Abstract
Dielectric Analysis of Polypropylene-Based Composites Filled with Pyrolytically Stripped Pyrograf® III Carbon Nanofibers †

Najoia Aribou 1, Antonio Jose Paleo 2,* and Mohammed Essaid Achour 1

Abstract: In this study, pyrolytically stripped (PS) Pyrograf® III carbon nanofiber (CNF)/polypropylene (PP) composite films produced by a scalable melt-mixing method are used to investigate the effects of CNFs' weight concentrations on their dielectric properties. Unexpectedly, the electrical conductivity of PP/CNF composite films showed only a slight improvement with respect to pure PP, with values in the order of 10^{-8} S/m for PP/CNF composite films containing 5 wt.% CNFs. This increase corresponded to an improvement in the dielectric constant up to a maximum of approximately 9 at 1 MHz. This change was attributed to the polarization effect at the interface between the CNF agglomerates and the PP matrix. Moreover, the Cole–Cole model was employed to analyze the effects of CNF concentrations on the dielectric relaxation of PP/CNF composite films, revealing that the incorporation of carbon nanofibers (CNFs) not only increased the dielectric strength of the composites but also extended their relaxation times. These discoveries provide valuable insights into the mechanisms responsible for the dielectric properties of polymer composites produced with commercial carbon nanofibers (CNFs), thereby providing information for potential applications in the electronics arena. Additionally, understanding these mechanisms can pave the way for optimizing composite materials for diverse electronic applications. The results of this presentation have been published and can be consulted in previous work [1].

Keywords: polypropylene; carbon nanofibers; polymer composites; electrical conductivity; electrical modeling

Author Contributions: All authors of this manuscript contributed to the development of this work. A.J.P. conceived the study and contributed to formal analysis, data curation, and writing-the original draft preparation. N.A. and M.E.A. were responsible for electric analysis modeling and review writing. All authors have read and agreed to the published version of the manuscript.

Funding: A. J. Paleo gratefully acknowledges support from FCT-Foundation for Science and Technology by the project UID/CTM/00264/2021 of 2C2T under the COMPETE and FCT/MCTES (PIDDAC) co-financed by FEDER through the PT2020 program and “plurianual” 2020–2023 Project UIDB/00264/2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available and can be found at https://doi.org/10.3390/jcs6120368.

Conflicts of Interest: The authors declare no conflict of interest.
Reference

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.