Abstract
Development and Evaluation of a CO\textsubscript{2} Capture System Using Hollow Fiber Membranes for Industrial Emissions Applications †

Stephanie Arias-Lugo *†, Lucía Gómez-Coma ‡, Guillermo Díaz-Sainz ‡ and Angel Irabien ‡

Departamento de Ingenierías Química y Biomolecular, E.T.S de Ingenieros Industriales y de Telecomunicación, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain; lucia.gomezcoma@unican.es (L.G.-C.); guillermo.diazsainz@unican.es (G.D.-S.); angel.irabien@unican.es (A.I.)

* Correspondence: stephanie.arias@unican.es

Keywords: carbon capture; hollow fiber; polymeric membranes; CCUS; CO\textsubscript{2}/N\textsubscript{2} separation

Membrane technology has emerged as a selective and efficient option for carbon dioxide (CO\textsubscript{2}) capture. However, challenges arise in processing high industrial flows with the same effectiveness as mature technologies. Therefore, studying the process efficiency under real conditions is essential. Membranes of a polymeric nature are promising candidates for implementation on industrial scales.

In this context, this study aims to assess a CO\textsubscript{2} capture system using synthetic and real gases from the textile and cement industry on an experimental scale using a polysulfone hollow fiber membrane contactor, with the goal of developing a pilot-scale system. The experiments were conducted by varying parameters such as the pressure, CO\textsubscript{2} concentration and flowrate. As a result, higher permeate flux values were obtained at the maximum experimental concentration of 12% CO\textsubscript{2} in the feed stream, with a value of 472.54 cm3 cm-2 s-1.

Additionally, a CO\textsubscript{2} permeance value of 90.98 GPU was achieved along with a CO\textsubscript{2}/N\textsubscript{2} selectivity of 11.37; these values closely approach the Robeson upper bound.

Measurements conducted with gases from the textile industry with a CO\textsubscript{2} concentration of 0.5% reaffirmed the results obtained with synthetic gases of a low permeate flux. In contrast, measurements with gases from the cement plant showed promising results. Also, it was demonstrated that oxygen has a significant impact on the separation efficiency, as it competes with CO\textsubscript{2} for transport sites in the membrane, reaching concentrations of up to 40% compared to the 0.5% CO\textsubscript{2} concentrated in the permeate for textile gases.

In conclusion, tests conducted with gases at higher CO\textsubscript{2} concentrations, such as those from the cement industry, reaffirm the technical feasibility of CO\textsubscript{2} capture using commercial membranes. However, further research is recommended to explore alternative configurations and materials to improve the process purity and efficiency.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/proceedings2024105080/s1.

Funding: This research was funded by Spanish State Research Agency (AEI), through the project PLEC2022-009398 (MCIN/AEI/10.13039/501100011033 and Unión Europea Next GenerationEU/PRTR). The present work is also related to CAPTUS Project. This project has received funding from the European Union’s Horizon Europe research and innovation programme under grant agreement No. 101118265.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.