industry, as it is used
in baking and confectionery due to its moisturizing, stabilizing, and preserving effects, im-
proving the flavor, texture, and consistency of ice creams, sweets, breads, flours, and jellies.
In meat, vegetable, and cheese products, it has been added to retard oxidation; therefore,
they are preservatives of texture, aroma, and flavor [8,15,28,85]. In addition, dextran has
been proposed to be used as coatings or biodegradable film-forming agents [86,87], and as
potential prebiotics (low molecular weight dextrans) [71,88].

The versatility of dextran has attracted attention in the past decade, and for this
reason, the sources of obtaining LAB and the manipulation of enzymes that produce it
have increased in such a way that the variety of dextrans has also increased its applications.
However, the full characterization of each dextran produced is still incomplete and it would
be worth studying so that they could compete with commercial dextran from Leuconostoc
mesenteroides NRRL B512.
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