Abstract

Impact of Poly(ADP-Ribose) Polymerase (PARP) and Immune Checkpoint Inhibitor Combinations on the Viability of Triple-Negative Breast Cancer Cells †

Tusha Sharma and Kumarswamy Naidu Chitrala *

Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA; tsharma6@central.uh.edu
* Correspondence: kchitral@central.uh.edu
† Presented at the 3rd International Electronic Conference on Biomolecules, 23–25 April 2024; Available online: https://sciforum.net/event/IEMCBM2024.

Keywords: poly(ADP-ribose) polymerase (PARP); immune checkpoint inhibitor; triple negative breast cancer

Background: Breast cancer is one of the most common cancer types and the second most frequent one among women in the United States. Race plays a key role in the prevalence and prognosis of breast cancer, specifically in triple-negative breast cancer, with African American women being highly prevalent compared to white women. Material and Methods: MDA-MB-453 and 231 cell lines were cultured in RPMI-1640 media with 10% FBS. Upon 70–80% confluency, cells were treated with doxorubicin (2 μM for MDA-MB-453 and 1 μM for MDA-MB-231). After 24 h, sensitized cells were treated with inhibitors (Olaparib, O; Niraparib, N; Atezolizumab, A; durvalumab, D; and Pembrolizumab, P) alone as well as with different combinations at a concentration of 100 μM. The drug combinations include: O + N, O + A, O + D, O + P, N + A, N + D, N + P, D + A, A + P, and P + D. Statistical analysis was performed between the treatment groups using the one-way ANOVA. Results: Our results showed that MDA-MB-453 cells treated with the combinations O + N, O + A, O + D, N + A, N + D, N + P, and A + P showed a significant change in viability compared to the doxorubicin-treated group. Results showed that MDA-MB-231 cells, treated with the combinations O + N, O + D, N + A, N + D, N + P, A + P, and D + A, showed a significant change in viability compared to the doxorubicin-treated group. Conclusions: These findings indicate that the inclusion of these inhibitors, along with the chemotherapeutic drug, not only significantly affects the cell viability of breast cancer cells but also may be helpful in the better therapeutic regime and patient prognosis.

Author Contributions: Conceptualization, K.N.C.; data curation, T.S. and K.N.C.; formal analysis, T.S. and K.N.C.; funding acquisition, K.N.C.; project administration, K.N.C.; resources, K.N.C.; software, T.S. and K.N.C.; supervision, K.N.C.; validation, T.S. and K.N.C.; visualization, T.S. and K.N.C.; writing—original draft, T.S. and K.N.C.; writing, review and editing, T.S. and K.N.C. All authors have read and agreed to the published version of the manuscript.

Funding: Work on the manuscript and its revisions was supported by the National Institute on Minority Health and Health Disparities (NIMHD) of the National Institutes of Health (NIH) to the University of Houston under award number U54MD015946. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Institutional Review Board Statement: Ethical review and approval were waived for this study due to the usage of cell lines and the study did not involve experiments related to human subjects or animals.
Informed Consent Statement: Patient consent was waived due to the usage of cell lines and the study did not involve experiments related to human subjects or animals.

Data Availability Statement: All the data is provided in the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.