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Abstract: The objective of this study is to compare univariate and joint bivariate return periods of 
extreme precipitation that all rely on different probability concepts in selected meteorological 
stations in Cyprus. Pairs of maximum rainfall depths with corresponding durations are estimated 
and compared using annual maximum series (AMS) for the complete period of the analysis and 30-
year subsets for selected data periods. Marginal distributions of extreme precipitation are examined 
and used for the estimation of typical design periods. The dependence between extreme rainfall and 
duration is then assessed by an exploratory data analysis using K-plots and Chi-plots and the 
consistency of their relationship is quantified by Kendall’s correlation coefficient. Copulas from 
Archimedean, Elliptical, and Extreme Value families are fitted using a pseudo-likelihood estimation 
method, evaluated according to the corrected Akaike Information Criterion and verified using both 
graphical approaches and a goodness-of-fit test based on the Cramér-von Mises statistic. The 
selected copula functions and the corresponding conditional and joint return periods are calculated 
and the results are compared with the marginal univariate estimations of each variable. Results 
highlight the effect of sample size on univariate and bivariate rainfall frequency analysis for 
hydraulic engineering design practices. 

Keywords: bivariate analysis; copulas; rainfall frequency analysis; extreme precipitation; design 
return period 
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1. Introduction 

Rainfall frequency analysis is an important area of hydraulic engineering design, water 
resources planning, and management. This involves the selection of the variables of interest, the 
sampling of a sample series and the choice of the most appropriate population distribution. Analysis 
of extreme rainfall events has conventionally been performed by prespecifying rainfall duration as a 
filter to abstract annual maximum rainfall depths as the only variable for analysis. However, this 
univariate approach does not account for dependence between rainfall properties. Rainfall 
characteristics, such as total depth, duration, and peak intensity exhibit high variability and a 
multivariate approach should be studied for extreme rainfall analysis. 

The interdependency of extreme rainfall characteristics urged scientists and water managers to 
derive a joint law in order to successfully describe the main characteristics of the observed 
hydrological events. The first bivariate frequency distributions were generated based to the 
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hypothesis that the variables of interest either have the same marginal probability distribution or that 
their joint relationship is normally distributed (or becomes normally distributed after a 
transformation) [1]. In recent years, several studies were focused on finding a method which would 
assess in the investigation of the statistical behavior of dependent hydrological variables without the 
need of the assumptions that classical bivariate frequency distributions use. The first paper on 
copulas in hydrology was published by De Michele and Salvadori [2] and in the next few years 
several other studies further expanded the theory, such as Favre et al. [3], Salvadori and De Michele 
[4], Salvadori and De Michele [5], and Genest and Favre [6]. 

The main concept of the copula approach is that a joint distribution function can be divided into 
two independent parts, one describing the marginal-univariate behavior and the other is the 
dependence structure [7,8]. Copulas are the functions that describe the dependence between random 
variables and, as a result, are able to couple the marginals of these variables into their joint distribution 
function [9]. The importance of this approach in the field of engineering and water science is 
noticeable. Copula method offers an efficient way of finding reasonable multivariate estimates for 
hydrological events that have a certain likelihood of occurrence. These estimates are used as design 
variables of the hydraulic structures. Design variables are characterized by a return period 
(recurrence interval) defined as the average time elapsing between two successive realizations of an 
event whose magnitude exceeds a defined threshold [10,11]. In practice, the selection of a reliable 
return period is crucial as it is the fundamental parameter in the design of hydraulic structures. 

To analyze extreme rainfall events and the effect of sample size on rainfall frequency results, a 
bivariate analysis is conducted in this study using daily precipitation data from selected 
meteorological stations in Cyprus. Samples of extreme rainfall events are chosen (using annual 
maximum rainfall depth with corresponding storm durations) and analyzed using copulas to 
describe the dependence structures between rainfall variables and to construct their joint distribution 
for extreme rainfall events. With the marginal distributions selected according to the methodology of 
traditional univariate analysis, using two different types of extreme rainfall series, a set of copula 
based bivariate distributions for rainfall peak–storm duration are determined and compared for 
selected design return periods. 

2. Study Area and Rainfall Database 

During the last century, remarkable variations and trends were observed in precipitation. 
Pashiardis [12] published a comprehensive study of rainfall extremes presenting rainfall intensity–
duration–frequency (IDF) distribution curves for Cyprus. According to this study, the curves for the 
period 1971–2007 are more intense and extreme than the curves developed in an earlier study for the 
period 1931–1970 [13]. The average precipitation of 541 mm in the period from 1901 to 1970 dropped 
to 463 in the period from 1971 to 2009 [12]. Analysis of precipitation data for Cyprus leads to the 
conclusion that the mean annual rainfall is decreasing whilst the rainfall intensity of extreme events 
is increasing. Hence, this study’s primary objective is the application of the copula method and the 
evaluation of its results to extreme rainfall. To that end, approaches to specify the marginal 
distribution functions for the study’s rainfall characteristics (rainfall depth and storm duration) are 
initially applied. 

Daily rainfall data for 90 years (October 1920–September 2010) were obtained from three 
meteorological stations (Limassol, Larnaca and Nicosia), located in the wider area of Cyprus, from the 
European Climate Assessment and Dataset (ECA&D, www.ecad.eu). The sample size of rainfall 
extreme characteristics can be a major uncertainty factor when dealing with the estimation of rainfall 
design values. As a general rule, small sized samples cannot correctly interpret the statistical 
properties of the population distribution. Hence, in order to evaluate the uncertainty of return period 
estimation in copula method when small data samples are used, each of the 90-year length time-series 
were divided into 3 sub-datasets and return periods for both univariate and bivariate models were 
calculated. The 100-year and 500-year return periods were selected for comparison, as they are often 
used as design variables in the construction of hydraulic structures. 
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3. Methodology 

This study’s primary objective is the application of the copula method and the evaluation of its 
results. Figure 1 presents the flow diagram of the methodology and shows the steps for rainfall 
frequency analysis from the three meteorological stations. The first step is the return period 
estimation for each variable (depth and storm duration) based on the typical univariate approach. 
Then, the dependence between the two variables of interest is assessed. This could be done either by 
visualizing dependence or by the performance of statistical tests. The Chi-plot and K-plot are the 
most common graphical tools for detecting dependence. The statistical tests of dependence were 
performed by computing Kendall’s correlation coefficient (Kendall’s tau) and both graphical 
methods were taken into consideration for better visualization of the results. 

 

Figure 1. Flow diagram of the methodology. 

After the dependence between the variables was evaluated, copulas from three different families 
were selected as candidate models. In the present work we considered only bivariate distributions 
and made use of Archimedean (Gumbel–Hougaard, Clayton, Frank, and Joe), extreme value 
(Gumbel–Hougaard and Tawn) and elliptical (Normal or Gaussian) models. The maximization of the 
pseudolikelihood, a generally applicable method which does not have limitations regarding the 
dependence parameter, was selected for estimating the model’s parameters for this study. The 
exclusion of non-admissible copulas was based to Cramér-von Mises statistic test, computed using a 
bootstrap procedure as described in Genest et al. [14]. Graphical tests for a visual description of the 
copula fitting and complementary analysis were also used. Finally, the (corrected) Akaike 
Information Criterion (AIC) [15,16], among the non-rejected copulas, determined the most appropriate 
model. 

After the choice of the most efficient copula model, the bivariate distributions needed to be 
constructed. A copula is a joint distribution function of standard uniform random variables able to 
connect univariate marginal distribution functions with the multivariate probability distribution, as 
stated in Sklar Theorem [9], as follows: 

Let FXY be a joint distribution function with marginals FX and FY. Then there exists a copula C 
such that: 

FXY (x, y) = C(FX (x), FY (y)) ,                             (1) 

for all reals x, y. If FX, FY are continuous, then C is unique; otherwise, C is uniquely defined on Range 
(FX) × Range (FY). Conversely, if C is a copula and FX, FY are distribution functions, then FXY given by 
Equation (1) is a joint distribution function with marginals FX and FY. 
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After modeling the bivariate distribution, the copula-based return periods were computed. In 
this study, the bivariate joint (primary) return periods, called OR operator, “∪” (union of events—either 
of the variables u and v exceed the defined thresholds) and AND operator “∩”  (intersection of 
events–both of the variables u and v exceed the defined thresholds) [5,10], were computed and are 
defined as follows: 𝑇௨,௩ைோ =  𝜇1 − 𝐶௨,௩(𝑢, 𝑣), (2) 𝑇௨,௩ே =  𝜇1 − 𝑢 − 𝑣 + 𝐶௨,௩(𝑢, 𝑣), (3) 

where u and v follow a uniform distribution U (0,1). The U denotes FX(X) and V denotes FY(Y) and 
they were constructed after applying the probability integral transform to X and Y, a transformation 
which allowed us to simplify our work by using an equivalent set of values which follow the standard 
uniform distribution. 

In comparison to the univariate return periods, the joint bivariate estimates are not unique, but 
instead, they have infinite combinations of values, described with the level curve. All pairs (u, v) that 
lie on the same level curve of the copula have the same return period T(p), however, these 
combinations of values for u and v have various probabilities of occurrence and can have significant 
differences from one another. For the purposes of the present study the most-likely design realization 
method [17] was used to select a unique return period. This method introduces a weighting function, 
which specifies the point over the critical layer with the greatest value of the joint probability density 
function fxy. It is also known as “typical” critical realization, and is described with the following 
equation: (𝑢, 𝑣) = 𝑎𝑟𝑔𝑚𝑎𝑥ᇣᇧᇤᇧᇥ(௨,௩)ୀ௧ 𝑓൫ 𝐹௫ି ଵ(𝑢), 𝐹ି ଵ(𝑣)൯, (4) 

where u and v depict the converted via the probability integral transform realizations of the marginal 
distributions FX and FY of the random variables X and Y. After the identification of the maximization 
point, the pair (u,v) was used in order for the exceedance probability to be calculated. As a final step, 
a comparison of the different return periods coming from univariate and bivariate analysis was 
performed in order to investigate the results of the copula method.  

4. Results 

4.1. Univariate Analysis 

After the selection of extreme events, a univariate rainfall frequency analysis was performed for 
annual maximum rainfall depths and corresponding storm durations. Different probability models, 
such as Generalized Extreme Values (GEV), Gumbel (EVI), and Generalized Pareto Distribution 
(GPD) for peak discharge and GEV, Gamma, Exponential, and Log-normal, were applied to the 
datasets. The distribution’s parameters were estimated with the help of maximum likelihood method, 
a method which will be as well used in the copula’s parameters estimation process [18]. Subsequently, 
the Kolmogorov–Smirnov Goodness-of-Fit and graphical tests were produced to select the 
distributions that produced an adequate fit to the data. Finally, AIC [15] values, among the non- 
rejected copulas, determined the most appropriate statistical model. In conclusion, the generalized 
extreme value distribution (GEV) was selected for modelling annual maximum rainfall depth and 
storm duration. Table 1 presents the results of the univariate approach for the Limassol 
meteorological station for the complete period of analysis and for the three subperiods. Finally, when 
the appropriate model was selected, the univariate return periods were calculated for 2, 5, 10, 25, 50, 
100, 200, and 500 years. 
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Table 1. Results of univariate and bivariate approaches for annual maximum rainfall depths and 
corresponding storm durations for the complete data period and the 3 sub-periods at Limassol Station. 

 1st Data Sample 2nd Data Sample 3rd Data Sample 4th Data Sample 
Years 1920-2010 1920-1950 1950-1980 1980-2010 
Number of Events 90 30 30 30 

Kendall’s tau 0.35 0.33 0.26 0.59 
Variable: Rainfall Depth 
Sampling Method AMS AMS AMS AMS 
Marginal Distribution GEV GEV GEV GEV 
Distribution 
Parameters (μ,σ,ξ) 

7.79, 3.47, -0.07 8.70, 3.39, -0.19 6.87, 2.82, 0.14 7.74, 3.80, -0.06 

Kolmogorov Smirnov 
Test (p>0.05) 

0.7835 0.9878 0.9412 0.8746 

Variable: Rainfall Duration 

Sampling Method 
Corresponding 

value 
Corresponding 

value 
Corresponding 

value 
Corresponding 

value 
Marginal Distribution GEV GEV GEV GEV 
Distribution 
Parameters (μ,σ,ξ) 

5.42, 2.65, -0.02 5.52, 2.89, -0.20 6.12, 2.85, -0.07 4.83, 2.18, 0.10 

Kolmogorov Smirnov 
Test (p>0.05) 

0.4212 0.5704 0.5942 0.6988 

Copula Model 
Gaussian 

(par = 0.54, tau = 0.36) 
Clayton 

(par=0.81, tau=0.29) 
Frank 

(par=2.34, tau=0.25) 
Gumbel 

(par=2.63, tau=0.62) 
Von Mises (bootstrap) 

(p>0.05) 
0.18 0.44 0.97 0.24 

4.2. Bivariate Analysis 

After the univariate analysis was performed, a formal assessment of the dependence between 
the pairs of the considered variables was tested with the help of the Kendall correlation coefficient. 
Histograms and a scatterplot of the Rainfall Depth (X)-Duration (Y) pair are presented in Figure 2a, 
in which a weak correlation between the two variables can be easily noticed. In the next step, the 
different copulas from the three families were fitted to X-Y pairs. The parameters of the copulas were 
estimated with the maximum pseudolikelihood method and the considered functions were 
compared with different goodness-of-fit tests. Table 1 shows the best copulas selected for the 
Limassol meteorological station for all sample periods. For example, for the complete period of 
analysis (1920–2010) the Gaussian copula with parameter = 0.54 was selected for the AMS sample, as it 
had the lowest AIC value, and at the same time had an adequate fit. The statistical test p-value was 
0.18 for the bootstrapped p-value of the goodness-of-fit test, using the Cramer-von Mises statistic 
(95% significance level). Furthermore, Figure 2b shows the graphical tests of the selected copulas for 
a sample size of 1000 simulations for the X-Y pair (Rainfall Depth–Duration). The Kendall‘s tau, 
extracted from the comparison between observed and simulated values, was 0.36 for the copula and 
for the actual data, indicating that the correlation of the real data was preserved in the copula. Similar 
results are observed for the other sub-periods and the other two meteorological stations (Larnaca and 
Nicosia). It should be mentioned that, in these two stations, lower correlations are observed between 
annual maximum rainfall depth and corresponding storm durations (Figure 2). 

After copula selection, the bivariate distribution function was constructed and the selected 
marginals were taken into consideration. Figure 3 illustrates the level curves for the bivariate return 
periods for the Limassol station and the complete data period of 90 years. Table 2 shows the derived 
joint return (primary) periods for the OR (union) and AND (intersection) cases, constructed following 
the Equations 2 and 3 and the most likely realization method, as described in Equation 4. The TOR and 
TAND joint return periods express the possible conditions of failure in case of having two variables 
which are considered important for design purposes. To be more comprehensive, the variables of 
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interest can either work together or simultaneously in order to cause failure. In case that the condition 
of failure is met when either or both rainfall depth (X) and rainfall duration (Y) variables exceed their 
threshold, the cooperative risk TOR should be taken into consideration. On the other hand, in case that 
failure occurs when both X and Y variables exceed their threshold simultaneously (or dually), the 
dual return period TAND needs to be calculated. The calculation of the two different joint return period 
cases is important as if the two variables X and Y can cooperate (OR case) then the marginal 
probabilities must be considerably higher. 

 

(a) (b) 

Figure 2. (a) A scatterplot matrix of the selected variables and their Kendall correlation coefficient for 
the study meteorological stations; (b) Comparison between the observed and simulated values (sample 
size 1000) (Rainfall Depth–Duration) for Frank (Larnaca) and Gaussian (Limassol and Nicosia) 
copulas for 1000 simulations, indicating an adequate fit between the simulating and observed values. 

 
The analysis of the samples at Limassol meteorological station showed that GEV distribution is 

the most appropriate for modeling both duration and rainfall depth. The parameters of the fitted 
distributions had differences from one another, and at the same time, Kendall’s correlation coefficient 
indicated that the last thirty years had a much stronger correlation (0.59) than the others 
(approximately 0.30). The copula models used were different in every sample and can be seen in 
Table 1. The return periods (not shown due to paper length limitations), have relatively small 
differences in the 100 year return period, whereas in the 500 year period there were differences in 
AND and OR cases, with values ranging from 9.94 to 25.05 and 21.74 to 40.05, respectively. 
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Table 2. Results of the Bivariate Return Periods 2, 5, 10, 25, 50, 100, 200 and 500 for Rainfall Depth and 
Storm Duration—Limassol meteorological station. 

Return Level (years): 2 5 10 25 50 100 200 500 
Rainfall Depth -  
dual (cm) 

7.58 10.83 13.10 16.65 18.94 20.98 22.70 25.05 

Rainfall Depth - 
cooperative (cm) 10.62 14.20 16.41 19.04 20.88 22.60 24.24 26.79 

Rainfall Duration - 
dual (d) 

5.19 7.61 9.12 9.88 10.22 10.50 10.98 11.61 

Rainfall Duration - 
cooperative (d) 

7.55 10.47 12.36 14.72 16.45 18.16 19.81 21.60 

 

 
Figure 3. Level curves for the bivariate return periods, white for cooperative risk TOR and black for 
dual risk TAND. The color range changes as the probability reaches from 0 to 1. U denotes FX(X) which 
represents the random variable from the marginal distribution of the rainfall depth values and V 
denotes FY(Y) which represents the random variable from the marginal distribution of the storm 
duration values. Each of the lines refer to a specific return period and the values on the two axes are 
equivalent to the probabilities of occurrence of the random variables X (annual maximum rainfall 
depths) and Y (corresponding storm durations), respectively. 

5. Concluding Remarks 

In the present study, a bivariate rainfall frequency analysis is performed using an extensive 
selection of bivariate copulas, as well as different statistical and graphical tests. Annual Maximum 
Series are followed in order to collect the data samples, and then the corresponding univariate and 
bivariate return periods are evaluated and compared.  

In total, the return periods obtained are in consensus with Salvadori et al. [5] who showed that 
the relationship between univariate and primary (bivariate) return periods can be written as TOR < TUNI 

< TAND. The correlation analysis in the two study variables confirms that a slight dependence exists 
between the extreme rainfall characteristics (rainfall depth and duration). It is worth noting that, even 
though the correlation pattern changes when different samples are selected, the return period 
estimates do not have significant differences.  

In conclusion, the existence of dependence among hydrological variables indicates the need for 
multivariate distributions to be constructed, especially when dealing with design values. As a result, 
more studies should be performed in order to investigate the importance of copula application in 
rainfall frequency analysis and the effect of sample size in design return periods.  



Proceedings 2019, 7, 19 8 of 8 

 

Author Contributions: N.S. applied the methodology and contributed in the writing of the manuscript; L.V. 
designed and supervised the study and wrote the manuscript; A.L. had the supervision of the study. 

Acknowledgments: The authors would like to thank the handling editor and the anonymous reviewers for their 
constructive and useful comments, which contributed to an improved presentation of the paper. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Zhang, L.; Singh, V.P. Bivariate rainfall frequency distributions using Archimedean copulas. J. Hydrol. 2007, 
332, 93–109, doi:10.1016/j.jhydrol.2006.06.033. 

2. De Michele, C.; Salvadori, G. A Generalized Pareto intensity-duration model of storm rainfall exploiting 2-
Copulas. J. Geophys. Res.-Atmos. 2003, 108, doi:10.1029/2002jd002534. 

3. Favre, A.C.; El Adlouni, S.; Perreault, L.; Thiémonge, N.; Bobée, B. Multivariate hydrological frequency 
analysis using copulas. Water Resour. Res. 2004, 40, W01101. 

4. Salvadori, G.; De Michele, C. Frequency analysis via copulas: theoretical aspects and applications to 
hydrological events. Water Resour. Res. 2004, 40, doi:10.1029/2004wr003133. 

5. Salvadori, G.; De Michele, C.; Kottegoda, N.T.; Rosso, R. Extremes in Nature. In An Approach Using Copulas; 
Springer: Dordrecht, the Netherlands, 2007; Volume 56, p. 292. 

6. Genest, C.; Favre, A.C. Everything You Always Wanted to Know about Copula Modeling but Were Afraid 
to Ask. J. Hydrol. Eng. 2007, 12, 347–368. 

7. Juri, A.; Wüthrich, M.V. Copula convergence theorems for tail events. Insur. Math. Econ. 2002, 30, 405–420. 
8. Papaioannou, G.S.; Kohnová, T.; Bacigal, J.; Szolgay, K.; Hlavčová, A.; Loukas, A. Joint Modelling of Flood 

Peaks and Volumes: A Copula Application for the Danube River. J. Hydrol. Hydromech. 2016, 64, 382–392. 
9. Sklar, A. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris 1959, 8, 229–

231. 
10. Gräler, B.; Vandenberghe, S.; Petroselli, A.; Grimaldi, S.; Baets, B.D.; Verhoest, N.E.C. Multivariate return 

periods in hydrology: A critical and practical review focusing on synthetic design hydrograph estimation. 
Hydrol. Earth Syst. Sci. 2013, 17, 1281–1296. 

11. Salvadori, G. Bivariate return periods via 2-copulas. Stat. Methodol 2004, 1, 129–144. 
12. Pashiardis, S. Compilation of Rainfall Curves in Cyprus; Meteorological Note No. 15; Meteorological Service, 

Ministry of Agriculture, Natural Resources and Environment: Nicosia, Cyprus, 2009. 
13. Hadjiioannou, L. Rainfall Intensities in Cyprus and Return Periods; Meteorological Note No. 16; 

Meteorological Service, Ministry of Agriculture, Natural Resources and Environment: Nicosia, Cyprus, 
1995. 

14. Genest, C.; Rémillard, B.; Beaudoin, D. Goodness-of-fit tests for copulas: a review and a power study. Insur. 
Math. Econ. 2009, 44, 199–213. 

15. Akaike, H. Information theory and an extension of the maximum likelihood principle. In Second 
International Symposium on Information Theory; Petrov, B.N., Csaki, F., Eds.; Academiai Kiado: Budapest, 
Hungary, 1973; pp. 267–281. 

16. Brunner, M.I.; Favre, A.C.; Seibert, J. Bivariate return periods and their importance for flood peak and volume 
estimation. Wiley Interdiscip. Rev. Water. 2016, 3, 819–833. 

17. Salvadori, G.; De Michele, C.; Durante, F. On the return period and design in a multivariate framework. 
Hydrol. Earth Syst. Sci. 2011, 15, 3293–3305. 

18. Salvadori, G.; Durante, F; Tomasicchio, G.R.; D’Alessandro, F. Practical guidelines for the multivariate 
assessment of the structural risk in coastal and offshore engineering. Coast Eng. 2014, 95, 77–83. 

 

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


