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Abstract: The development of effective and innovative vaccination strategies is urgently needed to
better control the spread and transmission of the low-pathogenic avian influenza H9N2 subtype
(LPAI-H9N2) in poultry. In addition, the enhancement of innate immunity by some of these innovative
inactivated vaccines has not yet been investigated. Here, an experiment was conducted in commercial
broiler chickens to compare the immune response to two different inactivated H9N2 vaccines. For
this, Group 1 (G1) broilers were vaccinated with vaccine 1 [Nobilis® H9N2-P (pathogen-associated
molecular patterns—PAMP) technology], broilers in G2 were vaccinated with vaccine 2 [an inactivated
whole H9N2 virus (IWV) autogenous oil emulsion vaccine], while birds in G3 were not vaccinated.
The study lasted 34 days. Innate immune parameters (phagocytic activity, nitric oxide, and lysozyme),
cytokine signaling (IL-1β, IL-6, IL-8), humoral immunity using the hemagglutination inhibition
(HI) test, and the gene expressions of IFN-γ and TLR-21 were assessed. The results showed a
significant increase in innate immunity and modulatory cytokines at 24–48 h after the vaccination
of G1 broilers, with a continuous increase until the end of the experiment. In addition, a significant
increase in geometric mean HI titers was observed in G1 at 11 days post-vaccination (dpv), and a
significant (p < 0.05) upregulation of IFN-γ and TLR-21 was observed in the same group, G1, at 31 dpv
compared to G2 and G3. Nobilis® H9N2-P may induce faster and stronger innate and active humoral
immunity compared to another IWV, which may contribute to the protection of broilers against
early H9N2 infections. However, challenge protection studies for several IWV vaccines, including
PAMP-H9N2 against LPAI-H9N2, should be further evaluated in both specific pathogen-free (SPF)
and commercial broilers.
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1. Introduction

The immune response of birds to pathogens is a potential determinant of disease
prognosis. There are two main distinct branches of host immunity: the innate and the
acquired response. Pattern recognition receptors (PRRs) on host cells are very important
tools of the innate immune system, recognizing pathogens or danger-associated molecular
patterns (PAMPs or DAMPs), including lipoproteins, polysaccharides, glycolipids, and
nucleotides. Recognition initiates the immediate defense against pathogens and the har-
monious interplay between innate and adaptive immunity to control the disease [1]. The
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coordination of intracellular signaling pathways can result in the activation of microbicidal
mechanisms, the release of cytokines and chemokines, and the production of co-stimulatory
molecules required for antigen presentation and the activation of the acquired immune
system [2,3].

It has been proposed that immune modulation targeting the innate system may prove
more advantageous as induction is rapid and non-specific and offers therapeutic ben-
efits, including adjuvant boosting effects with local and systemic protection involving
numerous cellular immune targets [4]. The early response of the innate immune system
in chickens within 1 week is characterized by the upregulation of genes associated with
defense/pathogen response [5], inflammation [3,6], and the production and secretion of
the cytokine IFN-γ [7].

Low-pathogenicity avian influenza H9N2 (LPAI-H9N2) is an enzootic virus causing
significant economic losses to the poultry industry in the Middle East, Asia, and Africa.
LPAI-H9N2 continues to diversify into multiple antigenically distinct lineages, which may
further promote the emergence of potential pandemic strains that are capable of masking
and facilitating HPAIV transmission in poultry. In addition, H9N2 infections are associated
with significant morbidity and increased susceptibility to secondary viral or bacterial infec-
tions, resulting in respiratory and digestive disorders associated with high mortality [8,9].
Since the first report of LPAI-H9N2 was in quail (quail/V3413/2011) in Egypt in 2011,
the virus has spread rapidly to several domestic birds in different locations [10]. Over
12 years, the genetic lineage of all LPAI H9N2 viruses detected was G1-like, with some
antigenically distinct variants, and they continue to infect Egyptian poultry farms, causing
significant economic losses [11]. As a result, many countries have had to introduce effective
vaccination programs as a means of prevention and control. Oil emulsion-inactivated
whole virus (IWV) vaccines for H9N2 have been widely used in poultry farms in Egypt
and many other countries, including China, South Korea, Pakistan, Morocco, Iran, and
the United Arab Emirates (UAE) [12–17]. However, the immunogenicity and efficacy of
these vaccines remain questionable. Therefore, enhancing the immunostimulatory nature
of H9N2 vaccine formulations is essential to counteract this virus, such as the incorporation
of various adjuvants, and biological, or chemical substances that induce specific immune
responses against specific pathogens when used in conjunction with vaccination [18].

Understanding the mechanism of the chicken immune response to LPAI-H9N2 is
essential for the effective control of virus spread and vaccine development. LPAI-H9N2
virus infection in birds initially activates the innate immune response through pattern recog-
nition receptors [19]. At the site of infection, the cytokines produced recruit innate immune
and antigen-presenting cells, which subsequently transduce antigenic signals to adaptive
immune cells (i.e., B and T cells) to induce specific humoral and cellular immunity that led
to the clearance of the infected cells, and the virus, via antibody-mediated neutralization
and cytotoxicity, respectively. In birds, phagocytosis by phagocytes (e.g., macrophages,
dendritic cells, and heterophils) is essential for a variety of biological events, including
tissue remodeling and the continuous clearance of dying cells. Furthermore, phagocytosis
represents an early and crucial event in triggering host defenses against invading pathogens
and comprises a series of events, starting with the binding and recognition of particles
by cell surface receptors, followed by the formation of actin-rich membrane extensions
around the particle. The fusion of membrane extensions results in phagosome forma-
tion, which precedes phagosome maturation into a phagolysosome. Pathogens inside the
phagolysosome are destroyed by a lowered pH, hydrolysis, and radical attack. These early
events that are mediated by the innate immune system are critical for host survival [19].
Previously, Bastamy et al. [20] recorded greater immunomodulation in lysozyme-treated
broilers compared to lysozyme-free broilers via raised cellular (opsonic activity through
MΦ and phagocytic index), local (IgA), and humoral (HI titers for ND and HPAI-H5N1)
immune responses.

In this way, recently, the H9N2-P vaccine was used to effectively enhance immunity,
reducing the occurrence and control of H9N2 outbreaks. PAMPs are conserved small
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molecular motifs within a class of microbes that are recognized by innate immune cells [19].
Therefore, in the present study, we performed a genetic and serological analysis of the
innate and humoral immune responses in broiler chickens vaccinated with an inactivated
low-pathogenic avian influenza virus subtype H9N2 produced by the innovative PAMP
technology (Nobilis® H9N2-P) and another autogenous IWV H9N2 vaccine to fill the gap,
whether the innovative inactivated vaccines were able to enhance innate immunity or not.

2. Materials and Methods
2.1. Ethical Approval

The study was approved by the Institutional Animal Care and Use Committee of Beni-
Suef University (BSU-IACUC), Egypt. The ethical approval code was BSU-IACUC-022-444.
Every effort was made to minimize bird suffering.

2.2. Experimental Study and Sampling

For the three groups (G1, G2, and G3) of commercial broiler chickens [Ross 308 of
mixed sex], each one consisted of 100 birds reared with 10 replicates in 3 separate partitions.
At 3 days old (DO), G1 was vaccinated subcutaneously (at a dose of 0.2 mL) using vaccine
1 [IWV, LPAI-H9N2 vaccine, strain A/CK/UAE/415/1999, prepared with the technology
of PAMP (Nobilis® H9N2-P, MSD, Intervet Int., Boxmeer, The Netherlands) with antigenic
content of 8 log2 hemagglutination units (HA) units], G2 was vaccinated with vaccine 2
[IWV, LPAI-H9N2 autogenous vaccine, strain A/CK/Egypt/S10490/2015 (produced by
a local company, Cairo, Egypt) with antigenic content of 8 log2 HA units] and G3 was
kept as the control and remained unvaccinated against H9N2. Routine vaccinations were
given to all 3 groups against infectious bronchitis by spraying at the hatchery using the live
H120 vaccine (Avishield® IB H120, Dechra, Shrewsbury, UK) then a live intermediate plus
infectious bursal disease vaccine (Bursine plus®, Zoetis, Parsippany-Troy Hills, NJ, USA)
via eye drops at 12 DO and a VG/GA strain of the Newcastle virus (Avinew®, Boehringer
Ingelheim, Ingelheim am Rhein, Germany) was given in drinking water at 16 DO.

2.3. Serum Sampling and Serological Indices of Immune Mediators

Serum samples were collected from the wing veins of 10 chickens at 12, 24, and 48 h
post-vaccination (hpv) and 4-, 11-, 21-, and 31-days post-vaccination (dpv) with H9N2 for
the detection of serological responses as follows:

2.3.1. Phagocytic Index Assay

The CytoSelect™ 96-well phagocytosis assay (red blood cell–substrate, Cell Biolabs
Inc., San Diego, CA, USA) was used for the detection of the phagocytic index or opsonic
activity assay in the collected serum samples according to Yu et al. [21].

2.3.2. Nitric Oxide (NO)

It was determined using the colorimetric assay kits (Elabscience®, Houston, TX, USA),
which depend on the nitrate reduction test [22]. All procedures were applied according to
manufacturer instructions, and the geometric mean titers (GMTs) were calculated.

2.3.3. Lysozyme (LYZ)

It was determined using lysozyme activity kits (Flourometric®; ab211113, Abcam,
Cambridge, UK) at a wavelength of 360–455. All procedures were applied according to the
manufacturer’s instructions, and the GMTs were calculated [23].

2.3.4. Interleukin-1β (IL-1β) and Interleukin-8 (IL-8)

Interleukin levels were determined using highly sensitive and specific enzyme-linked
immunosorbent assay (ELISA) kits based on the principle of the double-antibody sandwich
technology for chicken IL-1β and chicken IL-8 (Abbexa-Ltd®, Cambridge, UK). The optical
density (OD) was measured spectrophotometrically at a 450 nm wavelength, and the GMTs
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of IL-1β and IL-8 were calculated [24]. All procedures were applied according to the
manufacturer’s instructions.

2.3.5. Interleukin-6 (IL-6)

It was determined using Invitrogen® ELISA kits coated with a chicken IL-6-specific
antibody (Life Technologies Ltd., Paisley, UK). The optical density was measured at a
wavelength of 450 nm. The GMTs of IL-6 were calculated according to the manufacturer’s
instructions [25].

2.3.6. Humoral Immunity Evaluation Through Hemagglutination Inhibition Test

The hemagglutination inhibition (HI) titers against LPAI-H9N2 in the collected serum
samples were determined using a standard H9N2 antigen (Royal GD, Deventer, The
Netherlands) with hemagglutination titers of 8 log2. A two-fold serial dilution of serum
against four hemagglutinating units of antigen was applied, and the geometric mean HI
titers (GMTs) were calculated [26].

2.4. Gene Expression Analysis of Immune Cell Signaling (IFN-γ and TLR-21) Using Quantitative
Reverse Transcriptase–Polymerase Chain Reaction (qRT-PCR)

Ten birds were sacrificed humanely through cervical dislocation after the intravenous
injection of sodium pentobarbital with a dose of 50 mg/kg, and their spleens were collected
at 31 dpv for gene expression. The collected spleens were homogenized in phosphate-buffer
saline (pH 7.2) containing gentamycin (50 µg/mL) and mycostatin (1000 units/mL) in a 1:5
(w/v) dilution [26].

The total RNA was extracted by the RNeasy Mini Kit then SYBR® Green master mix
kits were used in accordance with the manufacturer’s instructions (QuantiTect, Qiagen,
Germantown, MD, USA), in addition to specific primers for interferon-gamma (IFN-γ), fore-
word CAAGTCAAAGCCGCACATC and reverse CGCTGGATTCTCAAGTCGTT [27] and
specific primers for Toll-like receptor-21 (TLR-21), forward CAAGAAGCAGCGGGAGAAG
and reverse TCAGGATGCGGTTAAAGCG [28]. The thermocycling qRT-PCR conditions
were 50 ◦C for 30 min, 95 ◦C for 5 min, followed by 40 cycles at 95 ◦C for 10 s and 40 s
at 62 ◦C. Amplification curves and Ct values were determined by stratagene MX3005P
software version 4.10. To quantify gene expression on the RNA of the different samples,
the Ct of each sample was compared with the control G3 samples according to the “2−∆∆Ct”
method stated in [29].

2.5. Statistical Analysis

Graphpad Prism 5 was used to analyze all data using one-way ANOVA, and Tukey’s
post hoc test was used to determine the significant differences between groups at (p < 0.05).

3. Results
3.1. Detection of Phagocytic Activity Mediators (Nitric Oxide, Lysozyme, Interleukin-1β,
Interleukin-6, Interleukin-8

This study indicated a gradual significant increase in the phagocytic activity of chick-
ens in G1 (received vaccine 1) from 2 log10 at 48 hpv to 3, 5, and 6 and log10 at 4, 11, and
21 dpv, respectively. The phagocytic activity was associated with the detection of phago-
cytic mediators such as NO in the serum of chickens in G1 at significantly (p < 0.05) higher
concentrations compared to G2 and G3. The GMTs of NO in serum of chickens in G1 ranged
from 195 to 555.33 µmol/mL in comparison to 50–300 µmol/mL in chickens of G2 and G3
at 12 hpv to 31 dpv, respectively (Figure 1A). For LYZ, the GMTs quantified in the serum of
chickens were significantly high in G1 (p < 0.05), starting from 122.67 to 682.33 ng/mL com-
pared to 50–220 ng/mL in the other two groups at the same times (Figure 1B). The GMTs of
IL-1β in G1 vaccinated chickens were 412–333 ng/mL (Figure 1C), and the GMTs of the
proinflammatory IL-6 in G1 vaccinated chickens were 352.33–313.33 ng/mL during 31 dpv
(Figure 1D). Also, the GMTs of IL-8 in G1 vaccinated chickens were 257.67–720 ng/mL com-
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pared to 80–310 ng/mL in G2 vaccinated chickens and 80–260 ng/mL in G3 non-vaccinated
chickens throughout the 31 dpv (Figure 1E).
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Figure 1. Results of geometric mean titers (GMTs) for NO (A), LYZ (B), IL-1β (C), IL-6 (D), and IL-8 (E)
at 12, 24, and 48 hpv and 4, 11, 21, and 31 dpv with H9N2 (Group 1—H9 vaccine 1; Group 2—H9
vaccine 2; Group 3—non-vaccinated control). The significant differences (p < 0.05) between groups
are referred as a, ab and b.

3.2. Detection of Humoral Immunity Evaluation Through Hemagglutination Inhibition Test

The geometric mean titer results of HI revealed a non-significant difference between
all three groups at 12, 24, and 48 hpv and 4 dpv. The significance of difference began at
11 dpv with the highest titers (p < 0.05) at 6.7, 7, and 6.7 log2 in chickens from G1 followed
by 4.3, 4.7, and 4.3 log2 in G2 in comparison to 3.3, 3.3, and 2.3 log2 in G3 (Figure 2).
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Figure 2. Geometric mean titer results of HI in serum samples of all chicken groups collected at 12,
24, and 48 hpv and 4, 11, 21, and 31 dpv with H9N2 (Group 1—H9 vaccine 1; Group 2—H9 vaccine 2;
Group 3—non-vaccinated control). The significant differences (p < 0.05) between groups are referred
as a, b, ab and c.

3.3. Results of Gene Expression of Immune Cells Signaling (IFN-γ and TLR-21)

Regarding the results of gene expression for interferon-gamma (IFN-γ) and Toll-like
receptors-21 (TLR-21) in all splenic samples collected at 31 dpv, the detected Ct values
of qRT-PCR for IFN-γ were 24.97, 35.1, and 35.9 (0.456 fold change), while the Ct values
of TLR-21 were equal to 25.51, 38.17, and 38.31 (0.568 fold change) in G1, G2, and G3,
respectively, which indicated significant (p < 0.05) lower Ct values for IFN-γ and TLR-21 in
chickens from G1 compared to G2 and G3, indicating the significant (p < 0.05) upregulation
of both genes in G1 (Figure 3A,B).
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Figure 3. Results of IFN-γ (A) and TLR-21 (B) gene expressions (qRT-PCR) in splenic samples of
all chicken groups collected at 31 dpv with H9N2 (Group 1—H9 vaccine 1; Group 2—H9 vaccine 2;
Group 3—non-vaccinated control). The significant differences (p < 0.05) between groups are referred
as a and b.

4. Discussion

LPAI-H9N2-inactivated whole virus vaccines have been widely used in poultry farms
in several countries, such as Asia and Africa, including Egypt [12–14,17,30,31]. Although
these inactivated H9N2 vaccines have been shown to be effective in reducing clinical disease
and production losses, they fail to control the spread of the virus [32,33]. Consequently,
there is a growing need to develop alternative vaccination strategies and systems for better
control of LPAI-H9N2 spreading in poultry [34–36].

In this study, we investigated the innate and humoral immune response induced by
imported water in an oil emulsion-inactivated vaccine against LPAI-H9N2 prepared in com-
bination with PAMP technology (Nobilis® H9N2-P) in the broilers of G1 and an autogenous
oil emulsion-inactivated H9N2 vaccine (locally prepared) in broilers from G2. The results
showed a gradual significant increase in phagocytic activity, and phagocytic mediators such
as NO, LYZ, proinflammatory cytokines (IL-1β and IL-6), and the chemoattractant cytokine
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IL-8, which attracts and activates neutrophils in inflammatory regions, after vaccination
in chickens from G1 compared to the vaccinated G2 and the non-vaccinated G3. Also,
the gene expressions of IFN-γ and TLR-21 in spleen samples collected at 31 dpv were
significantly up-regulated in G1 compared to G2 and G3. Previously, Shrestha et al. [37]
reported a positive correlation between the improvement in the IFN-γ, IL-6, IL-1β, IL-4,
and CxCLi2 mRNA expression levels in chicken splenocytes in vitro and the inhibition of
virus shedding after the H9N2 challenge in specific pathogen-free (SPF) chickens when
the HA antigen was fused to single-chain fragment variable (scFv) antibodies specific for
the cluster of differentiation 83 (CD83) receptor. Also, Kaiser et al. [38] mentioned that the
expression levels of the key inflammatory mediators or proinflammatory cytokines (IL-6
and IL-1β) are directly correlated with influenza virus replication as well as respiratory
and systemic symptoms of the disease and concluded that IFN-γ is a potential inhibitor of
influenza replication.

In contrast to adaptive immunity, innate immunity is immediately involved as the
first line of defense against pathogens that infect birds, resulting in the limitation or
mitigation of the infectious process. The recognition of PAMPs and DAMPs is mainly
mediated by PRRs, which are mainly expressed on the surface or in the cytoplasm of
macrophages, dendritic cells (DCs), monocytes, and non-immune cells (e.g., fibroblasts,
endothelial and mucosal epithelial cells) [39]. Following the initial identification of the virus
by innate receptors, a rapid stimulation of antiviral effector responses, such as IL-6, IL-1β,
and TNF-a, from macrophages and monocytes [40], together with the secretion of type I
IFNs, in particular DCs, thereby facilitated the stimulation of adaptive immunity [41,42],
which is very important for viral clearance, although resistance to H9N2 viral invasion is
mediated by innate immunity, and is a complex immune process involving multiple cell
systems, including DCs, B, and T cells, macrophages, natural killer cells, and cytokines [19].
Although the effective enhancement of immunity in vaccine 1 could not only be attributed
to PAMPs, there are several factors that contribute to a higher immune response between
some inactivated vaccines, such as the potency, immunogenicity, and ability to interact with
bird immunity to produce a higher antibody production of seed strains; a higher antigenic
mass in the vaccine; and a type of oil or adjuvant [19]. Here, in this study, both viruses
have the same antigenic mass of 8 log2 hemagglutination units (HA).

Cheng et al. [43] reported that the stimulator of IFN genes (STINGs) acts synergistically
with melanoma differentiation-associated gene 5 (MDA5) to form the MDA5-STING-IFN-β
pathway, conferring a potent antiviral state against RNA viruses (i.e., H9N2), complement-
ing the absence of the retinoic acid-inducible gene I (RIG-I) in chickens. Furthermore, this
STING activates both the NF-κB and IFN regulatory factor 7 (IRF-7) pathways to induce
type I IFN and IFN-stimulated genes (ISGs). In addition, TLRs are considered one of the
four major families of PRRs in chickens [44]. Wang et al. [45] observed an oviductal upregu-
lation of site-specific TLR-3, TLR-7, TLR-21, and MDA5 in H9N2-infected laying hens. The
results in this study confirm the upregulation of TLR-21 following significant H9N2P-HA
antigen stimulation, especially in chickens of G1. Chicken TLR-21 is a molecule that en-
hances antibody-mediated responses as a single ligand against the H4N6 avian influenza
virus in chickens, as previously shown by Singh et al. [46]. All these results highlight the
importance of the innate immune response, especially during the first 2–3 weeks of life in
broilers, as it is well documented that the adaptive immune system is not fully developed
at hatching and that functional T- and B-cell responses are observed after approximately 2
to 3 weeks of life [47,48].

The serological response to H9N2 vaccination in broilers in this study was measured
by the HI test and revealed a non-significant difference between all three groups from 12 h
to 7 dpv, which confirmed the role of maternal-derived antibodies (MDAs) in delaying the
immune response to the single vaccination with inactivated H9N2 vaccines [37]; however,
a significant difference in GMTs began at 11 dpv in chickens from G1, earlier than G2,
and continued to 31 dpv with highest significant (p < 0.05) in comparison to G2 and
G3, indicating that MDA is more quickly overcome in chickens of G1, which could be
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attributed to the triggering of humoral immunity through the stimulated innate and Th1
immune types. Interestingly, the GMTs of HI in both G1 and G2 were protective and
more than 4 log2 [49], from 11 to 31 dpv, with significantly higher titers in chickens from
G1 (6.7, 7 and 6.7 log2) than G2 (4.3, 4.7 and 4.3 log2). These significantly higher and
earlier titers in chickens of G1 vaccinated broilers with PAMP-H9N2 eliminate the need for
further vaccination in broilers as applied in some countries such as China, in which three
vaccinations during 45 days of age are applied based on surveillance data collected from
several poultry farms in order to overcome MDAs and to have high protective titers, as
mentioned by Pan et al. [50]. Earlier findings recorded high immunogenicity and protection
from a single administration of the oil-based-inactivated LPAI-H9N2 vaccine in specific
pathogen-free chickens but not commercial broilers with high MDAs [16,51,52]. Recently,
Elbestawy et al. [53] reported that the H9N2-P vaccination in broiler chickens received along
with live Newcastle vaccines induced higher protection against the velogenic Newcastle
disease genotype VII.1.1 challenge than the live vaccine alone as the birds exhibited milder
lesions and a lower and shorter viral shedding rate. The current study was applied in
broilers to simulate the field situation, and all three chicken groups received the same
routine vaccinations except for H9N2; however, future studies will be applied in SPF
chicks to exclude any possibility for cross-reactivity between the immune response and a
routine vaccine.

5. Conclusions

The obtained results indicate the rapid and potent action of innate [phagocytic activity,
nitric oxide, lysozyme, cytokine or interleukin signaling (IL-1β, IL-6, IL-8) and gene expres-
sion of IFN-γ and TLR-21] and humoral immunity in PAMP-H9N2-vaccinated compared
to inactivated H9N2-vaccinated commercial broilers in G2 and non-vaccinated controls
in G3. The current study demonstrates that immunogenicity and early high response to
the whole H9N2 virus vaccine depends not only on the antigen and epitope similarity but
also the innovative technology of vaccine manufacturing, such as pathogen-associated
molecular patterns (PAMPs), which could play another important role. Further studies
using these vaccines to investigate their protective efficacy against an early LPAI-H9N2
challenge should be applied in both SPF and commercial broilers.
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