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Abstract: Cellulose-based materials have attracted great attention due to the demand for eco-friendly
materials and renewable energy alternatives. An increase in the use of these materials is expected
in the coming years due to progressive decline in the supply of petrochemicals. Based on the
limitations of cellulose in terms of dissolution/processing, and focused on green chemistry, new
cellulose production techniques are emerging, such as dissolution and functionalization in ionic
liquids which are known as green solvents. This review summarizes the recent ionic liquids used
in processing cellulose, including pretreatment, hydrolysis, functionalization, and conversion into
bio-based platform chemicals. The recent literatures investigating the progress that ILs have made in
their transition from academia to commercial application of cellulosic biomass are also reviewed.
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1. Introduction

Under the climate neutrality goals proposed by the European Commission to speed
up the transition towards a circular economy, boosting sustainable products, empowering
consumers for the green transition, reviewing the regulation of construction products,
and strategies for sustainable textiles are emphasized [1–5]. The key principles of this
conceptual circular economy include conversion of waste into raw materials, the reuse
of existing products, and reduction in the use of petroleum-based products [3,4]. In this
framework, current approaches are oriented towards the use of natural polymers to reduce
environmental risks caused by using petroleum-based materials, but accommodating
human needs, which are expanding in both volume and complexity [4,5].

Cellulose is a natural polymer that is available mainly as a structural component of the
primary cell wall in lignocellulosic plants—such as cotton, pine, bamboo, and eucalyptus—
and also can be biosynthesized by microorganisms [6–9]. The outstanding characteristics of
cellulose are well known, including high mechanical strength, biocompatibility, biodegrad-
ability, low cost, and renewability. Moreover, cellulose can be modified/functionalized to
endow it with the desired features [10,11]. Therefore, the utilization of cellulosic materials
is preferable in a broad spectrum of industries, e.g., paper, textiles, construction, electronics,
and medicine [12]. Since cellulose and its derivatives—such as hydroxyethyl cellulose and
carboxymethyl cellulose—have been used in various industries because of their sustain-
ability, being cheaper than synthetic polymers, and low pollution, cellulose has played a
relevant role in the growth of numerous eco-friendly materials, which can be influential
in the economy and promote sustainable use [13]. The main drawback of cellulose is its
processability. Dissolving natural cellulose is the most important and difficult step in the
fabrication process because of its low solubility in most organic solvents—and especially
its insolubility in water. This is due to its stiff molecules (high degree of polymerization
(DP) ranging from 10,000 glucopyranose units and numerous intra- and intermolecular
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hydrogen bonds) [14]. With these hydrogen bonds between and within the fibrils, the
typical cellulose is referred to type I cellulose, with Iα and Iβ structures. Dissolution of
cellulose and subsequent conversion to its pure state (i.e., regeneration) result in type II
cellulose having a looser structure and being easier to process [15,16]. However, cellulosic
products can be truly sustainable according to the circular economy only if their processing
is also sustainable. This is dependent on the selection of the dissolution solvent.

Ionic liquids (ILs) are molten salts that consist of bulky organic cations and inor-
ganic/organic anions. They consist of pyridinium, imidazolium cations, and OAc−,
HCOO−, or Cl− anions, for example, which have the ability to dissolve cellulose [15,17].
Due to the reduced electrostatic forces between the cations and anions in these salts, along
with their asymmetry, it is difficult to form a regular crystalline structure. Therefore, they
can be liquid at low or room temperature. ILs are well known as emerging green solvents
due to their recyclability, excellent thermal and chemical stabilities, non-flammability, high
surface activity, and heat capacity [13]. Importantly, ILs can be used for the efficient disso-
lution of polysaccharides such as cellulose due to the complex Coulomb, Van der Waals,
and hydrogen bonds [18]. After the dissolution of cellulose for pretreatment or functional
modification, ILs can be recycled by evaporation of the anti-solvent of cellulose, e.g., water
and alcohols. From the viewpoint of sustainability, this is a renewable means to minimize
the solvent consumption in the environment.

With the variety of cation and anion pairs of ILs, the solubility and properties of cellu-
lose are varied, among which the pretreated/modified cellulose can be applied in a number
of applications. In this review, recent research progress on the dissolution, treatment,
functionalization, and conversion of cellulose in ILs, along with their commercialization,
were summarized.

2. Pretreatment, Hydrolysis, and Regeneration of Cellulose in ILs

To date, a number of ILs have been investigated as rapid cellulose-dissolving sol-
vents, but 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) was identified as one of the
most appropriate ILs for the dissolution and processing of cellulose. In particular, the
effectiveness of ILs could be enhanced when being paired with Cl− compared to other
anions, such as Br−, BF4

−, or PF6
−, owing to the ease of (hydrogen) bonding with cellu-

lose [19]. A study by Erdmenger et al. [20] on the effects of different alkyl chain lengths of
1-alkyl-3-methylimidazolium chloride on the solubility of cellulose revealed that the high-
est solubility was obtained by using [BMIM]Cl. These findings have inspired other recent
studies to exploit the use of [BMIM] for development of cellulose-based products. However,
the limitation of [BMIM] was its high viscosity, which slows down the dissolution of cellu-
lose. Hence, N-allylpyridinium chloride IL ([APy]Cl) and 1-ethyl-3-methylimidazolium
diethylphosphonate IL ([EMIM]DEP), with lower viscosity, were used as solvents for the
dissolution of cellulose. On the other hand, a co-solvent—e.g., dimethyl sulfoxide (DMSO)
was added to ILs to reduce their viscosity and facilitate a certain degree of swelling [21–23].
After dissolving cellulose, resulting in a cellulose solution, cellulose was converted into its
pure state by precipitation/coagulation in a cellulose anti-solvent such as water or alcohol,
yielding a hydrogel with the disappearance of the typical fiber morphology (Figure 1a,b).
However, there were differences in some properties of the regenerated cellulose precipitated
by water and ethanol, due to the different interactions of anions of ILs and the anti-solvents
(Figure 1c); cellulose regenerated with water showed better thermal stability than that
regenerated using ethanol. This was because water could more easily form hydrogen
bonds with cellulose, and allowed the formation of more organized cellulose [24]. After-
wards, these anti-solvents were removed from the IL-treated cellulose by either standard
desiccation or freeze-drying.
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Figure 1. Cryo-SEM images of native bacterial nanocellulose pellicles (a) and cellulose hydrogel
after dissolution in 1-ethylpyridinium chloride IL and regeneration in water (b) (authors’ own work).
Schematic representation of the regeneration of cellulose in water and alcohol (c) (reprinted with
permission from [24]. Copyright © 2019, Elsevier).

2.1. Decrystallized Cellulose

Decrystallization is a complex process where suitable solvent molecules penetrate
and disrupt crystalline domains from the outer shell of cellulose fiber to the core. After
disruption, the solubilized polymer chains begin to separate, destroying the crystal lattice,
and in some cases disentangling, eventually leading to full dissolution [25,26]. To enhance
decrystallization, ILs can be used to pretreat lignocellulosic biomass [27]. The IL-based
pretreatment technology is a promising technology for the production of biofuel and
chemicals. In biochemical conversion processes in which sugars are converted into biofuels
via fermentation, cellulose and hemicellulose can be pretreated to improve hydrolysis
into sugars, since the rigid and highly ordered crystalline structure of the native cellulose
prevents the interaction of its β-(1,4)-glycosidic bonds from hydrolyzing by enzymes [28].
After the pretreatment, the enzymatic digestibility could be improved from 11 to 90% due to
the increased number of pores and surface area of the pretreated biomass, resulting in high
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glucose release (Figure 2) [29,30]. During IL pretreatment, decrystallization of the native
crystalline cellulose occurred, which was caused by the swelling of crystalline cellulose
with IL molecules (Figure 3).
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Figure 3. A probable scenario of the behavior under IL pretreatment of cellulose from bamboo fibers
(a) and parenchyma cells (b). Initially, IL penetrated the spaces between chains in the direction of the

(110) and (1
−
10) planes, and caused the formation of disordered cellulose upon further treatment in

IL. After expulsion of the IL with water, the cellulose chains recrystallized to cellulose II, cellulose I,
or amorphous, depending on the severity of the IL treatment (reprinted with permission from [27].
Copyright © 2022, American Chemical Society).

In the most of the pretreatment studies, ILs reduced the crystallinity of cellulose
I lattices or transformed them into amorphous cellulose II [9]. Ren and Zhu et al. [27]

reported the changes in the crystallinity index, d spacings of the (110) and (1
−
10) planes,

and crystallite sizes of cellulose from bamboo fibers, along with the transformation from
cellulose I to cellulose II after pretreatment with 5% w/w 1-butyl-3-methylimidazolium
acetate ([BMIM]OAc) at 130 ◦C for 6 h. Among the imidazolium-based ILs, [BMIM]Cl,
1-ethyl-3-methylimidazolium acetate ([EMIM]OAc), and [BMIM]OAc, [EMIM]OAc was
found to be the most effective ILs in removing lignin and obtaining cellulose-II-rich mate-
rial (<20% crystallinity) when being treated at 70 ◦C for 3 h [9]. However, in the shorter
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treatment time (20 min), the crystallinity of lignocellulose biomass was capable of re-
ducing to <30% after treating with [BMIM]Cl, 4-butyl-4-methylmorpholinium chloride
([BMMORP]Cl), and 1-decyl-3-dimethylimidazolium methylphosphite ([DMIM]MP) at
75, 150 ◦C, and room temperature, respectively, while the crystallinity of cellulose after
treatment with 1-butyl-1-methylpiperidinium chloride ([BMPIP]Cl) at >230 ◦C slightly
reduced the crystallinity to 63% [31]. The efficiency of cellulose pretreatment in ILs to
produce decrystallized cellulose and the smaller molecules is listed in Table 1. In addition
to species of ILs, the decrystallization also depends on the source of biomass [32,33].

Table 1. Recent ILs used in pretreatment and hydrolysis of cellulose.

IL Condition Result Ref.

1-Ethyl-3-methylimidazolium
chloride ([EMIM]Cl)

10–30% w/w Biomass, MCC
70–90% w/w IL, 50–100 ◦C, 2–5 h

~12% Cellulose solubility,
40% glucan [22,29]

1-Ethyl-3-methylimidazolium acetate
([EMIM]OAc)

5–50% w/w Cellulose from
various plants, biomass, and MCC
50–95% w/w IL, 70–130 ◦C, 1–5 h

~11–23% Cellulose
solubility, 40–50%
decrystallized cellulose,
10–37% glucose

[6,22,24,29,32–34]

1-Ethyl-3-methylimidazolium
hydrogen sulfate ([EMIM]HSO4)

10% w/w Biomass 50–60% w/w
IL, 100–160 ◦C, 2–4 h

40–50% Decrystallized
cellulose, 20–80% Arabinose
and xylose, ~10% glucose

[32,35]

1-Ethyl-3-methylimidazolium diethyl
phosphate ([EMIM]DEP)

3% w/w Pine cellulose, 28–70%
w/w IL, 90–105 ◦C, 0.2–2 h

Decrystallized cellulose
with lower DP of 117–320 [21]

1-Butyl-3-methylimidazolium
chloride ([BMIM]Cl)

5–50% w/w Cotton, cellulose
acetate, MCC, biomass from
mulberry and mustard stalk,
0–90% w/w IL, room
temperature-130 ◦C, 2–5 h

18–25% Cellulose solubility [19,20,22,29,31,36,37]

1-Butyl-3-methylimidazolium acetate
([BMIM]OAc)

10% w/w Cellulose, 90%w/w IL
70–130 ◦C, 2–6 h

Decrystallized cellulose,
45–49% glucan [27,29]

1-Butyl-3-methylimidazolium
tetrafluoroborate ([BMIM]BF4)

10% w/w Biomass, 90% IL,
100–130 ◦C, 2–5 h 39% Glucan [29]

1-Butyl-3-methylimidazolium
acesulfamate ([BMIM]Ace)

5% w/w Cellulose, 95% w/w IL,
110 ◦C, 3 h 90% Glucan [30]

1-Allyl-3-methylimidazolium
chloride ([AMIM]Cl)

5% w/w MCC, 95% w/w IL,
95–110 ◦C, 1–5 h

Decrystallized cellulose,
10–20% methyl glucosides [38]

N-Allylpyridinium chloride
([APy]Cl)

3% w/w Pine cellulose,
97% w/w IL 120 ◦C, 2 h Dissolved cellulose [21]

Tetraoctylphosphonium acetate
([P8888]OAc) and
trioctyl(tetradecyl)phosphonium
acetate ([P14888]OAc)

3–8% w/w MCC, 10–80% w/w IL,
120 ◦C, 2 h Decrystallized cellulose [23]

2.2. Cellulose Nanocrystals

Cellulose nanocrystals (CNCs) have a great potential as nanofillers in polymeric matri-
ces to improve their mechanical properties. Traditional CNC extraction involves the use
of highly concentrated sulfuric acid to selectively separate the amorphous domain from
nanoscale crystalline region of the native cellulose. This process requires energy, along
with time-consuming purification steps, such as neutralization and dialysis [39]. Therefore,
low-concentration acidic IL-based media have attracted increasing interest. In hydrolysis,
microcrystalline cotton cellulose (MCC) has been used as a main cellulose source. For the
IL, 1-(4-sulfobutyl)-3-methylimidazolium hydrogen sulfate ([SBMIM]HSO4)—an acidic IL—
was reported to be an effective IL at rather low concentrations of <4% for the production of
CNCs after swelling cellulose in [BMIM]Cl and 1-butyl-3-methylimidazolium hydrogen
sulfate ([BMIM]HSO4) (Figure 4a–d) [39]. When the amorphous region of cellulose was re-
moved as shorter chain segments—e.g., glucose/cellulose oligomer [40,41]—the crystalline
structure was preserved, obtaining CNCs (Figure 4e). With the paired anion HSO4—e.g.,
1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM]HSO4)—CNCs with dimensions of
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75–80 nm in length and 15–20 nm in diameter were obtained, with crystallinity of 95.8% [42].
Although the use of acidic ILs in producing CNCs has recently increased, [BMIM]Cl has
been proposed as a good candidate owing to its negligible cellulose degradation under
processing conditions. However, the addition of acids to initiate the hydrolysis was re-
quired after cellulose was swollen in [BMIM]Cl [43]. For example, after swelling cellulose
in [BMIM]Cl at 45 ◦C for 2 h, 70% w/w oxalic acid (twofold) was added to conduct the
hydrolysis at 90 ◦C for 7 h [44]. The preparation of CNCs from cellulose extracted from
cotton gin motes using [BMIM]Cl and a diluted acid mixture was reported. The concurrent
process involved minimal swelling of cellulose with the IL and hydrolysis of the cellulose
by the addition of either phosphoric (H3PO4), hydrochloric (HCl), or sulfuric (H2SO4)
acids [45]. The highest aspect ratio of about 28 was obtained from the hydrolysis with
H3PO4 in the presence and absence of IL. However, the hydrolysis in IL/acid mixtures
reduced the amount of acid used from the acid ratio of 230 to 3.5 at operating temperatures
of 100 and 90 ◦C, respectively.
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Figure 4. Morphologies of cotton fibers observed by optical microscopy during IL treatments:
native cellulose fibers (a), partial and advanced swelling (b,c), destructuring into fibrils in
[BMIM]Cl/[BMIM]HSO4 (d) (reprinted with permission from [39]). Schematic isolation of CNCs
from cellulose fibers by hydrolysis in ILs (e) (an SEM image of cotton fiber from authors’ own work).
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Additionally, in the focus on mild conditions to extract CNCs, the methods were ultra-
sonic pretreatment in combination with [BMIM]Cl and milder acid hydrolysis (20–23% w/w
H2SO4) [46], or use of the co-solvent [47]. The efficient preparation of CNCs from MCC,
utilizing [BMIM]HSO4 with DMSO as a co-solvent, was investigated. The properties of
CNCs obtained from pure IL and the mixture with DMSO were comparable [47].

2.3. Shaped Regenerated Cellulose

To develop new eco-friendly materials with the desired properties, and to achieve
a variety of environmental and social goals, new cellulose production techniques are
emerging, such as dissolution in IL followed by fabrication in different shapes. Several ILs
have been used for the dissolution of cellulose prior to regeneration and formation in water
or ethanol. The impacts of ILs on the properties of the regenerated cellulose—such as the
transparency of the films and mechanical properties of the fibers reported in the studies to
date—are summarized in Table 2.

As for cellulose fiber production techniques, wet spinning of cellulose from solution
in ionic liquids was an efficient method that resulted in fibers with high tensile strength
(~1 GPa) and Young’s modulus (30–40 GPa) [48–50]. After cellulose solutions were pre-
pared in ILs, the cellulose solution was slowly solidified in a coagulation bath, where the
ILs were replaced by the anti-solvent, resulting in a hydrogel. This anti-solvent was then
removed from the hydrogel fibers by drying. Depending on the IL, cellulose concentration,
and temperature of the coagulation bath, the mechanical properties of the cellulose fibers
varied [51]. It was reported that a 13% w/w solution of dissolved pulp in [DBNH]OAc
could be effectively spun and drawn in air and regenerated in water in a coagulation bath at
15 ◦C, but not at 30 or 45 ◦C. This yielded filaments with high tensile strength (552 MPa) and
Young’s modulus (23.2 GPa) comparable to those of the commercial N-methylmorpholine
N-oxide (NMMO)-based Lyocell process [52]. With the lower concentration of cellulose
(3%) in [BMIM]OAc, cellulose microfibers with an average width of 1.95 ± 0.9 µm were
obtained via wet-type electrospinning under an electric field of 4.8 kV/cm and a feed rate
of 2.38 mL/h. The strength was about 12 MPa [53]. Similarly, the fibers prepared by wet
electrospinning using 3% cellulose in [BMIM]OAc, [DMIM]Cl, and [EMIM]OAc possessed
a tensile strength of ca. 14 MPa [12].

Phosphate-based ILs also showed good capacity for the dissolution and subsequent
regeneration of cellulose. The degree of dissolution of wood pulp cellulose in these
ILs followed the order of [EMIM]DEP > 1-butyl-3-ethylimidazolium diethyl phosphate
([BEIM]DEP) > 1-ethyl-3-methylimidazolium dimethyl phosphate ([EMIM]DMP), which
was consistent with interaction results obtained by quantum chemical calculation [11].
The degree of dissolution increased with increasing temperature and time [11], producing
spun fibers or films with good mechanical properties. Zhang and Kitayama et al. [54]
and Zhou and Kang et al. [55] showed that cellulose could be successfully spun using
[EMIM]DEP. A nonwoven fabric consisting of fine fibers with an average diameter in the
micron range was obtained. The tensile strength of the samples was greatly influenced by
the fabric structure formed upon regeneration of cellulose from solution (5% w/w). The
crystallinity of the fabric was relatively high (up to 67.6%), owing to its well-defined molec-
ular orientation [54]. For the Cl- and OAc-based ILs, among [AMIM]Cl, [BMIM]Cl, and
[EMIM]OAc, the regeneration process to form the film was most difficult in [EMIM]OAc
(when 3% cellulose solution was used)—because of the relatively long time required for the
gel’s formation—followed by [AMIM]Cl, and [BMIM]Cl [56]. Liang et al. [57,58] found that
the complete coagulation of a cotton fiber dissolved in [EMIM]OAc took longer than 10 h.
The film produced from [AMIM]Cl had the highest crystallinity (52%), transparency (90%
transmittance at 550 nm), and tensile strength (152 MPa), followed by the films produced
from [BMIM]Cl and [EMIM]OAc [56].
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Table 2. ILs and properties of the shaped regenerated cellulose in terms of transparency (% light
transmittance), tensile strength (σ), Young’s modulus (E), and elongation at break (ε).

IL Shape Property Ref.

[EMIM]OAc Fiber 8–50 MPa σ, 65% transmittance [12,23]
1-Ethyl-3-methylimidazolium diethyl
phosphate ([EMIM]DEP) Fiber 200–900 MPa σ, 5–40% ε, 90% transmittance [54,55,59,60]

1-Ethyl-3-methylimidazolium
Octanoate ([EMIM]Oc) Fiber 405 MPa σ, 33 GPa E [50]

1-Ethyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide
([EMIM]TFSI)

Ionogel (thick sheet) High conductivity (7.8 mS/cm),
506 MPa E [61]

[BMIM]Cl
Fiber ~1 GPa σ, 30–40 GPa E [48,49]
Film 10–75 MPa σ, 3.4–3.6% ε, 76% transmittance [56,62,63]

[BMIM]OAc Fiber 6–14 MPa σ [12]

[AMIM]Cl Film 5–152 MPa σ, 1–12 GPa E, 0.5–3% ε,
90% Transmittance [64–67]

1-Decyl-3-methylimidazolium
chloride ([DMIM]Cl) Fiber 6–15 MPa σ [12]

1,5-Diazabicyclo[4.3.0]non-5-enium
acetate ([DBNH]OAc) Fiber 552 MPa σ, 23 GPa E [52]

1,8-Diazabicyclo[5.4.0]undec-7-enium
carboxylate (DBUH-SILs) and
1,5-Diazabicyclo[4.3.0]non-5-enium
carboxylate (DBNH-SILs)

Film 26–100 MPa σ, 1–3 GPa E, 2–6% ε [60,68]

1,5-Diazabicyclo[4.3.0]non-5-enium
propionate ([DBNH]CO2Et) Bead/aerogel 0.5–0.7 mm Bead size, 240–340 m2/g specific

surface area, 0.04–0.07 g/cm3 density
[69]

For the new ILs, Li et al. [68] screened 22 superbase-derived ILs (SILs), includ-
ing sixteen 1,8-diazabicyclo[5.4.0]undec-7-enium carboxylate SILs (DBUH-SILs) and six
1,5-diazabicyclo[4.3.0]non-5-enium carboxylate SILs (DBNH-SILs), for cellulose dissolu-
tion and film forming. They found that the regenerated cellulose films produced from
2% cellulose in SILs had smooth morphology and high mechanical strength (70–100 MPa).
However, the transparency and tensile properties (transmittance of 26% and tensile strength
of 42 MPa) of wood cellulose films produced using 3% w/w cellulose in DBNH ILs were
much lower than those of the films prepared in [EMIM]DEP (90% and 124 MPa, respec-
tively) (Figure 5).
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Figure 5. Photographs of wood cellulose films (WCFs) prepared using different ILs: [EMIM]DEP
(a), [EMIM]OAc (b), [EMIM]Cl (c), [AMIM]Cl (d), [DBNM]DMP (e), [DBNM]DEP (f), and trans-
mittance values at 800 nm (g) (reprinted with permission from [60]. Copyright © 2022, American
Chemical Society).

Based on these results, [EMIM]DEP was a potential solvent for preparing cellulose
films using wood cellulose as the raw material, and can be used as a solvent to prepare a



Polysaccharides 2022, 3 679

highly efficient ultraviolet (UV)-to-red light conversion cellulose film, which was conducive
to photosynthesis [60]. To form cellulose beads and aerogels, [DBNH]CO2Et was more
suitable than [EMIM]OAc, due to the higher intrinsic viscosity of the cellulose [69]. The
imidazolium or pyridinium cations with OAc anions were more suitable as dispersing
solvents for cellulose in the production of fibers [70]. The size of the beads varied depending
on the cellulose concentration and anti-solvent [69] (Figure 6). Moreover, recent efforts
also revealed the use of IL derivatives to produce cellulose materials with adjustable
properties, such as having a response to external stimuli. The new IL derivatives were
developed by combining them with metals. For example, nickel(II) or chromium III) salts
and [EMIM]Cl were combined and incorporated into a nanofibril network to synthesize
highly porous hydrothermochromic nanofoams, spheres, and flexible films. The prepared
materials had the properties of reversible color switching via moisture adsorption controlled
by temperature (hydrothermochromism (HTC)). The color switch was tailored by the
topochemistry of cellulose nanofilaments, composition of ILs, hybrid architecture, and
humidity [10].
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Figure 6. Photographs (left) and size distribution (right) of cellulose aerogel beads from 2% (a–c) and
3% (d) cellulose–[DBNH]CO2Et solutions coagulated in water (a), isopropanol (b), and ethanol (c,d)
(reprinted with permission from [69]. Copyright © 2018, Royal Society of Chemistry).

3. Functionalization

Biopolymer-based products are attracting increasing interest because of the decrease
in fossil resources, and because of their potential in the replacement of petroleum-based
polymers. For the structural design of advanced polysaccharide derivatives, the func-
tionalization of the polymer backbone is usually a promising path [59,71]. The reactive
hydroxyl groups on the cellulose backbone have been used as a breakthrough point for
modification with expectant functional groups or combination with other materials, so
as to produce cellulose-derivative-based products and, consequently, to enhance their
applications [72]. In the use of ILs as reaction media, the ILs disrupted the hydrogen
bonding networks between adjacent cellulose chains. Then, cellulose was modified in
the IL, while some cellulose could be degraded when high concentrations of ILs were
applied during modification [73]. Studies of cellulose functionalization in ILs were re-
ported, such as aminolysis to synthesize soluble N-functionalized cellulose derivatives
(aminopolysaccharides) and esterification to synthesize cellulose esters. However, the
reported aminolysis of cellulose using ILs was rare [71,72]. For esterification, a number of
studies have reported acetylation and benzoylation in ILs. In the homogeneous acylation
of cellulose with different anhydrides and chlorides, BMIM—e.g., [BMIM]Cl—has proven
to be a good solvent/medium providing high yields of cellulose esters and cellulose fatty
esters [67,74]. Zhao and Wang et al. [75] reported esterification of CNCs with long-chain
fatty acids from methyl laurate using a binary mixture of [BMIM]BF4 and [BMIM]HSO4
protic ionic liquids (PILs) in conjunction with lipase. The esterified CNCs were successfully
prepared at 80 ◦C in a short time (3 h). This was because PILs containing substituted
imidazolium cations were able to dissolve cellulose rapidly, i.e., about 5% w/w of cellulose
could be dissolved within 20 min at 80 ◦C [76]. Usually, PILs have been prepared by using
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organic superbases and carboxylic acids. With increasing alkyl chain length in the anions,
the thermal stability and ionic conductivity increased, whereas the melting point, glass
transition temperature, cellulose solubility, and viscosity decreased [77–79]. In addition,
PIL solvent systems also demonstrated a certain degree of catalytic performance during the
derivatization process. Hanabusa et al. [80] demonstrated that [DBUH]OAc, [DBUH]OPr,
[DBNH]OAc, [DBNH]OPr, and [DMPH]OPr had sufficient catalytic activity for the acetyla-
tion of cellulose. The mechanism of the acetylation in PILs—e.g., [DBUH]OAc—in Figure 7
shows that acetylated DBUH could further react with the hydroxyl group of cellulose,
forming cellulose acetate and acetic acid after deprotonation and isomerization. The DBUH
was then used for the next cycle of acetylation of cellulose. On the other hand, the catalytic
activities of [THPH]OFo, [THPH]OAc, [DMPH]OAc, [DBNH][OFo], and [DBUH][OFo]
were found to be very low for this reaction. To lower the viscosity of the reaction medium
and enhance esterification efficiency, DMSO was also used as a co-solvent [36]. Moreover,
with their electrochemical stability and inherent ionic conductivity, ILs such as 2-hydroxy-
ethyl-trimethylammonium dihydrogen phosphate ([Ch]DHP) simply composited with
cellulose have also been developed for actuator applications [81,82].
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4. Conversion of Cellulose in ILs into Bio-Based Platform Chemicals

Recent studies have investigated the production of biomass-derived chemical building
blocks such as 5-hydroxymethylfurfural (HMF) and levulinic acid (LA). These chemical
building blocks derived from carbohydrates have been important in the efforts to estab-
lish a green chemical industry [83,84]. This is because the demand for renewable energy
alternatives is expected to increase due to the progressive decline in the supply of petro-
chemicals [85]. Hence, decomposition of biomass feedstock is a promising technique for
producing versatile chemicals, e.g., HMF and LA, which are platform chemicals used as
precursors of several versatile chemicals used in producing adhesives, biopolymers, biofu-
els, etc. [43,86] (Figure 8). Until now, the tendency of using ILs as catalysts and/or solvents
in the processing of lignocellulosic biomass for the production of sugars and, subsequently,
for the productions of HMF and LA, has been increasing due to the versatility of ILs in
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functioning as both solvents and catalysts. A schematic illustration of the production of
bio-based platform chemicals is shown in Figure 9.

HMF with an optimal yield of 28% was converted from cellulose by employing biochar
sulfonic acid catalysts dispersed in [BMIM]OAc [87]. However, combining this with an
ion-exchange resin catalyst resulted in an increase in the HMF yield from pretreated
bagasse to 65.7% after 25 min [88]. Glucose—the model compound of cellulose—is one
of the most important starting components for bio-based chemical synthesis. The kinetics
of glucose decomposition catalyzed by an acidic-functionalized IL—1-sulfonic acid-3-
methyl imidazolium tetrachloroferrate ([SMIM]FeCl4)—were studied by Ramli and Amin in
2018 [89]. The pathway included triple dehydration of glucose to produce HMF, rehydration
of HMF with two water molecules to produce LA, and decomposition of glucose and HMF
to produce humins—an insoluble dark brown byproduct. This IL could improve the
conversion of glucose to HMF and LA, with yields of 30 and 60%, respectively, after
250 min. For a Brønsted–Lewis acidic IL ([HO3S-(CH2)3-py]Cl-FeCl3) showing a better
synergistic catalytic effect than those of other catalysts, 70% cellulose was converted to
glucose and LA in pure water at 180 ◦C in 10 h, and the maximum yield of LA was 49% [90].
For the different Brønsted acidic ILs such as tetramethylguanidinium hydrogensulphate
([TMGH]HSO4)-FeCl3 or [TMGH]HSO4-CrCl3 in H2O-CO2, [TMGH]HSO4-CrCl3 in H2O,
FeCl3 in H2O, and FeCl3 or CrCl3 in H2O-CO2, could convert cellulose to LA with yields
of 41–45% [91]. The CO2 could act as a switch in cellulose dissolution, gelation, and re-
dissolution processes in the TMGH IL [92]. In studies utilizing a co-solvent to enhance
the cellulose dissolution capacity of ILs, a biphasic system consisting of [BMIM]Cl and
DMSO was used to pretreat and hydrolyze hardwood biomass. As a result, an optimal
HMF yield of 70% was obtained [93]. It was suggested that the use of a biphasic system
reduced humin formation, which could impede HMF production.
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In addition, HMF could be produced with up to 80% yield in the presence of choline
chloride (ChCl) [94]. Hence, the mixture of IL, DMSO, and ChCl had a high potential to
improve HMF yield. Chuang and Muega et al. [95] studied the effect of the biphasic reaction
conditions on the efficiency of HMF production in [AMIM]Cl, [BMIM]HSO4, and [EMIM]Cl
in combination with ChCl and DMSO at different ratios from glucose, fructose, and cellulose
sources at an operating temperature of over 100 ◦C. Yields of 85 and 9.5% HMF were
obtained from fructose and cellulose, respectively, using [EMIM]Cl-ChCl/DMSO (1:1 w/v).
Since cellulose required strong acids to break the glycosidic bonds before conversion into
HMF, the yield of the direct conversion of cellulose to HMF was low. Meanwhile, the
HMF yield from glucose was 55% using [BMIM]HSO4-ChCl/DMSO. This suggested that a
solvent with better cellulose dissolution capability was necessary to increase the probability
of collision between the cellulose components in the presence of solid acid catalysts and
break them down into their constituent glucose units. This report showed that fructose was
the most appropriate for HMF production [95]. Moreover, LA-based PILs were reported as
efficient solvents for the dissolution/pretreatment of cellulose towards enhanced enzymatic
hydrolysis/catalytic conversion at ambient temperatures [96–99].

5. Commercial-Scale Processing of Cellulose Using ILs

The interest of industries, to date, is seemingly in the improvement of the environmen-
tal sustainability of their technology by using ILs in the processing of cellulosic biomass
and waste. Ionic liquids used at the commercial scale are listed in Table 3.
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Table 3. Ionic liquids used in industries to process cellulosic materials.

IL Company Ref.

[EMIM]OAc 3M [100]

[EMIM]Cl, [PMIM]Cl, [BMIM]Cl, [AMIM]Cl Eastman Chemical [101]

[EMIM]OAc, 1-Ethyl-3-methylimidazolium propionate
([EMIM]Pro), 1-Ethyl-3-methylimidazolium butyrate
([EMIM]But), [BMIM]OAc, 1-Butyl-3-methylimidazolium
propionate ([BMIM]Pro), 1-Butyl-3-methylimidazolium
butyrate ([BMIM]But)

Eastman Chemical [102]

[(CH3)3N(CH2)2OH]+[NH2-L-CHNH2—COO]−,
[(CH3)3N(CH2)2OH]+[NH2-L-COO]− Panasonic [103,104]

For the cellulose source, utilization of waste products such as recycled textile fibers
led to a cost reduction of USD 11,798,662.98 in the full-scale production, demonstrating a
relevant pathway for companies to transition to a circular economy through the recycling
and recovery of textile waste [105]. Increasing the scale of a plant would also facilitate
processes using textile waste because of the waste availability. Regeneration of textile
waste fibers via ILs to separate cotton cellulose from polyester composite blended fabrics is
depicted in Figure 10.
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Eastman Chemical [102] 
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(b). SEM image of the polyester fabric remaining after dissolution (c). Photograph of the [BMIM]Cl
(d). Photograph of cellulose and wool keratin dissolved in [BMIM]Cl (e) (reprinted with permission
from [106]).
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The commercial processing of cellulose-containing products using ILs in the past
decade has been carried out by 3M company (USA) for making self-bonded cellulosic
nonwoven webs using [EMIM]OAc–water mixtures rather than the conventional use
of binders or adhesives to bind the fibers. This was intended to be analogous to the
process of melt-bonded thermoplastic fibers [100]. As protective and compensation films
for liquid crystalline display, Eastman Chemical Company (USA) commercialized the
production of regioselective substituted cellulose esters from cellulose dissolved using
halogenated ILs [101] and carboxylated ILs [102]. Panasonic (Japan) patented their new
ILs with the chemical formulae [(CH3)3N(CH2)2OH]+[NH2-L-CHNH2—COO]− [104] and
[(CH3)3N(CH2)2OH]+[NH2-L-COO]− [103], where L is absent or a linker such as —(CH2)2—
or —(CH2)3—, for dissolving cellulose. Ioncell Oy (Espoo, Finland) commercialized the
Ioncell® process using ILs to dissolve cellulose and shape it based on a dry-jet wet spinning
technique to produce wood-based and recycled textile fibers [107]. The technological
research project GRETE was budgeted at EUR 2.5 million [108]. In this process, textile
waste, pulp, and old newspaper were used as cellulose sources [109,110], and DBNH-
based ILs such as [DBNH]OAc [111,112] and 1,5,7-triazabicyclo[4.4.0]dec-5-enium acetate
[TBDH]OAc [113] were used as solvents. Their pilot plant, which produces 10 kg of
fibers per day, was opened in 2020 [114], and they established a start-up company in
2022 to scale up for full commercial production [107]. Metsä Fibre, owned by its parent
company Metsäliitto Cooperative, has developed wood-based fibers using ILs in a pilot-
scale production with fabric construction partners, such as Itochu Corporation [115]. The
fiber textile product is called Kuura, made from paper-grade wet wood pulp that still
contains some hemicellulose [116]. A Dendronic biomass fractionation process using
synthesized ILs has been developed by Lixea. Different types of biomass—including
agricultural residues, crops, forestry residues, and waste construction wood—have been
used in the process to produce greener alternatives with new purpose—for instance, the
fractionation into cellulose with low hemicellulose content to be used in bioplastics and
biofuels. Their pilot plant is currently under construction [117].

The commercial scale of other applications of cellulose processed using ILs—such as
production of biofuel, bioethanol, and bio-based chemicals—has not been fully developed,
possibly due to the challenge of production costs. The feasibility of these productions
on a larger scale has been assessed based on manufacturing costs or minimum product
selling price (MPSP) by techno-economic analysis (TEA) from a simulation perspective.
An example plant scheme is depicted in Figure 11. In the production of sugar for bio-
fuel, TEA of a commercial-scale 113 million liter/year (30 million gal/year) cellulosic
biorefinery using [EMIM]OAc pretreatment estimated that the sugar production costs
from corn stover, switchgrass, and poplar feedstocks would be 2.7, 3.2, and 3.0 USD/kg,
respectively. For IL pretreatment to be economically competitive with the conventional
sulfuric acid pretreatment, >97% IL recovery, USD ≤ 1/kg IL cost, and >90% heat recovery
were necessary [118,119]. As IL recovery was the most sensitive parameter, TEA of the
IL recovery step in a eucalyptus cellulose pretreatment process with [EMIM]OAc and
[Ch]OAc was proposed [120]. The high operating costs in the IL recovery step were en-
tailed by the high volumes of water used in the washing step. Heating costs increased
from approximately 20 to 80 USD/t of recovered [EMIM]OAc and from 20 to 100 USD/t of
recovered [Ch]OAc. The minimal total recovery costs (16 USD/kg of treated wood) were
found in washing pretreated biomass with 5.5 g of water/g of IL, obtaining the highest
glucan digestibility (83.07%) when using [EMIM]OAc. However, the price estimated for
[EMIM]OAc ranged from 20 to 101 USD/kg, or 5–20 times of the price of organic sol-
vents. Brandt-Talbot et al. [121] estimated the cost-effectiveness of using triethylammonium
hydrogen sulfate IL ([TEA]HSO4) (1.24 USD/kg) for sugar production from cellulosic
biomass feedstock. The preliminary analysis revealed a 30% reduction in operating ex-
penditure. Another techno-economic study in 2020 reported that the costs of [TEA]HSO4
and 1-methylimidazolium hydrogen sulfate ([HMIM]HSO4) used for biomass pretreatment
were 0.78 and 1.46 USD/kg, respectively, which were comparable to those of common
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organic solvents such as acetone and ethyl acetate (1.3 and 1.4 USD/kg, respectively) [122].
The complementarity of steam explosion with [TEA]HSO4 pretreatment suggested a ~33%
profit enhancement relative to [TEA]HSO4 alone, mainly due to the recovery of oligosac-
charides derived via the steam explosion step [123]. Unlike the IL price, IL make-up due
to losses of IL during the pretreatment process and recycling was a critical parameter to
minimize the operating cost. At high rates of IL recycling (>95%), the influence of IL price
(1.46 USD/kg) on the internal rate of return (IRR) and the production cost were reduced
when the IL makeup was lower than 1% [124] (Figure 12).
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Figure 12. Breakdown of anhydrous ethanol production cost, considering the pretreatment scenario
at 130 ◦C with water content in liquid fraction of 30% w/w, solid content of 30% w/w, and IL make-up
of 5%. The production cost of 1 L of ethanol is USD 0.83. The total yearly production cost for ethanol
is USD 88.4 million (left). Impact of IL make-up and price on the economic feasibility of the process
in terms of the internal rate of return (right) (reprinted with permission from [124]. Copyright © 2021,
Royal Society of Chemistry).

For HMF production, the TEA showed that annual operating costs were highly associ-
ated with the recycling of the deep eutectic solvent (DES)/IL/metal catalysts. The MPSP of
HMF of USD 16,453/t for the base case (ZnCl2/lactic acid recycling 5 times, acetone/water
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washing 5 volumes, CuCl2-CrCl2-[EMIM]Cl recycling 10 times, HMF yield of 55%, and
production capacity of 100 t/h) was achieved with an IRR of 10% [125].

6. Conclusions and Outlook

Cellulose has been considered a promising sustainable material that can also be used
as a cheap feedstock for the production of biochemicals and biofuels. According to the
circular economy, cellulosic products will be truly sustainable when their production is also
sustainable. Thus, the selection of the solvent is one of the most important steps. Due to
their high solvation power and environmentally friendly nature, ionic liquids have become
attractive for processing cellulose, e.g., pretreatment (decrystallization) in biorefineries,
hydrolysis (i.e., selective removal of the amorphous region, forming highly crystalline
cellulose nanocrystals), and regeneration of cellulose to fabricate cellulose hydrogels, films,
fibers, or beads. In the functionalization of cellulose and production of bio-based platform
chemicals, IL shows a synergistic effect as a reaction medium and catalyst. New ILs
synthesized for cellulose processing—especially superbase-derived ILs—and the conditions
of widely used ILs, i.e., imidazolium in cellulose processing, are updated in this review.
However, there is a challenge related to the generalization of the choice and the specific
conditions of using ILs for a particular application. An IL paired with acetate has been
extensively reported as a good choice in the dissolution of cellulose; however, it is unstable
and sensitive to water. More research should study suitable cation pairs or comparable
novel anions to address this problem. Studies using modern analytical instruments can be
used to assist researchers to achieve this goal more efficiently.

The dissolution of cellulose in ILs for regeneration into fibers/films, functionalization
to cellulose derivatives, and conversion to bio-based platform chemicals is relatively new,
and has not yet been successfully scaled up to full-sized production. Although the key
findings open avenues to develop novel cellulose derivatives/products for practical appli-
cations, serious questions remain, such as the price since ILs are typically more expensive
than conventional solvents. This is because the steps of synthesis and purification are more
complex. Industrially expandable synthesis methods with short steps should be researched
in greater depth. The selection of raw materials considering cost and performance is also
imperative. Therefore, the costs of ILs with superior solubility of cellulose may still need to
be addressed in order to achieve satisfactory dissolution, pretreatment, and modification
efficiencies, and to reduce the capital cost in the commercialized process, which affects the
minimum selling price of the product. This can be offset by ILs’ recyclability.

The recovery and purification of ILs, which are an economic necessity and compulsory
from the environmental point of view, are a complex challenge. Several methods have been
reported, from simple evaporation of water or other cellulose anti-solvents, to more complex
solvent extraction or phase separation, but most studies in this field are still preliminary,
and more in-depth knowledge is required as a concurrent topic in the cellulose processing
domain. These methods are essential to the scaling-up of the process to improve the
recyclability and long-term chemical stability of the solvent system without compromising
the production efficiency, mild operating conditions, and energy-saving properties.

Even though the use of room-temperature ILs is an exciting solution to solve the
problem regarding operational energy, high efficiency in processing cellulose at room
temperature is ideal. Despite the internal energy consumption in the IL recycling process,
energy costs are increased through the increased process efficiency. There may be other
ways to generate (renewable) electricity that would reduce costs significantly. Production
costs could also be reduced significantly with increased scale. Cost assessments of heat and
power should be included in techno-economic analysis

The combination of experimental research and techno-economic analysis will be recog-
nized as one of the most promising development directions towards the industrialization
of cellulose processing using ILs in the future. This comprehensive dataset is a useful basis
for further process optimization and design. Although a preliminary techno-economic
analysis could establish a new paradigm for the production of biofuels from biomass using
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ILs, in-depth techno-economic modelling will address process integration and IL recycling
challenges and show clear potential for industrial scale-up. The recent process models
mainly include feed handing, biomass pretreatment, main bioethanol production, and
distillation for recycling ILs. Wastewater treatment should also be included.

In the future, the annual production based on IL technology is expected to increase
drastically, raising questions about the environmental impact—especially in water bodies.
Incorporating life-cycle assessment into techno-economic analyses may fill the existing
communication gap between technology and environment. More research and assessment
are thus required to identify and mitigate any risks that ILs might pose to the environment.
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