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Abstract: Cancer is one of the major causes of death worldwide. Chemotherapeutic drugs have
become a popular choice as anticancer agents. Despite the therapeutic benefits of chemotherapeutic
drugs, patients often experience side effects and drug resistance. Biopolymers could be used to
overcome some of the limitations of chemotherapeutic drugs, as well as be used either as anticancer
agents or drug delivery vehicles. Chitosan is a biocompatible polymer derived from chitin. Chitosan,
chitosan derivatives, or chitosan nanoparticles have shown their promise as an anticancer agent.
Additionally, functionally modified chitosan can be used to deliver nucleic acids, chemotherapeutic
drugs, and anticancer agents. More importantly, chitosan-based drug delivery systems improved the
efficacy, potency, cytotoxicity, or biocompatibility of these anticancer agents. In this review, we will
investigate the properties of chitosan and chemically tuned chitosan derivatives, and their application
in cancer therapy.
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1. Introduction

Cancer is one of the leading causes of death, and arises from abnormal proliferation
of cells which later spreads to different parts of the human body [1]. In 2020, 19.3 million
people were diagnosed with cancer and about 10 million cancer-related deaths occurred
worldwide [2]. To reduce tumor burden and increase survival time, many cancer patients
have to rely on chemotherapeutic drugs [3]. Though chemotherapeutic drugs improve
the outcome of cancer therapy, some patients experience drug-induced side effects [4].
More importantly, the requirement of high-dose, poor bioavailability, low selectivity in-
dex, development of drug resistance, and non-specific interactions are some of the major
drawbacks of chemotherapeutic drugs [5,6]. Therefore, the development of a suitable
drug delivery system is urgently needed to reduce the therapeutic dose or frequency, and
thereby minimize the toxic effects of the anticancer drugs.

Biopolymers are largely used as carriers in the delivery of active pharmaceutical
ingredients. They play a key role in the development of a range of delivery systems,
including hydrogels, micelles, tablets, capsules, and particulate systems (nanoparticles,
beads, and micro) [7]. As a carrier, polymers have to be non-toxic, biodegradable, and
biocompatible, the two latter properties help remove the carrier after administration of the
drug [8,9]. Cellulose, chitosan, alginate, gellan gum, pectin, gum arabica, guar gum, starch,
gelatin, chondroitin sulfate, and hyaluronic acid are some of the biopolymers used in drug
delivery systems [10]. Among these, chitosan is one of the most widely used polymers in
the pharmaceutical industry [11].
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Chitosan is a biocompatible and biodegradable polymer derived from chitin [12].
Chitosan shows a range of biochemical activities such as antiproliferative and antimi-
crobial activity, immune activation, lowering cholesterol level, eliciting production of
phytoalexin, antihypertensive action(s), and neuroprotective, wound-healing, and antiul-
cer activities [13,14]. Due to its biocompatibility, chitosan is often used as a delivery vehicle
for nucleic acids, chemotherapeutic drugs, or anticancer compounds [15,16]. Furthermore,
chemically tuned or chemically modified chitosan derivatives can be used as antiprolifera-
tive agents, either alone or in combination with other anticancer agents [15]. For example, in
many cancer cells, alteration of glycosylation occurs, which can be targeted using chitosan-
based glycoconjugates where carbohydrate incorporated into the pharmacophore offers
higher penetration of anticancer agents [15,17].

In this review, we have investigated the anticancer activities of chitosan or chitosan
derivatives, their application in the delivery of gene, chemotherapeutic drugs, or anticancer
compounds, and their efficacy as cancer therapeutic agents. Additionally, we scrutinized
the promise of chitosan or chitosan derivatives in cancer immunotherapy.

2. Properties of Chitosan and Its Derivatives

Chitosan is a polycationic linear polysaccharide comprising N-acetyl-glucosamine and
D-glucosamine monosaccharides connected via β-(1→4) glycosidic linkages (Figure 1) [12].
It is a polysaccharide extracted from chitin. Under strict alkaline conditions, this chitin is
partially deacetylated into chitosan [18]. Insects, crustaceans, squid, algae, and fungi are
the primary source of chitosan [12]. Chitosan can be grouped into three categories based
on molecular weight: (1) low molecular weight chitosan, (2) medium molecular weight
chitosan, and (3) high molecular weight chitosan. High molecular weight chitosan contains
a long chain and more hydroxyl groups [19].
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Figure 1. Structure of chitin and chitosan. Chitosan can be prepared upon deacetylation of chitin.
The degree of deacetylation can be represented as the molar fraction of GlcN (x) and GlcNAc (100-×)
units. When the degree of chitin deacetylation is more than 50%, it is called chitosan. N-acetylated
glucosamine: GlcNAc; 2-amino-2-d-glucose: GlcN.

The degree of deacetylation (DD) is the ratio of the relative number of D-glucosamine
units to the cumulative number of N-acetyl-d-glucosamine and D-glucosamine units [20].
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When the DD of chitin is more than 50%, it is called chitosan. Generally, the DD of chitosan
is about 60–98% [20,21]. While the degree of substitution (DS) represents the percentage
of newly added groups into the chitosan, the DS is linked with the pH, solubility, and
biological activities of chitosan derivatives [22].

Chitosan is a weak base, insoluble in water and organic solvent. However, chitosan is
soluble in an aqueous solvent under acidic conditions [23]. Poor dissolution of chitosan due
to the highly crystalline hydrogen linkages, and reduced solubility in water or physiological
condition restrict the use of chitosan in drug delivery [24,25]. Chitosan is often chemically
modified to overcome its limitations as a drug delivery vehicle. O-substitution (e.g.,
carboxymethylation) and N-substitution of chitosan (e.g., reductive amination) can be
used to create new covalent linkages and such modification may improve the property of
chitosan [26,27]. Furthermore, hydrogel formation forms covalent linkages with different
crosslinkers to improve the drug distribution property of chitosan [25,28].

3. Anticancer Activities of Chitosan and Its Derivatives

Chitosan or chitosan derivatives including chitosan-thymine conjugate (CTC), car-
boxymethyl chitosan (CMC), sulfated chitosan (SCS), sulfated benzaldehyde chitosan
(SBCS), and polypyrrole-chitosan (PPC) displayed promising anticancer activity against
many cancer cells [13,15]. The anticancer activities of chitosan derivatives can be further
modified by combination with nanocomposite or other chemical agents. For example,
conjugation of 3-amino-2-phenyl-4(3H)-quinazolinone on PPC-silver chloride nanocom-
posite enhanced bioavailability of chitosan to tumor cells. This formulation sequestered
molecules from noncancerous cells and exhibited sustained release of chitosan to cancer
cells [29,30].

Chitosan or its derivatives selectively penetrate tumor cells and exhibit antiprolifera-
tive activities via antiangiogenic, immunoenhancing, antioxidant defense, apoptosis, and
enzymatic regulation [15]. Low molecular weight water-soluble chitosans (21 and 46 kDa)
exhibited antiproliferative activity towards sarcoma 180-tumor bearing mice, while high
molecular weight water-soluble chitosan of 130 kDa had no antitumor activity. The 21 and
46 kDa chitosans activated macrophages via cytokine (e.g., IFN-γ, IL-12, and IL-18) produc-
tion from the intestinal intraepithelial lymphocytes [31]. Low molecular weight chitosan
arrests cancer cells at the G1/S phase and induces apoptosis [32]. Furthermore, chitosan
regulates cell cycle-related genes (e.g., Cdc25A, p21/Cip, and p27/Kip), upregulates tran-
scriptional growth factor β (TGF-β), and induces apoptosis by controlling nuclear factor
k-light-chain enhancer of activated B cells (NF-kB) mediated signaling pathways [32,33].
CTC exhibited antiproliferative activity towards HepG2 liver carcinoma cells, while it had
no cytotoxic activity towards NIH3T3 normal mouse fibroblast cells, indicating selective
targeting of cancer cells [34]. Similarly, PPC displayed anticancer activity towards Ehrlich
ascites carcinoma (EAC) cells and MCF-7 breast cancer cells [35]. Furthermore, CTC and
PPC showed antimicrobial activity, therefore could be used to prevent secondary infections
in cancer patients [34–36]. While CMC increased the immune response by upregulating
interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α) level and reduced angiogenesis
by decreasing vascular endothelial growth factor (VEGF) expression [37], it could be used
as a transporter of chemotherapeutic drugs (e.g., doxorubicin, and 5-fluorouracil) or anti-
cancer agents (e.g., curcumin) [5]. Likewise, SCS and SBCS exhibited anticancer activity
towards MCF-7 cells by triggering apoptosis and blocking FGF-2-triggered activation of
extracellular signal-regulated kinases [38]. Among these two derivatives (SCS and SBCS),
SBCS was slightly more potent than SCS in terms of IC50 value (Table 1). Additionally,
the apoptotic activity of SCS and SBCS was significantly greater than chitosan. They
significantly increased apoptosis (more than 46%) in MCF-7 cells compared to chitosan
at 40 µM [38]. Moreover, chitosan oligosaccharide (COS) exhibits anticancer activity to-
wards SW480 (colorectal cancer cells), Hep3B (hepatocellular carcinoma cells), and HeLa
(human cervical cancer cells) regardless of their positive or negative charge. Though quat-
ernized amino chitooligosaccharides (QCOS) and sulfated chitooligosaccharides (SCOS)
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were equally potent against HeLa cells, negatively charged SCOS was more potent than
positively charged QCOS towards SW480 cells in terms of IC50 value. DNA fragmentation
and fluorescence microscopic studies showed that these charged COS derivatives induced
necrosis rather than apoptosis [39]. Similar to COS, hexamers of COS (chitohexose, chi-
topentaose, chitobiose, and chitotriose) form displays antiproliferative activity. Among the
five hexamer derivatives of COS, chitohexose was more potent towards A549 lung cancer
cells. Chitohexose downregulated cell cycle linked cyclin D1 and pro-survival protein
bcl-xl mRNA expression, thereby induced apoptosis [40].

Table 1. Anticancer activity of chitosan and chitosan derivatives.

Chitosan or
Chitosan

Derivative

Molecular
Weight
(M.W.)

Active
Moiety Cancer Type Cell Line(s) IC50 Apoptosis Mechanism Ref.

Chitosan Low M.W. N/A Colon
cancer Ca9–22 800 ± 131.45

µg/mL Yes

Cell cycle arrest in
the G1/S phase,

apoptosis
induction via

NF-kB mediated
signaling pathways

[32,33]

SCS 38 k Da Sulfur Breast
cancer

MCF-7,
MDA-MB-

231

35.65 ± 1.44 µM
(MCF-7),

36.9 8± 2.36 µM
(MDA-MB-

231)

Yes

Block cell cycle by
inducing apoptosis

and blocking
FGF-2 medicated
phosphorylation

ERK

[38]

SBCS 37 k Da Sulfated
benzaldehyde

Breast
cancer

MCF-7,
MDA-MB-

231

33.24 ± 1.16 µM
(MCF-7),

34.98 ± 1.19 µM
(MDA-MB-

231)

Yes

Block cell cycle by
inducing apoptosis

and blocking
FGF-2 medicated
phosphorylation

ERK

[38]

CTC
<3 kDa

(Chitosan
only)

Thymine Liver cancer HepG2 NR NR Selectively kills
cancer cells [34]

PPC 12–14 kDa Pyrrole

Ehrlich
ascites

carcinoma,
breast cancer

EAC,
MCF7 NR NR NR [35,41]

CMC 194.6 kDa Carboxymethyl Liver cancer H22 NR NR

Antiangiogenic
activity by

decreasing VEGF
and stimulate

immune activity
via increase in

IFN-γ and TNF-α
level

[37]

QCOS 6 to 7 kDa
Amino

oligosaccha-
ride

Cervical
cancer,

colon cancer
HeLa,
SW480

0.45 mg/mL
(HeLa),

0.52 mg/mL
SW480

No Induce necrosis [39]

SCOS 6 to 7 kDa
Sufated

oligosaccha-
ride

Cervical
Cancer,

colon cancer
HeLa,
SW480

0.20 mg/mL
(HeLa),

0.50 mg/mL
SW480

No Induce necrosis [39]

CHEX NR Hexose
Cervical
cancer,

colon cancer
A549 NR Yes

Downregulates
cyclin D1 and
bcl-xl mRNA

expression, and
induce apoptosis

[40]

Abbreviations: Chitosan–thymine conjugate: CTC; Sulfated chitosan: SCS; Sulfated benzaldehyde chitosan: SBCS; Polypyrrole-chitosan:
PPC; Carboxymethyl chitosan: CMC; Fibroblast growth factor-2: FGF-2; Extracellular-signal-regulated kinase: ERK; Interferon γ: IFN-γ;
Tumor necrosis factor α: TNF-α; Vascular endothelial growth factor: VEGF; Quaternized amino chitooligosaccharides: QCOS; sulfated
chitooligosaccharides: SCOS; Chitohexose: HEX; Not applicable: N/A; and Not reported: N/R.
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4. Ligand Decorated Chitosan for Targeted Drug Delivery

Ligand-targeted drug delivery helps to elicit distinct therapeutic effects, maximize
therapeutic response, and minimize the toxicity of drugs [42,43]. Ligands attach to clustered
receptors which are overexpressed on the cancer cell surface. Chitosan-based ligand
conjugated nanoformulations can deliver drugs reliably to the target site, which eliminates
unwanted effects of non-targeted drug delivery [43]. For example, Chen et al. [44] combined
trimethyl chitosan with ligand CSKSSDYQC to treat breast cancer via oral administration.
The incorporation of ligand CSKSSDYQC increased bioavailability due to its selective
affinity towards intestinal goblet cells and enhanced intestinal uptake of the chitosan-based
drug candidate [44].

Epidermal growth factor receptor (EGFR) is overexpressed in A549 cells [45].
Nascimento et al. [46] constructed EGFR-targeted chitosan-based carrier by conjugating
EGFR, chitosan, and polyethylene glycol (PEG) linker loaded with small interfering RNA
and Mad2 gene. Such chitosan-based carrier was selectively internalized by A549 cells
and silenced Mad2 gene expression which caused premature anaphase leading to the
death of A549 cells [46]. In addition, overexpression of estrogen receptor (ER) is observed
in breast cancer cells [47]. Therefore, estrone ligand-modified glycol chitosan nanopar-
ticles were prepared by Yin et al. [48] for targeted drug delivery in breast cancer cells.
Qindeel et al. [49] reported that the folate–chitosan complex was rapidly uptaken into
lysosome and mitochondria of MCF-7 cells through folate receptor. Moreover, Jin et al. [43]
synthesized folic acid (FA), chitosan, and ursolic acid conjugated nanocarrier, which was
rapidly internalized by MCF-7 cells through a folate receptor-regulated endocytic pathway.
Similarly, a chitosan-derived nanocomplex, CN@CFTC, was fabricated by conjugating
chitosan, FA, and fluorescein isothiocyanate (CFTC) which was electrostatically assem-
bled to cellulose nanocrystals. The resulting CN@CFTC contains targeting ligand FA that
facilitates the internalization of CN@CFTC into tumor cells expressing FR-receptor (i.e.,
MDA-MB-231 human breast cancer cells) and the elevation of the chitosan derivative
(CFTC) concentration increases the fluorescent intensity five-fold compared to control [50].
Moreover, cluster determinant 44 (CD44) is overexpressed in many tumor cells, and CD44
overexpressed cells can be targeted using chitosan-based complexes containing hyaluronic
acid (HA) and chondroitin sulfate (CS). It should be noted that HA and CS show affinity
towards CD44 [51].

5. Chitosan-Mediated Gene Therapy

Gene therapy primarily focuses to introduce exogenous genetic elements into the tar-
geted cell which paves the way to control genomic expression [52]. However, the negatively
charged gene is not capable of penetrating the cell membrane through passive diffusion [53].
Moreover, injecting DNA directly into cells causes rapid degradation by nuclease [54]. The
outcome of gene therapy is linked with several parameters, including the targeting of
selective cells, protecting nucleotides in the extracellular milieu from degradation, and
delivering adequate amounts of nucleic acid to generate a therapeutic effect [55]. Therefore,
both viral and non-viral vectors are employed to achieve effective gene transfer to specific
cells [56]. While developing vectors for gene therapy, the biocompatibility, immunogenicity,
and efficacy of the drug delivery system should be considered [57]. Although high trans-
fection efficiency could be achieved via a viral vector, a non-viral vector is preferred due
to producing minimum toxicity and immunogenicity [58]. Among the non-viral vectors,
chitosan-derived polymers having cationic properties have emerged as promising vectors
in gene delivery systems [57].

Three main strategies involved in the preparation of chitosan-based nucleic acids
carriers are polyplex formation by simple complexation, encapsulation via ionic gelation
method, and adsorption onto the performed systems (Figure 2). Fabrication of polyelec-
trolyte complexation or polyplexes is the simplest approach and can be achieved by mixing
both chitosan and nucleic acids, followed by incubation [59]. Chitosan backbone contains
protonated amino group which stimulate cationic chitosan to interact electrostatically with
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anionic nucleic acids to form polyplex. The resulting polyplex protects nucleic acids from
enzymatic degradation [60]. An alternative approach of chitosan-nucleic acids formulation
is ionic gelation where nucleic acids are encapsulated within the chitosan matrix. In this
method, nucleic acids and chitosan interact through ionic crosslinker agents besides electro-
static interaction [61]. Such ionic crosslinker agents (i.e., tripolyphosphate (TPP), sodium
sulfate, thiamine pyrophosphate, poly-γ-glutamic acid, dextran sulfate, and hyaluronic
acid) are negatively charged and bind with chitosan [62,63]. The as-prepared chitosan-
based nanostructures exhibited extended stability and entrapped nucleic acids for a longer
time [64]. Another fabrication method of chitosan-based nucleic acids carrier is adsorption
of nucleic acids onto the surface of chitosan modified poly(lactide-co-glycolide) (PLGA).
Such formulation can load nucleic acids, protect them from nuclease degradation, and
mediate the controlled release of nucleic acids [65].
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Figure 2. Fabrication strategy and transfection mechanism of chitosan-based nucleic acids carrier.
Cationic chitosan interacts with the anionic nucleic acids (i.e., pDNA, siRNA, and miRNA) to
formulate complexes for gene delivery. Three main fabrication processes of chitosan-based complexes
are (1) Polyplex formation, (2) Encapsulation via ionic gelation method, and (3) Adsorption. The
chitosan-based vectors are taken up by endocytosis (I), followed by an escape from endosome (II).
After releasing from endosome (III), siRNA and miRNA bind to the RNA-induced silencing complex
(RISC) to trigger the RNA interfering (RNAi) pathway. The pDNA is translocated to the nucleus and
subsequently performs desired anticancer activity.

Chitosan was first used in 1995 for plasmid transfection as a non-viral gene delivery
agent [66]. Chitosan backbone contains primary amino group that undergoes protonation
at marginally acidic pH and becomes positively charged which electrostatically interacts
with nucleic acid [57]. Chitosan exerts fine bioavailability, low toxicity, and immuno-
genicity in the in vitro and in vivo approaches. Additionally, chitosan contains functional
groups which can be chemically modified to facilitate endo-lysosomal escape and conden-
sation of genetic material [67,68]. However, the disadvantages arise as the chitosan-based
carriers are only soluble in acidic conditions. To improve the solubility of chitosan, its
amino and hydroxyl groups are targeted for chemical modification [69,70]. Low molec-
ular weight water-soluble O-carboxymethyl chitosan containing free amine group has
already shown promise as gene carriers [71]. As O-carboxymethyl chitosan is anionic in
nature, Nam et al. [71] conjugated it with cationic poly(ethyleneimine) to interact with
negatively charged siRNA (Table 2). Another drawback of chitosan is its poor transfection
potential [70]. Chemical modifications such as PEGylation [72], galactosylation [73], block
copolymerization [74], histidine modification [75], and methylation [76] are often employed
to increase the transfection efficiency of chitosan.

Liang et al. [77] developed novel cationic polymeric liposomes (CPLs), TQCMC-
DOPE, by combining polymeric surfactants of quaternized (carboxymethyl)chitosan with
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different carbon chains (dodecyl, tetradecyl, hexadecyl, and octadecyl) (TQCMC) and L-α-
phosphatidylethanolamine (DOPE). The resulting structure of TQCMC-DOPE CPLs was
structurally similar to lipid bilayer, and the nanocomplex showed high thermal stability
similar to cationic liposomes (Lipofectamine 2000). Interestingly, TQCMC-DOPE CPLs
were two-fold less cytotoxic than Lipofectamine 2000 towards mouse fibroblast (L929),
human ovarian carcinoma (HO-8910), and HepG2 cells. Different factors (i.e., NP size, NP
components, surface charge, and microstructure) that affect gene transfection efficiency
were analyzed, and TQCMC-DOPE CPLs, having apposite size (184.4 nm) and positive ζ

potentials (27.5 mV), were the best to use against different cancer cell lines. In vitro study
confirms that TQCMC-DOPE-pDNA CPLs exhibited 20–50% higher transfection efficiency
than control against human embryonic kidney (293T), human gastric cancer (SGC-7901),
prostate adenocarcinoma (PC-3), HO-8910, human primary glioblastoma (U87), and human
hepatocellular carcinoma (SMMC-7721) cells. In vivo study in BALB/c mice revealed that
TQCMC CPLs delivered reporter gene efficiently into U87 and SMMC-7721 tumors and
caused less cell cytotoxicity, a reduction in cytokine production, and low hepatic tissue
injury [77]. Covalent conjugation of folic acid (FA) to chitosan helps in targeted DNA
delivery specifically to folate receptor overexpressing cancer cells [43]. Lee et al. [78]
introduced FA to the primary amine group of chitosan to prepare folate-chitosan complex
and found that FA was responsible for increasing gene transfer potentiality of chitosan on
folate-receptor overexpressing MCF-7 cells. FA-conjugated chitosan augmented improved
gene transfer than unmodified chitosan in folate receptor overexpressing cancer cells [78].
Similarly, Wang et al. [72] synthesized another type of multifunctional vector. The core
enzyme complex (PHD) consisted of poly(amidoamine) (PAMAM), high mobility group
box 1 (HMGB1), and pDNA. The PHD was then coated with FA modified polyethylene
glycol tethered carboxylated chitosan (FA-PEG-CC). Conjugation of FA-PEG-CC and PHD
results in a pH-sensitive FPCPHD complex which exhibited excellent in vitro and in vivo
gene delivery efficacy. FPCPHDs showed resistance to digestion by DNase I and heparin
replacement. Additionally, the encapsulation efficiency of FPCPHD increases (10–95%)
with the increase in N/P ratio (0.5–30). Moreover, FPCPHDs exhibited efficient transfection
in folate receptor (FR) positive cancer cells and displayed low toxicity against HepG2
and KB (epidermoid carcinoma) cells [72]. In the same way, chitosan-stabilized and
gold-coated PLGA with FA nanoparticles (FA-Au-C-PLGA NPs) were prepared which
exhibited excellent in vitro transgene activity, low cytotoxicity, fine cellular uptake in FR
positive MCF-7 cells, and protection of pDNA from nuclease degradation [79]. In another
study, a pH-sensitive nanocarrier was fabricated by combining chitosan and FA, and later
conjugated with pDNA via the ionic gelation method. Encapsulation efficiency of the
pDNA increased proportionally with the increase in the molecular weight of chitosan [53].
Furthermore, N, N-diethyl N-methyl chitosan (DEMC) was developed by Safari et al. [80]
to deliver genes in human pancreatic cancer cells (AsPC-1). They used pDNA-EGFP to
evaluate the gene delivery efficacy. DEMC condensed pDNA and effectively delivered
pDNA into AsPC-1 cells. The transfection efficiency was enhanced by 16.7-fold with the
increase in the charge ratio (5–40) [80]. Moreover, Wang et al. [81] cultured TC-2 cells in 3D
chitosan-alginate (CA) porous scaffolds and obtained high pDNA delivery in vitro. The
outstanding in vitro transfection efficiency predicts the in vivo gene delivering potentiality
of CA [81].
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Table 2. Physicochemical properties and transfection report of some chitosan-based complexes.

Chitosan
Modified

Complexes
Nucleic
Acids

CytotoxiCity
Assay

CytotoxiCity
Status

Average
Particle

Size (nm)

Zeta
Potential

(mV)
InvestiGated

Cell Lines
Transfection
Investigated Ref.

HPOCP siRNA,
pDNA, MTT No cytotoxicity 100–~ 300 − HCT119 in vitro [71]

FPCPHDs pDNA MTT

<10% (HepG2),
and 20% (KB)
less cytotoxic
than control

51–305 −0.9–+27.3 HepG2, KB in vitro and
in vivo [72]

TQCMC-
DOPE pDNA MTT

5–40% (L929),
0–70%

(HO8910), and
0–60% (HepG2)
more cytotoxic

than
Lipofectamine

2000

184.4 27.5

293T,
SGC-7901,

PC-3,
HO-8910,

HepG2, U87,
SMMC-7721

in vitro and
in vivo [77]

FA-Au-C-
PLGA pDNA MTT

0–10% less
cytotoxic than

control
199.4 35.7

HepG2,
HEK293,
MCF-7

in vitro [79]

DEMC pDNA MTT
45–70% less

cytotoxic than
control

114.24–570.4 6.14–16.45 AsPC-1 in vitro [80]

C–miRNA miRNA MTT Almost no
cytotoxicity ~80–190 −20–+20 MCF-7 in vitro [82]

Abbreviations: O-carboxymethyl chitosan + poly(ethyleneimine) + HER-2/neu: HPOCP; Tetradecyl-quaternized (carboxymethy)chitosan:
TQCMC; Chitosan+miRNA-145: C–miRNA; Chitosan + gold + poly(lactide-co-glycolide) + folic acid: FA-Au-C-PLGA; N,N-diethyl
N-methyl chitosan: DEMC; and Poly(amidoamine)+high mobility group box 1 + Pdna + polymer polyethylene glycol + folic acid: FPCPHD.

Nam et al. constructed a novel vector HPOCP by combining water-soluble O-carboxymethyl
chitosan, branched-low molecular weight poly(ethyleneimine) (bPEI) and targeting ligand
(epitope type, HER-2/neu). Low cytotoxicity, site-specific delivery, and excellent transfec-
tion efficiency made HPOCP copolymer an ideal candidate for gene therapy. HPOCP poly-
plexes conjugated with the green fluorescent protein encoded plasmid DNA (pDNA-EGFP)
displayed high gene transfection efficiency in HCT119 (human colorectal cancer cells).
Moreover, HPOCP efficiently bound with siRNA and siRNA/HPOCP 10% polyplexes did
not exhibit cytotoxicity in HEK 293 (human embryonic kidney cells) [71]. However, other
studies reported that chitosan-siRNA complexes showed 20–40% cytotoxicity in H1299
cells [83], whereas it was 30–40% in NIH3T3 cells [84]. The ability of chitosan-based formu-
lations to deliver siRNA inspired Santos-Carballal et al. to fabricate chitosan–miRNA-145
(C–miRNA) and investigate in vitro transfection efficiency in MCF-7 cells. They reported
that the ideal complex can be achieved by using chitosan with 40 kDa molecular weight
and 12% degree of acetylation; a (+/−) charge ratio of 1.5. C–miRNA was able to deliver
miRNA successfully in MCF-7 cells, and no cytotoxicity was reported at 0.05–0.5 nmol
concentration. Furthermore, as miRNA-145 downregulates junction adhesion molecule
A (JAM-A) mRNA, it was used to assess the transfection efficiency of miRNA-145. The
level of JAM-A mRNA expression was reduced nearly 1.33 to 1.66-fold than control at
a dose concentration ranging 0.05–0.5 nmol, which proved the transfection of miRNA by
C–miRNA [82].

6. Photodynamic Therapy of Chitosan-Based Complexes

Photodynamic therapy (PDT) is a non-invasive approach to destroy tumor cells
through the production of ROS by irradiation with light [85,86]. Lights with a specific wave-
length stimulate photosensitizers (PS) to induce photochemical reactions which convert
oxygen (O2) to singlet oxygen (1O2) and subsequently destroy tumors [87]. PS localizes into
the tumors and generates in situ 1O2 with appropriate irradiation which leads to killing the
tumors [85]. Most PS have poor water solubility and prolonged cutaneous photosensitivity
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which interrupts their clinical application. Therefore, chitosan-based nanoformulation
could be an efficient approach in PS delivery and improving PDT outcomes (Figure 3) [88].
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Zhao et al. [89] constructed a chitosan-based glycolipid nanoparticle by conjugating
chitosan, octadecanoic acid, and gadopentetic acid which self-assembled into micelle to
load a PS, chlorin e6. The obtained nanostructure, COG@Ce6, could realize MRI-guided
PDT in both 4T1 breast cancer cells and 4T1 tumor-bearing mice. Results obtained from
singlet oxygen sensor green assay indicated that COG@Ce6 with laser irradiation at 660 nm
elevated in vitro ROS generation of 4T1 cells. COG@Ce6 also showed in vivo anticancer
activity through MRI-guided PDT in the 4T1 tumor-bearing mice model. COG@Ce6 with
laser irradiation reduced tumor volume and tumor weight by nearly four- and five-times,
respectively, compared to control. Moreover, COG@Ce6 with laser irradiation reduced
tumor volume and weight 2.67- and 3-times, respectively, than COG@Ce6 without laser
irradiation [89]. In another study, chitosan-based nanoparticle, CPCNPs, was developed
by conjugating tetraphenylchlorin as PS and was used to load cytostatic drugs mertansine
(MRT) or cabazitaxel (CBZ). Upon irradiation at 420 nm, PS mediated PDT effect on
breast cancer cell lines (i.e., MDA-MB231 and MDA-MB-468 cells). Both empty and drug-
loaded CPCNPs killed 40–50% more breast cancer cells than MRT and CBZ. Moreover, PS
partially masked the toxicity of the loaded drugs and increased the in vivo suitability of the
drugs [90]. Similarly, a polymeric nano-drug was fabricated by Jia et al. [91] by combining
glycol chitosan, polyethylene glycol, and a PS, protoporphyrin IX (CGP). The resulting
CGP was self-assembled in aquatic medium and the fluorescence of protoporphyrin IX
moieties was quenched due to strong π–π stacking. However, upon encountering the
plasma membranes of A549 cells, the CGP was disassembled and the membrane affinity
of protoporphyrin IX led CGPs to attach to the plasma membrane. Upon irradiation at
635 nm, the protoporphyrin IX generated 1O2, which disrupted membrane integrity and
induced nanoparticles to influx into A549 cells which led to cellular death. Moreover,
in vivo experimentation with U14 squamous cell carcinoma tumor-bearing mice showed
that irradiation by laser (635 nm) for 20 min stimulated CGP to eliminate the tumor through
PDT and there was no sign of tumor relapse up to 22 days [91].

7. Delivery of Chemotherapeutic Drugs

Lipophilicity is one of the major parameters that determine the cellular uptake of
cytotoxic drugs [92], and is also linked with drug pharmacokinetic profile and potency [93].
There must be a balance between lipophilicity and hydrophobicity to be an ideal chemother-
apeutic agent [92,94]. Chitosan improved the delivery of hydrophobic and hydrophilic
conventional chemotherapeutic drugs (Figure 4) [94].
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7.1. Delivery of Hydrophilic Anticancer Drugs

Doxorubicin (DOX) is a water-soluble chemotherapeutic drug used in the treatment
of different cancers such as lung, thyroid, breast, and hematological malignancies [95,96].
Yousefpour et al. [97] conjugated DOX with chitosan via succinic anhydride spacer, and
then self-assembled to form chitosan-DOX nanoparticles. Chitosan-DOX nanoparticles
were then decorated with trastuzumab which targets the Herceptin receptor. Trastuzumab-
loaded chitosan-DOX (Tra-chitosan-DOX) nanoparticles showed higher cytotoxic activity
towards SKOV3 ovarian cancer cells (Her2 positive) compared to free DOX. Fluorescence
microscopy study confirmed that Tra-chitosan-DOX selectively was taken up by SKOV3
compared to control MCF-7 cells (Her2 negative). It should be noted that the conjugation of
chitosan with DOX reduced the cytotoxic activity of DOX against SKOV3 cells [97]. In an-
other strategy, DOX loaded onto the surface of chitosan mesoporous magnetic nanoparticles
(DOX-CMN) displayed a controlled and sustained release effect of the drug. Application
of alternating current magnetic field increased the release of DOX from DOX-CMN and
thereby augmented the cytotoxic activity of DOX towards MCF-7 cells [98]. Similarly,
encapsulation of DOX into pluronic F127 polymer-chitosan micelle enhanced anticancer
activity of DOX compared to free DOX [94].

7.2. Delivery of Hydrophobic Anticancer Drugs

Paclitaxel (PTX) is a broad-spectrum hydrophobic anticancer drug that is used in
the treatment of liver, lung, breast, ovarian, and other cancers [99,100]. However, PTX is
poorly soluble in water (less than 0.1 µg/mL), which profoundly affects its bioavailabil-
ity [100]. To increase the solubility, PTX is traditionally formulated with Cremophor EL,
a conventional taxol carrier [99]. However, some complications associated with Cremophor
EL demand the development of alternative carrier systems such as liposomes, emulsions,
microspheres, and polymeric nanoparticles. Water-soluble chitosan derivatives, i.e., glycol
chitosan, are considered as a novel carrier of PTX owing to their solubility and in vivo
biocompatibility [99]. Kim et al. [99] developed hydrophobically modified glycol chitosan
(HGC) nanoparticles as a PTX carrier to make the sustained release of PTX. PTX was loaded
on HGC (PTX-HGC) nanoparticles via the dialysis method. Due to the sustained delivery,
PTX-HGC nanoparticles showed less cytotoxicity than Cremophor EL formulated PTX.
Treatment of MCF-7 cells using PTX-HGC nanoparticles (10 µg/mL) enhanced 60% cell
viability compared to Cremophor EL formulated PTX at the same concentration. In vivo
study in the C57BL/6 mice model showed that PTX-HGC nanoparticles had similar an-
ticancer activity compared to Cremophor EL-based PTX at 20 mg/kg dose. At higher
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concentration, PTX (50 mg/kg) in HGC nanoformulation completely regressed tumors
in four mice (n = 6) [99]. In another study, chitosan and glyceryl monooleate (CS-GMN)
nanoparticles were prepared through multiple emulsion (o/w/o) solvent evaporation
methods). PTX was then loaded into CS-GMN nanoparticles to accelerate the therapeutic
effects of PTX. CS-GMN-PTX displayed sustained release effect and enhanced PTX (4-times)
in MDA-MB-231 than PTX alone. Furthermore, the IC50 value of the nano-PTX formulation
was also reduced by 1000 folds than the conventional PTX solution. Moreover, nano-PTX
minimized the PTX associated side effects; therefore, this drug delivery system could
enhance the chemotherapeutic effects of PTX [101].

Cisplatin (CIS) is an anticancer drug used in the treatment of ovarian, head, neck, blad-
der, lung, and testicular cancer [102]. CIS is poorly soluble in water and exhibits several side
effects, such as chronic neurotoxicity, acute nephrotoxicity, nausea, and vomiting [102,103].
Kim et al. [103] loaded CIS on HGC nanoparticles (CIS-HGC) through the dialysis method
to facilitate sustained release of CIS. Due to the slow and sustained drug delivery, CIS-HGC
(10 µg/mL) showed ~10% less cytotoxicity in SCC7 squamous carcinoma cells and A549
cells compared to free CIS following 72 h treatment. Moreover, in vivo studies on SCC7
tumor-bearing male C3H/HeN mice (changes in tumor volume and body weight, survival
rates, and, immunohistological findings) also confirmed that CIS-HGC possessed higher
antitumor activity and lower cytotoxicity compared to free CIS [103]. On the other hand,
CIS conjugated with chitosan encapsulated solid-lipid nanoparticles (CIS-CSN) exhibited
higher cytotoxic potential against HeLa with an IC50 value of 0.6125 µg/mL compared to
free CIS (IC50 1.602 µg/mL). While the cell viability remained > 95% after CSN treatment
indicating the biocompatibility of CSN towards the HeLa cell, the possible reason behind
the higher cytotoxic activity of CIS-CSN could be higher internalization of CIS-CSN into
the HeLa cells or sustained release of CIS. Moreover, CIS-CSN also induced ~28% more
apoptosis in HeLa cells compared to CIS following 24 h incubation [104].

5-Fluorouracil (5-FU) is an anticancer drug used in the treatment of nasopharyngeal,
breast, lung and colorectal cancer [105,106]. Similar to CIS, 5-FU shows less solubility in
water [106], and patients can experience life-threatening complications such as myelosup-
pression [107]. Conjugation of biopolymer enhanced selectivity of 5-FU towards cancer
cells [97]. Rajon et al. [108] grafted 5-FU into hyaluronidase (HL) encapsulated chitosan-
copolymer nanoparticles and prepared three different nanopolymer composites, namely
chitosan-hyaluronidase-5-fluorouracil (CHL-5-FU), CHL-5-FU-polyethylene glycol (CHL-
5-FU-PEG), and CHL-5-FU-PEG-gelatin (CHL-5-FU-PEG-GE), via ionic gelation technique.
HL-mediated encapsulation of these polymers facilitates site-specific targeting of the
nanoparticles towards COLO-205 and HT-29 colon cancer cell lines, and thereby enhances
the bioavailability of 5-FU. MTT assay results showed that 5-FU loaded nanopolymer com-
posites were less potent towards COLO-205 and HT-29 cells compared to 5-FU following
3–12 h treatment. It should be noted that CHL-5-FU-PEG-GE was less cytotoxic compared
to CHL-5-FU-PEG and CHL-5-FU [108]. In another study, Cavalli et al. [109] encapsulated
5-FU with chitosan nanospheres (5FCN) via combined coacervation and emulsion droplet
coalescence method for the efficient delivery of 5-FU into HT-29 and PC-3 cancer cell
lines. In vitro studies demonstrated that 5FCN not only declined tumor cell growth in
a concentration and time-dependent manner, but also prohibited both tumor cell adhesion
to human umbilical vein endothelial cells (HUVEC) following 48 h treatment [109].

Docetaxel (DTL) is another lipophilic drug used to treat a wide range of solid tumors
including breast, prostate, ovarian, and non-small cell lung cancer [110]. Hydrophobicity
and DTL-associated adverse effects (anaphylaxis, myelosuppression, etc.) limit the clinical
usage of DTL [110–112]. To enhance the therapeutic potential of DTL, sodium tripolyphos-
phate cross-linked DTL-loaded chitosan nanoparticles (DTLC) were developed by using
the ionotropic gelation method. MTT assay showed that 72 h incubation of MDA-MB-231
cells with DTLC (5.0 µg/mL) increased cytotoxicity by ~25% compared to free DTL at the
same concentration. This study indicates that ionically cross-linked DTL grafted chitosan
nanoparticles could be used to deliver chemotherapeutic drugs [110].
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8. Chitosan-Based Surfactant in Cancer Treatment

Surface-active compounds have special structural features that allow them to absorb
at an oil–water or air–water interface and solid surface [113]. There are two types of surfac-
tants: (1) ionic surfactant and (2) non-ionic surfactant. Though both types of surfactants are
used to dissolve poorly soluble drugs, non-ionic surfactants are more effective compared
to ionic surfactants [114].

Surfactant-based drug delivery system enhanced anticancer activity and minimized
the toxicity of chemotherapeutic drugs via selective targeting of cancer cells, pH-responsive
drug release, and sustained release effect [114–117]. Alshraim et al. [115] synthesized
chitosan-coated flexible liposome (FL) to improve the delivery of chemotherapeutic drug
docetaxel (DTX). This nanoformulation was further modified using sodium deoxycholate
and dicetyl phosphate as non-ionic surfactants. The surfactant-loaded FL displayed a sus-
tained release effect and higher cytotoxic activity towards HT-29 cells compared to the
control drug onkotaxel. In vitro studies showed that FL showed ~27% hemolytic activity
due to its high positive surface charge, therefore preclinical studies using this FL should
be performed to investigate its safe dose [115]. In another study, Scheeren et al. [116]
incorporated pH-sensitive lysine-based amphiphile surfactant into the surface of PEGy-
lated and poloxamer-modified chitosan nanoparticles. DOX was then entrapped into this
nanoformulation to trigger the pH-responsive release of DOX. In an acidic environment
(pH 6.6), 100% of DOX was released after 6 h, while only 71% of the drug was released
at pH 7.4. Photodegradation studies confirmed that the nanoformulation enhanced the
stability of DOX under UVA radiation. While MTT assay results showed that anticancer
activity of DOX towards HeLa cells remained unaffected after nanoformulation, it indicated
the promise of this pH-sensitive drug delivery system in targeting cancer cells and the
cellular microenvironment [116].

9. Chitosan-Based Emulsion in Cancer Therapy

An emulsion is a colloid of two immiscible liquids with one of them, the dispersed
phase, producing small droplets in the other, namely the continuous phase. The phe-
nomenon of droplets formation during emulsification is employed to produce polymeric
nanocarriers [118]. Chitosan-based carriers are usually fabricated as water-in-oil emulsions,
where a small aqueous phase is dispersed into a large oil phase [119,120]. The emulsifying
capacity of chitosan may be due to its amphipathic nature. Due to the presence of both
hydrophilic (D-glucosamine) and hydrophobic (N-acetylated) sites, chitosan may localize
itself in both the oil and water phase, therefore acting as an emulsifier [121,122].

Gemcitabine (GEM) is a difluoro analog of deoxycytidine that inhibits ribonucleotide
reductase and impedes DNA synthesis. Non-specific cytotoxicity is one of the major limita-
tions of this chemotherapeutic agent. Utilizing the mucoadhesive properties of chitosan,
Trickler et al. [123] formulated GEM with chitosan/glyceryl monooleate (GMO) nanos-
tructures by multiple emulsion solvent evaporation methods to assess the cytotoxicity
and intracellular accumulation of GEM on Mia PaCa-2 or BxPC-3 human pancreatic cell
lines. HPLC studies showed that, compared with free gemcitabine, GEM-chitosan/GMO
nanoparticles doubled the level of intracellular accumulation of GEM. Furthermore, GEM-
chitosan/GMO nanoparticles were more potent than free GEM in terms of IC50 values [123].
Similar to GEM, the application of camptothecin (CPT) as an anticancer agent faces nu-
merous hindrances, mainly due to its high lipophilicity, poor aqueous solubility, and side
effects. To overcome these obstacles, Natesan et al. [124] developed chitosan conjugated
nanoemulsions carrying CPT and evaluated its activity in preclinical breast cancer ani-
mal models. CPT was dissolved in the oil phase consisting of benzyl alcohol, TG, and
D-α-Tocopheryl polyethylene glycol 1000 succinate to produce NEs before mixing with
chitosan as an aqueous phase to produce CPT-CHI-NEs. Coformulation with chitosan
prolonged the half-life of the NEs by reducing their clearance by the RES and liver accumu-
lation. The drug release pattern of CHI-CPT-NEs showed an initial burst release, followed
by a sustained release for a prolonged period which ensured acute drug action(s) and
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a long therapeutic window. Furthermore, in CHI-CPT-NEs treated BALB/c mice bearing
T1-breast tumor xenograft showed passive accumulation of 2495.22 ± 174.66ng/gm of
CPT which was higher than the non-stabilized NEs (1677.58 ± 134.21ng/gm) that might be
attributed to the slightly acidic pKa of chitosan leading to rapid solubilization of the NEs
in the tumor microenvironment leading to a quicker release of CPT [124]. In another study,
Rosch et al. [125] encapsulated DOX via a water-in-oil emulsification process involving
an oil phase mixture of cyclohexane and dodecylamine with alginate/chitosan in the water
phase to produce sub-100 nm polymeric nanoparticles. At physiological pH, the nanoparti-
cles showed a controlled release of DOX, whereas, at pH 5.5, a burst release of DOX was
observed. This phenomenon can maximize the therapeutic efficacy by achieving a higher
drug concentration at the tumor vicinity. Cellular uptake of DOX was comparable in both
free and encapsulated forms which is necessary to ensure the efficacy and cytotoxic effects
on the tumor cells. Free DOX and alginate-chitosan encapsulated DOX were equally potent
towards 4T1 cells in terms of IC50 values [125].

10. Chitosan-Based Hydrogel in Cancer Treatment

Chitosan-based hydrogel unveils a new area in cancer therapy. Hydrogel-based
formulations enhanced the antitumor activity of well-known anticancer drugs, improving
bioavailability and biocompatibility, eliciting an immune response, and, more importantly,
the antibacterial activity of chitosan could offer an extra advantage in the prevention of
secondary infections in cancer patients [126–131].

The PD-1/PDL1 pathway inhibitors have emerged as a significant addition to the anti-
cancer armament capable of resisting immune evasion by tumor cells [132]. Although mon-
oclonal antibodies are primarily employed to inhibit PD-1/PDL1 interaction, numerous
small molecule and peptide inhibitors have been shown to exhibit similar activity [133,134].
Trimethyl chitosan has been used to formulate a proteolysis resistant oral PDL-1 inhibitor,
Oral PD-L1 Binding Peptide 1 (OPBP-1), which could selectively bind PD-L1 and block its
interaction with PD-1. OPBP-1 showed favorable oral bioavailability and durable half-life
in rats when loaded with trimethyl chitosan hydrogel, and significantly inhibited tumor
proliferation in murine colorectal CT26 and melanoma B16-OVA models [126].

11. Immunotherapy Using Chitosan

In recent years, cancer vaccines or other active immunotherapies are being consid-
ered as adjuvant and neoadjuvant therapies in treating cancer. These treatment strategies
have been found to reinforce the efficacy of the primary antitumor treatments by induc-
ing robust and long-lasting tumor-specific immune responses to impede tumor growth
and metastasis [135]. As mentioned earlier, chitosan received attention as a means of
targeted gene delivery due to its biocompatibility, biodegradability, and low toxicity [60].
Maiyo et al. [136] developed chitosan-coated selenium nanoparticles (SeNPs) with a fo-
late targeting moiety to deliver systemic mRNA to cancer cells. Functionalized SeNPs
could be used in tumor vaccination or cancer immunotherapy to achieve a higher immune
response. The SeNPs efficiently delivered the luciferase mRNA into cells in vitro and
induced its expression, while the FA-targeting moiety increased the uptake of SeNPs in
folate receptor-positive cells. The SeNPs protected the mRNA from RNase degradation
and this nanoformulation exhibited low cytotoxicity towards HEK293, MCF-7, and KB
nasopharyngeal cancer cells [136].

Chitosan-based pro-inflammatory cytokine therapy has shown immense potential
against solid tumors in preclinical studies [137]. To circumvent the systemic toxicity associ-
ated with administration of IL-12 alone, Vo et al. [138] co-formulated IL-12 with chitosan
(CS/IL-12) and investigated its activity in barring tumor growth and metastasis in sponta-
neously metastatic 4T1 mammary adenocarcinoma bearing mice. They demonstrated that
intratumoral or intravesical administration of simple mixtures of CS/IL-12 significantly
enhanced local IL-12 retention and mediated complete tumor regression. Tumor-specific,
protective immunity was confirmed following neoadjuvant CS/IL-12 immunotherapy,
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as mice receiving the mixture were shown to exhibit resistance to rechallenge with 4T1
tumor as opposed to manifesting susceptibility to primary challenge with RENCA cells
in cured mice. Neoadjuvant CS/IL-12 therapy also significantly reduced the instances
of metastases, characterized by the reduced number of nodules in the lung and having
a higher survival percentage compared to the cohort of mice receiving either chitosan
or IL-12 alone (Figure 5) [138]. Furthermore, CS/IL-12 co-formulation displayed higher
anticancer and antimetastatic activity compared to free IL-12. This might be due to the
immunostimulatory capacity of chitosan, which induces the secretion of type I Interferon
(IFN) via activation of mitochondrial DNA-mediated cGAS-STING (Cyclic GMP-AMP
synthase-Stimulator of Interferon Genes) pathway [139]. CS/IL-12 also led to the expres-
sion of pro-inflammatory, cytotoxic, and antitumor TH1 cytokines (IL-12p70, IFN-γ, and
tumor-necrosis factor-α) by resident T cells and macrophage in the bladder [140]. IFN-γ
induction increased CD3+, CD4+, and CD8+ T-cell infiltration, and reduced the number of
myeloid-derived suppressor cells and immunosuppressive regulatory T cells in the tumor
vicinity [141].
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derived suppressor cells and immunosuppressive regulatory T cells in the tumor vicinity 
[141]. 
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In the treatment of bladder cancer, chitosan can be of benefit to intravesical drug
delivery due to its positive charge facilitating adhesion to negatively charged mucosal
surfaces, while the viscosity of chitosan solution reduces the removal of the therapeutic
agent during voiding of the bladder. Chitosan may also open the gap junctions between
epithelial cells and enhance drug absorption in the bladder [142]. In preclinical bladder
cancer models, intravesical CS/IL-12-based immunotherapy was applied in the treatment
of orthotopic MB49 or MBT-2 bladder cancer [140,141]. Intravesical treatment with CS/IL-
12 induced adaptive tumor-specific immunity, as evident in recovered mice. The recovered
mice group rejected 100% of intravesical tumor rechallenges and about 50–100% of distant
subcutaneous rechallenges [141]. Intravesical administration of CS/IL-12 for four weeks
(once a week) led to the 80–100% elimination of MB49 mouse bladder tumors in C57BL/6J
mice or MBT-2 tumor in the C3H/HeJ mice model, leading to long term survival (more
than 60 days), while standard BCG treated groups died within 60 days of post-tumor
implantation [140]. CS/IL-12-based neoadjuvant immunotherapy receiving mice exhibited
elevated delayed-type hypersensitivity responses associated with positive prognosis of
breast tumor [138]. Smith et al. [143] unveiled the systemic and local immunological mech-
anism of actions of intravesical CS/IL-12 immunotherapy. Depletion studies elucidated
the role of CD8+ cells in orchestrating initial tumor rejection, whereas the CD4+ cells were
found to mediate memory response by conferring durable protection against tumor rechal-
lenge. Successive administration of CS/IL-12 led to dynamic shifts in the immune cell
kinetics within secondary lymphoid organs and tumor region characterized by preliminary
infiltration of granulocytes and macrophages, and then an increase in CD4+ and CD8+
effector-memory cells [143].

Dendritic cell (DC)-based vaccines have shown remarkable potential against cancer
and have been validated in numerous clinical studies [144]. Chitosan has been previously
reported to prolong the sequestration of antigen in the administration site, allowing more
efficient antigen presentation [10]. In addition, the immunostimulatory properties of chi-
tosan make it a suitable adjuvant to be used in cancer vaccines [139]. Han et al. [145]
encapsulated ovalbumin (OVA) and polyinosinic-polycytidylic acid with chitosan nanopar-
ticles (CH (OVA+poly I:C)-NPs) to deliver tumor-specific antigens to DCs. Flow cytometry
and confocal microscopy confirmed intracellular uptake of the nanoparticles by DCs. This
led to the activation of the DCs characterized by higher expression of surface maturation
markers and subsequent generation of antigen-specific cytotoxic CD8+ T cells following
DC-mediated antigen presentation. The therapeutic efficacy and tumor specificity con-
ferred by antigen-carrying nanoparticles were demonstrated in EG.7-OVA tumor carrying
mice where CH (OVA+poly I:C)-NPs-injected mice showed significantly reduced tumor
growth compared to the control group, soluble OVA, or CH-NPs-injected mice [145]. In
contrast, no therapeutic effect was shown in the OVA-negative TC-1 tumor model following
CH (OVA+poly I:C)-NPs injection. The DC-maturation effect of the NPs was shown to be
dependent on the molecular weight of chitosan, with polymers having a molecular weight
greater than 310 kDa producing the greatest effect [146].

Chitosan-based therapeutic agents have been demonstrated to enhance the efficacy
of conventional anti-cancer treatment strategies [13]. For instance, chitosan nanoparticles
have been shown to enhance the radiosensitivity of breast tumors in mice models [147].
Castro et al. [147] demonstrated that combining chitosan/poly γ-glutamic acid nanoparti-
cles (Ch/γ-PGA NPs) with radiotherapy induces antitumor immunity in the 4T1 orthotopic
breast tumor mouse model. Combination therapy potentiated CD4+ and CD8+ cell-induced
dendritic cell maturation and macrophages activation, respectively, impaired 4T1 tumor
progression, systemic immunosuppression, and lung metastases. Notably, animals from
the combination therapy exhibited less and smaller lung metastatic foci and lower levels
of the systemic pro-tumor cytokines IL-3, IL-4, and IL-10, and of the CCL4 chemokine, in
comparison to non-treated animals [147].

Chitosan-based theranostic nanoparticles improve the efficiency of anticancer agents [148,149].
In thermotherapy and photothermal therapy, specific enrichment and excitation of a thera-
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peutic agent in the tumor vicinity lead to the conversion of electromagnetic radiation into
heat energy resulting in hyperthermic cell death [150–152]. Kumar et al. [148] fabricated
IR 820 encapsulated polycaprolactone glycol chitosan: poloxamer blend nanoparticles
(PP-IR NPs) for imaging and effective photo-immunotherapy in human estrogen-positive
MCF-7 cells. An elevated level of ROS was observed in PP-IR NP treated cells upon laser
irradiation. The combined effect of hyperthermia and stimulation of TNF-α response might
be linked with the ROS production. The elevated ROS caused DNA fragmentation, apop-
totic bodies formation, and ultimately cell death [148]. In another study, Tang et al. [149]
developed chitosan microcapsules by encapsulating ion liquids with Fe3O4 nanoparticles.
The microcapsules showed high biocompatibility, and were used for magnetic resonance
imaging-guided microwave irradiation leading to the thermal killing of H22 mouse hepa-
tocellular carcinoma in mice [149].

12. Conclusions and Future Perspective

Chitosan is a natural, biocompatible, and biodegradable polymer. Chitosan displayed
promise in its application to cancer therapy, including gene therapy, chemotherapeutic
drug delivery, and immunotherapy. One of the major pitfalls of chitosan as a drug delivery
vehicle is its poor solubility in water. Therefore, chemically modified chitosan could be
used to improve the solubility of chitosan. Furthermore, chemically modified chitosan
or its derivatives in different formulations (e.g., nanoformulation, emulsion, surfactant,
and hydrogel) improves the efficacy of anticancer agents, biocompatibility, selectivity, and,
more importantly, reduces the therapeutic dose. As the molecular weight of chitosan
plays a role in the potency of the chitosan-derivatives, this factor should be taken into
account while preparing different formulations. Moreover, chitosan-based biomaterials
induce both humoral and cellular immune responses and, therefore, chitosan could be
used in the development of therapeutic cancer vaccines. Finally, before the clinical trial of
chitosan-based anticancer agents, an extensive preclinical study should be performed to
examine their safety, efficacy, and short and long-time side effects.
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