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Abstract: Many inference problems relate to a dynamical system, as represented by dx/dt = f (x),
where x ∈ Rn is the state vector and f is the (in general nonlinear) system function or model. Since
the time of Newton, researchers have pondered the problem of system identification: how should the
user accurately and efficiently identify the model f – including its functional family or parameter
values – from discrete time-series data? For linear models, many methods are available including
linear regression, the Kalman filter and autoregressive moving averages. For nonlinear models,
an assortment of machine learning tools have been developed in recent years, usually based on
neural network methods, or various classification or order reduction schemes. The first group,
while very useful, provide “black box" solutions which are not readily adaptable to new situations,
while the second group necessarily involve the sacrificing of resolution to achieve order reduction.
To address this problem, we propose the use of an inverse Bayesian method for system identification
from time-series data. For a system represented by a set of basis functions, this is shown to be
mathematically identical to Tikhonov regularization, albeit with a clear theoretical justification for
the residual and regularization terms, respectively as the negative logarithms of the likelihood and
prior functions. This insight justifies the choice of regularization method, and can also be extended to
access the full apparatus of the Bayesian inverse solution. Two Bayesian methods, based on the joint
maximum a posteriori (JMAP) and variational Bayesian approximation (VBA), are demonstrated for
the Lorenz equation system with added Gaussian noise, in comparison to the regularization method
of least squares regression with thresholding (the SINDy algorithm). The Bayesian methods are also
used to estimate the variances of the inferred parameters, thereby giving the estimated model error,
providing an important advantage of the Bayesian approach over traditional regularization methods.

Keywords: Bayesian inverse problem; dynamical systems; system identification; regularization;
sparsification

1. Introduction

Many problems of inference involve a dynamical system, as represented by:

d
dt

x(t) = f (x(t)), (1)
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where x ∈ Rn is the observable state vector, a function of time t (and/or some other parameters), and
f ∈ Rn is the (in general nonlinear) system function or model. Given a set of discrete time series
data [x(t1), x(t2), x(t3), ...] from such a system, how should a user accurately and efficiently identify
the model f ? In dynamical systems theory, this is referred to as system identification, although for
many problems of known mathematical structure, it can be simplified into a problem of parameter
identification. The question then leads into deeper questions concerning the purpose of the prediction of
f , and whether it is desired to reproduce a time series exactly, or more simply to extract its important
mathematical and/or statistical properties.

For linear models, many methods are available for identification of the dynamical system (1),
including linear regression, the Kalman filter and autoregressive moving averages. For nonlinear
models, an assortment of machine learning tools have been developed in recent years, usually based on
neural networks or evolutionary computational methods, or various classification or order reduction
schemes. The first group, while very useful, provide “black box" solutions which are not readily
adaptable to new situations, while the second group necessarily involve the sacrificing of resolution to
achieve order reduction.

Very recently, a number of researchers in dynamical and fluid flow systems have applied sparse
regression methods for system identification from time series data [e.g. 1–3]. The regression is used to
determine a matrix of coefficients which – when multiplied by a matrix of functional operations – can
be used to reproduce the time series. Such methods generally involve a regularization technique to
conduct the sparse regression. However, both the regularization term and its coefficient are usually
implemented in a heuristic or ad hoc manner, without much fundamental guidance on how they should
be selected for any particular dynamical system.

In this study, we present a Bayesian framework for the system identification (or parameter
identification) of a dynamical system using the Bayesian maximum a posteriori (MAP) estimate, which
is shown to be equivalent to a variant of Tikhonov regularization. This Bayesian reinterpretation
provides a rational justification for the choices of the residual and regularization terms, respectively as
the negative logarithms of the likelihood and prior functions. The Bayesian approach can be readily
extended to the full apparatus of the Bayesian inverse solution, for example to quantify the uncertainty
in the model parameters, or even to explore the functional form of the posterior. In this study, we
compare the prominent regularization method of least squares regression with thresholding (the
SINDy algorithm) to two Bayesian methods, by application to the Lorenz system with added Gaussian
noise. We demonstrate an advantage of the Bayesian methods, in their ability to calculate the variances
of the inferred parameters, thereby giving the estimated model errors.

2. Theoretical Foundations

In recent years, a number of researchers have implemented sparse regression methods for the
system identification of a variety of dynamical systems [e.g. 1–3]. The method proceeds from a
recorded time series, which for m time steps of an n-dimensional parameter x is assembled into the
m× n matrix:

X =

 x>(t1)
...

x>(tm)

 =

 x1(t1) . . . xn(t1)
...

...
x1(tm) . . . xn(tm)

 , (2)

and similarly for the time derivative:

Ẋ =

 ẋ>(t1)
...

ẋ>(tm)

 =

 ẋ1(t1) . . . ẋn(t1)
...

...
ẋ1(tm) . . . ẋn(tm)

 . (3)
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The user then chooses an alphabet of c functions, which are applied to X to populate a m× c matrix
library, for example of the form:

Θ(X) =
[
1 X X2 X3 . . . sin(X) cos(X) . . .

]
, (4)

in this case based on polynomial and trigonometric functions. The time series data for the dynamical
system (1) are then analyzed by the matrix product:

Ẋ = Θ(X)Ξ, (5)

in which Ξ is a c× n matrix of coefficients ξij ∈ R. The matrix Ξ is commonly computed by inversion
of (5) using sparse regression. This generally involves a minimization equation of the form:

Ξ̂ = arg min
Ξ

J(Ξ), (6)

where ˆ indicates an inferred value, based on an objective function consisting of residual and
regularization terms:

J(Ξ) = ||Ẋ −Θ(X)Ξ||αβ + λ||Ξ||αγ, (7)

where || · ||p is the p norm, λ ∈ R is the regularization coefficient and α, β, γ ∈ R are constants. For
dynamical system identification, (6)-(7) have been variously implemented with α ∈ {1, 2}, β = 2 and
γ ∈ {0, [1, 2]} [e.g. 2–6]. Instead of (7), to enforce a sparse solution, some authors have implemented
least squares regression with iterative thresholding, known as the sparse identification of nonlinear
dynamics (SINDy) method [1]:

J(Ξ) = ||Ẋ −Θ(X)Ξ||22 with |ξij| ≥ λ, ∀ξij ∈ Ξ. (8)

This has been shown to converge to (7) with α = β = 2 and γ = 0 [7]. Other authors have implemented
an objective function containing an information criterion, to preferentially select models with fewer
parameters [2]. The above methods have been shown to have strong connections to the mathematical
methods of singular value decomposition (SVD), dynamic mode decomposition (DMD) and Koopman
analysis using various Koopman operators [e.g. 8–10].

In the Bayesian approach to this problem [e.g. 11–13], it is recognized that instead of (5), the time
series decomposition should be written explicitly as:

Ẋ = Θ(X)Ξ + ε, (9)

where ε is a noise or error term, representing the uncertainty in the measurement data. The variables
Ẋ, X, Ξ and ε are considered to be probabilistic, each represented by a probability density function
(pdf) defined over their applicable domain. Instead of trying to invert (9), the Bayesian considers the
posterior probability of Ξ given the data, as given by Bayes’ rule:

p(Ξ|Ẋ) =
p(Ẋ|Ξ)p(Ξ)

p(Ẋ)
∝ p(Ẋ|Ξ)p(Ξ). (10)

The simplest Bayesian method is to consider the maximum a posteriori (MAP) estimate of Ξ, given by
maximization of (10):

Ξ̂ = arg max
Ξ

p(Ξ|Ẋ). (11)

For greater fidelity, it is convenient to consider the logarithmic maximum instead of (11), hence
from (10):

Ξ̂ = arg max
Ξ

[
ln p(Ξ|Ẋ)

]
= arg max

Ξ

[
ln p(Ẋ|Ξ) + ln p(Ξ)

]
. (12)
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If we now make the simple assumption of unbiased multivariate Gaussian noise with covariance
matrix Γ, we have:

p(ε|Ξ) = N (0, Γ) =
exp

(
− 1

2 εTΓ−1ε
)

√
(2π)n det Γ

, (13)

where det is the determinant. The numerator can be written as [13]

p(ε|Ξ) ∝ exp
(
−1

2
||ε||2

Γ−1

)
, (14)

where ||ε||2A = ε>Aε is the norm defined by the A bilinear product. From (9), this gives the likelihood

p(Ẋ|Ξ) ∝ exp
(
−1

2
||Ẋ −Θ(X)Ξ||2

Γ−1

)
. (15)

If we also assign a multivariate Gaussian prior with covariance matrix Σ

p(Ξ) = N (0, Σ) ∝ exp
(
−1

2
||Ξ||2

Σ−1

)
, (16)

then the MAP estimator (12) becomes [13]:

Ξ̂ = arg max
Ξ

[
ln exp

(
−1

2
||Ẋ −Θ(X)Ξ||2

Γ−1

)
+ ln exp

(
−1

2
||Ξ||2

Σ−1

)]
= arg max

Ξ

[
−1

2
||Ẋ −Θ(X)Ξ||2

Γ−1 −
1
2
||Ξ||2

Σ−1

]
= arg min

Ξ

[
||Ẋ −Θ(X)Ξ||2

Γ−1 + ||Ξ||2Σ−1

]
.

(17)

We see that the Bayesian MAP provides a minimization formula based on an objective function, which
is remarkably similar to that used in the regularization method (6)-(7). Indeed, for isotropic variances
of the noise Γ = σ2

ε I and prior Σ = σ2
Ξ I, where I is the identity matrix, (17) reduces to the common

regularization formula (6)-(7) with α = β = γ = 2 and λ = σ2
ε /σ2

Ξ [11].
In Bayesian inference, any additional parameters can also be incorporated into the inferred

posterior pdf. In the present study, the covariance matrices Γ of the noise in (14) and Σ of the prior
in (16) are unknown. It is desirable to determine these directly from the Bayesian inversion process.
Using the above simple model of isotropic variances, the posterior can be written as:

p(Ξ, σ2
ε , σ2

Ξ|Ẋ) ∝ p(Ẋ|Ξ)p(Ξ|σ2
Ξ)p(σ2

ε)p(σ2
Ξ). (18)

In the Bayesian joint maximum a posteriori (JMAP) algorithm, (18) is maximized with respect to Ξ, σ2
ε

and σ2
Ξ, to give the estimated parameters Ξ̂, σ̂2

ε and σ̂2
Ξ. In the variational Bayesian approximation

(VBA), the posterior in (18) is approximated by q(Ξ, σ2
ε , σ2

Ξ) = q1(Ξ)q2(σ
2
ε)q3(σ

2
Ξ). The individual

MAP estimates of each parameter are then calculated iteratively, using a Kullback-Leibler divergence
K =

∫
q ln(q/p) dΞdσ2

ε dσ2
Ξ as the convergence criterion.

3. Application

To compare the traditional and Bayesian methods for dynamical system identification, a number
of time series of the Lorenz system were generated and analyzed by several regularization methods,
including SINDy, JMAP and VBA. The Lorenz system is described by the nonlinear equation [14]:

dx
dt

= f (x) = [σ(y− x), x(ρ− z)− y, xy− βz]>, (19)
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with parameter values [σ, ρ, β] commonly assigned to [10, 8
3 , 28] to generate chaotic behavior with

a strange attractor. The analyses were conducted in Matlab 2018a on a MacBook Pro with 2.8 GHz
Intel Core i7, with numerical integration by the ode45 function, using a time step of 0.01 and total
time of 100. The calculated position data X were then augmented by additive random noise, drawn
from the standard normal distribution multiplied by a scaling parameter of 0.2. The regularization
processes were then executed using a modified version of the published SINDy code and other utility
functions [2], and modified forms of the JMAP and VBA functions implemented previously [11] with
parameters a0 = 108 and b0 = 10−8. For comparisons, the inferred parameters were then used to
recalculate the time series and derivatives by a further function call. In the Bayesian algorithms, the
estimated variances of the parameters and the prior were also calculated, assuming inverse gamma
distributions for the variance priors; for JMAP this has an analytical solution, while for VBA the
solution is found iteratively using a minimum Kullback-Leibler convergence criterion [11].

4. Results

The calculated noisy data for the Lorenz system are illustrated in Figure 1a,b, respectively for
the parameter values and their derivatives. The calculated regularization results are then presented
in Figures 2–4, respectively for the SINDy, JMAP and VBA methods. In each of these plots, the first
subplot illustrates the difference in each inferred parameter (i.e., ξij − ξ̂ij), while the second subplot
gives the inferred time series of the parameters X, showing the noisy time series x(t), the inferred
series x̂(t) and their differences.

As evident in these plots, the three methods were approximately as effective in selection of the
coefficients to recreate the Lorenz system. Of the other regularization methods published by [2], the
iterative hard thresholding least squares and orthogonal matching pursuit also performed well, while
the LASSO algorithm was unsuccessful for any system examined.

As noted, the two Bayesian methods also provided the variances of the predicted parameters,
shown in Figures 3a and 4a as error bars corresponding to the standard deviations. These
calculations indicate the inferred parameter errors to be larger than previously appreciated, for
example ±1.878× 10−10 in the coefficient of x in all three series predicted by both JMAP and VBA.
These values give a more realistic estimate of the inherent errors in the system identification method
than suggested by the SINDy regularization.
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Figure 1. Calculated noisy data for the Lorenz system: (a) parameters X, and (b) derivatives Ẋ.
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Figure 2. Output of SINDy regularization: (a) differences in predicted parameters ξij − ξ̂ij, and
(b) comparison of original and predicted time series X.
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Figure 3. Output of JMAP regularization: (a) differences in predicted parameters ξij − ξ̂ij (the error
bars indicate inferred standard deviations), and (b) comparison of original and predicted time series X
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Figure 4. Output of VBA regularization: (a) differences in predicted parameters ξij − ξ̂ij (the error bars
indicate inferred standard deviations), and (b) comparison of original and predicted time series X.

5. Conclusions

We examine the problem of system identification of a dynamical system, represented by a
nonlinear equation system dx/dt = f (x), from discrete time series data. For this, we present a
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Bayesian inference framework based on the Bayesian maximum a posteriori (MAP) estimate, which
for the assumption of Gaussian likelihood and prior functions, is shown to be equivalent to a variant
of Tikhonov regularization. This Bayesian reinterpretation provides a clear theoretical justification
for the choices of the residual and regularization terms, respectively as the negative logarithms of the
likelihood and prior functions. The Bayesian approach is readily extended to the full apparatus of the
Bayesian inverse solution, for example to quantify the uncertainty in the model parameters, or even to
explore the functional form of the posterior pdf.

In this study, we compare the regularization method of least squares regression with thresholding
(the SINDy algorithm) to two Bayesian methods JMAP and VBA, by application to the Lorenz system
with added Gaussian noise. The Bayesian methods are shown to perform almost as effectively as
SINDy for parameter estimation and reconstruction of the Lorenz time series. More importantly,
the Bayesian methods also provide the variances – hence the standard deviations – of the inferred
parameters, thereby giving a mathematical estimate of the system identification error. This is an
important advantage of the Bayesian approach over traditional regularization methods.
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