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Abstract: The entropy of the observable universe has been calculated as Suni ~ 10104 k and is 
dominated by the entropy of supermassive black holes. Irreversible processes in the universe can 
only happen if there is an entropy gap Δ𝑆 between the entropy of the observable universe Suni and 
its maximum entropy Smax: Δ𝑆 = Smax − Suni. Thus, the entropy gap Δ𝑆 is a measure of the remaining 
potentially available free energy in the observable universe. To compute Δ𝑆, one needs to know the 
value of Smax. There is no consensus on whether Smax is a constant or is time-dependent. A time-
dependent Smax(t) has been used to represent instantaneous upper limits on entropy growth. 
However, if we define Smax as a constant equal to the final entropy of the observable universe at its 
heat death, Smax ≡ Smax,HD, we can interpret T Δ𝑆 as a measure of the remaining potentially available 
(but not instantaneously available) free energy of the observable universe. The time-dependent 
slope dSuni/dt(t) then becomes the best estimate of current entropy production and T dSuni/dt(t) is the 
upper limit to free energy extraction. 
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1. The Entropy Gap and the Approach to ‘Heat Death’ 

Irreversible processes in the universe can only happen if there is a nonzero entropy gap 𝚫𝑺(𝒕) 
defined as the difference between the maximum entropy 𝑺𝒎𝒂𝒙 and present entropy of the observable 
universe 𝑺𝒖𝒏𝒊(𝒕): 𝚫𝑺(𝒕)  =  𝑺𝒎𝒂𝒙(𝒕? ) − 𝑺𝒖𝒏𝒊(𝒕) (1) 

where 𝑺𝒖𝒏𝒊 ≤ 𝑺𝒎𝒂𝒙 [1–3]. While it is clear that 𝑺𝒖𝒏𝒊 is a function of time and increases monotonically, 
it is unclear whether 𝑺𝒎𝒂𝒙 is a constant or time-dependent [4]. 

Before the advent of the current conventional 𝚲-CDM cosmological model, there was a sense in 
which the universe never reached a heat death [5], [Sec. VI D], Suni never reached Smax, and eternal life 
was possible [6]. However, in the 𝚲-CDM model (with 𝚲 = constant) any observable universe has a 

nonzero temperature known as the de Sitter temperature 𝑻𝒅𝒆𝑺 ~ 𝚲𝟏𝟐 produced by the cosmic event 
horizon [7]: 𝑻𝒅𝒆𝑺  =  𝟐. 𝟒 × 𝟏𝟎 𝟑𝟎 𝑲 (2) 

The current temperature of the cosmic microwave background TCMB = 2.7 K. Since 𝑻𝑪𝑴𝑩 ~ 𝟏𝒂. 
where a is the scale factor of the universe, as a increases 𝑻𝑪𝑴𝑩 →  𝑻𝒅𝒆𝑺 [8]. Thus, the background 
temperature of the universe will equal the de Sitter temperature when the universe is ~1030 times 
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bigger than it is now. This will be the heat death of the universe (Figure 1) when we will have at 
which point, irreversible processes (including life) will no longer be possible [9,10]. 𝚫𝑺(𝒕𝑯𝑫)  =  𝑺𝒎𝒂𝒙  −  𝑺𝒖𝒏𝒊  =  𝟎 (3) 

A heat death is expected to occur in the 𝚲-CDM universe at a time 𝒕𝑯𝑫 defined by the timescale 
for the evaporation of the largest black holes ~𝟏𝟎𝟏𝟎𝟎  years from now, when free energy has 
completely dissipated, and life is no longer possible [10] [Sec. IV D of 6].  

The availability of free energy allows for the creation and maintenance of far-from-equilibrium 
dissipative structures (e.g., stars, cyclones, life forms) [2,11,12]. The rate of free energy consumption 
(always accompanied by entropy production) compared to the available free energy determines the 
longevity of these structures [13].  

 
Figure 1. The CMB temperature is plotted alongside logarithmic scale factor and time. The 
temperature of the CMB is currently ~2.7 K and reaches the de Sitter temperature ~2.4 × 10−30 K at 𝟏𝟎𝟏𝟎𝟕 s (=𝟏𝟎𝟏𝟎𝟎  years). At this time all of the supermassive black holes have evaporated and their 
Hawking radiation has been red-shifted and diluted during the exponential expansion of the 𝚲-
dominated era. The dashed line is the 𝚲-dependent de Sitter temperature which we set equal to the 
Planck temperature during inflation. 

1.1. Estimating the Entropy Gap and Free Energy 

An estimate for the remaining free energy in the universe depends on the present value of 𝚫𝑺. 
The present entropy of the universe 𝑺𝒖𝒏𝒊  has been calculated in [1]. Quantifying 𝑺𝒖𝒏𝒊 usually 
involves a large representative comoving volume of the universe (typically a sphere) with 
approximately zero net flows of matter, energy, and entropy across its boundary, due to the large-
scale homogeneity of the universe [1]. The expansion of a homogeneous non-gravitationally bound 
fluid is isentropic [2,14,15]. Relativistic matter (i.e., CMB photons, relic neutrinos) dominates the 
entropy in non-gravitational degrees of freedom [1,15]. The entropy in gravitational degrees of 
freedom is dominated by the supermassive black holes that exist at the center of most galaxies [1]. 
The entropy of the comoving volume of the observable universe is of order 𝑺𝒖𝒏𝒊 ~ 𝟏𝟎𝟏𝟎𝟒 𝒌 [1]. 
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Another scheme to calculate 𝑺𝒖𝒏𝒊 includes the entropy of the cosmic event horizon (CEH) [1,7]. 
In this scheme, the representative volume is defined as the time-dependent CEH boundary which is 
not comoving and must account for the migration of entropy across the horizon [16]. The CEH 
entropy dominates the entropy budget of the universe when included, with 𝑺𝒖𝒏𝒊 ~ 𝑺𝑪𝑬𝑯 ~ 𝟏𝟎𝟏𝟐𝟐 𝒌. 
The two schemes detailed in [1] are different measures of 𝑺𝒖𝒏𝒊, both adhering to the Generalized 
Second Law 𝒅𝑺𝒖𝒏𝒊 ≥ 𝟎 (a version of the second law formulated to include contributions from black 
hole entropy) [17]. 

There is no suitable free energy equation that applies to irreversible processes out of equilibrium. 
The Gibbs and Helmholtz free energies apply to reversible processes with particular state variables 
held constant [1]. Exergy is a generalized version of this without constant state variables (Chapter 3 
of [18]).  

“Available work is the difference between the exergy of states 1 and 2; the exergy of a state being 
defined as the optimum work achievable against a final state which is one of equilibrium with the 
surroundings. It is shown that exergy so defined is not a unique quantity for a given system and state, 
because it also depends on the kind of interaction permitted and therefore on the kind of equilibrium 
achieved.” (p. 679 of [19]). 

Therein lies a second hurdle. There are no formal thermodynamic state variables that account 
for the gravitational field of a system. Since the greatest contribution to entropy increase (i.e., free 
energy dissipation) is the accretion of matter into black holes, we require some measure of the free 
energy available from gravitational contraction to understand the work that can be achieved from a 
transition to gravitational “equilibrium”. 

Nonetheless, the remaining free energy is available to us over the time it will take the totality of 
matter to transmute into photons (either through hydrogen burning in stars or black hole evaporation) 
and for those photons to cool with the expansion of the universe to the de Sitter temperature 
(Equation (2)) (over timescales ~𝒕𝑯𝑫). 

1.2. The Maximum Entropy at Heat Death—A Time-Independent Definition 

There is no consensus definition for the maximum entropy of the universe [5,20–24]. Two models 
have been identified: the entropy at heat death 𝑺𝒎𝒂𝒙,𝑯𝑫  taken as constant for all t, and a time-
dependent definition 𝑺𝒎𝒂𝒙(𝒕).  

The entropy gap between 𝑺𝒖𝒏𝒊(𝒕) and the maximum entropy achieved at heat death 𝑺𝒎𝒂𝒙,𝑯𝑫 is 
a general measure of available free energy at time t. The maximum has been defined as a constant 
over all time (Figure 2). This is endorsed by Penrose [11] who estimates it as close to the entropy of 
the largest possible black hole with the mass of the observable universe’s present matter content. The 
entropy is expected to increase by a factor of ~𝟒/𝟑 as black holes evaporate into photons [25].  
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Figure 2. The dashed lines refer to the competing models for maximum entropy. The maximum 
entropy achieved at heat death 𝐒𝒎𝒂𝒙,𝑯𝑫  is a constant value at 𝑺 ~ 𝟏𝟎𝟏𝟐𝟑 𝒌 . The time-dependent 
maximum 𝐒𝒎𝒂𝒙(𝒕), as described by Davies [22], considers which processes at a given point in the 
evolution can contribute to entropy increase. It does not account for the rate at which these processes 
can increase entropy but does try to account for the total amount of entropy the new entropy-
increasing processes could produce. The limits on the rate of entropy production will slow as the 
expansion of the universe prevents further accretion of mass onto supermassive black holes in the 𝚲-
dominated era. 

2. A Time-Dependent Definition of Maximum Entropy 

2.1. The Availability of Free Energy and Dyson’s Hang-Ups 

The free energy content measured using 𝑺𝒎𝒂𝒙,𝑯𝑫 is considered available for consumption over 𝒕𝑯𝑫. It is not instantaneously available at any time. Its use depends on cosmic evolution. For instance, 
one has to wait until inflationary expansion turns off for the resultant distribution of matter to 
gravitationally collapse and form structures. Hence the free energy from this structure formation is 
not “available” until inflation ends. However, this is not a strict enough condition on the availability 
of free energy. Even after structure formation begins, the rate at which the entropy can increase is 
limited by the virialization time of the over-densities in the early universe. Is the free energy available 
when the process becomes allowable (i.e., gravitational collapse)? Or is it constrained by the rate at 
which the process can occur (i.e., virialization)? 

Here is another example of this ambiguity. Hydrogen is only able to contribute to entropy 
increase at high enough temperatures within stars. Prior to star formation, this hydrogen is in a 
metastable equilibrium until gravitational collapse creates conditions that allow for quantum 
tunneling and nuclear fusion. Similar to the previous structure formation example, hydrogen fusion 
is the newly allowed process. However, the rate at which it can contribute to entropy increase is 
dictated by the star formation rate. From these examples we can see that 

max (𝒅𝑺𝒖𝒏𝒊𝒅𝒕 (𝒕))   𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 (4) 

In other words, at a given time t, if we compute the entropy gap as 𝚫𝑺(𝒕)  =  𝑺𝒎𝒂𝒙(𝒕𝑯𝑫) − 𝑺𝒖𝒏𝒊(𝒕) (5) 
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we cannot use this 𝚫𝑺(𝒕) as a measure of the free energy available at time t, because the dissipative 
structures (stars) or the background conditions (e. g. , 𝚲𝒊𝒏𝒇 ≫ 𝚲(𝒕 =  𝒏𝒐𝒘)) limit 𝒅𝑺𝒖𝒏𝒊𝒅𝒕 ( 𝒕). 

Dyson identified features of the universe that delay or limit 𝒅𝑺𝒖𝒏𝒊𝒅𝒕  as “hang-ups” [26]. Limits on 
structure formation can be construed as a size or density hang-up: the density of matter defines the 
free fall time required for gravitational collapse. If the density were higher (or the expansion of the 
universe slower), this free fall time would decrease, and the rate at which gravitational entropy could 
grow would be higher. Other hang-ups include the spin hang-up—physical limits on the ability to 
export angular momentum limit the collapse of large, spinning structures. The thermonuclear hang-
up ensures there is a period of hydrogen burning (in stars) that prevents further gravitational collapse, 
limiting the growth of gravitational entropy.  

Hang-ups describe limits on the rate of entropy increase in some important cosmological 
contexts. The idea of treating the constraints of fundamental physics as hang-ups to some more efficient 
contra-factual entropy production is not obvious. If Dyson’s hang-ups limit the rate of entropy increase, 
what rate are we to compare it to? Should it be compared to instantaneous dissipation? 

2.2. Davies’ 𝑆 (𝑡) 

According to Davies [22], an entropy gap opens in the early universe as constraints on the 
maximum entropy change (Figure 2). Davies suggests 𝑺𝒎𝒂𝒙(𝒕) increases after the end of inflation 
once structure formation becomes possible, and increases more quickly than 𝑺𝒖𝒏𝒊, thereby generating 
an entropy gap where previously (during inflation) the universe was evolving at maximum entropy 
[15]. Even though the second law demands a monotonic increase in 𝑺𝒖𝒏𝒊 following inflation [10,27], 
this does not have to mean the remaining free energy available decreases. If the growth of 𝑺𝒎𝒂𝒙(𝒕) 
exceeds the growth of 𝑺𝒖𝒏𝒊(𝒕), additional free energy becomes available due to the processes that 
could not previously occur (i.e., parts of the phase space that were not accessible) [11,20].  

During inflation, the universe remains at its maximum possible 𝑺𝒎𝒂𝒙(𝒕): a de Sitter universe 
with large 𝚲𝒊𝒏𝒇 . When inflation ends and particles are distributed homogeneously, able to 
gravitationally collapse, Davies suggests an entropy gap opens between the potential gravitational 
entropy of matter and the actual gravitational entropy of matter at the time. The jump from a state of 
equilibrium during inflation to one out of equilibrium following inflation is explained by the non-
conservation of energy since the energy density of the vacuum does not decrease as the universe inflates. 
This non-diluted energy is then dumped into the universe as matter and radiation during reheating. 

According to Davies, the maximum entropy is set only for a particular energy—if this total 
energy changes the maximum can then change. In this case, the additional energy comes from the 
inflaton field driving inflation which generates a tremendous potential entropy in matter but reduces 
the entropy in gravitational degrees of freedom. The total entropy does not decrease but is “out of 
step” with the maximum. The universe is now able to increase its gravitational entropy 𝑺𝒈𝒓𝒂𝒗,  as per 
the Penrose picture [11,28]. Collapsing matter increases 𝑺𝒈𝒓𝒂𝒗,  which reaches a maximum when 
black holes form. The total entropy increases once a black hole evaporates, but the gravitational 
entropy decreases.  

Accounting for “frozen out” degrees of freedom which do not contribute to the increase in 
entropy, Davies accounts for the frozen out gravitational degrees of freedom during inflation which 
become available after reheating, raising the (time-dependent) ceiling (i. e. , 𝑺𝒎𝒂𝒙) on entropy increase.  

Davies accounts for some of the entropy-increasing processes becoming physically realizable at 
a particular time, but not the realistic time frames over which they can actually be realized. He is 
ignoring 𝒅𝑺𝒖𝒏𝒊𝒅𝒕 , and defining 𝑺𝒎𝒂𝒙(𝒕) by considering only the “allowable” process and not how it 

relates to 𝒅𝑺𝒖𝒏𝒊𝒅𝒕 .  Citing Frautschi’s model [12], Davies may be considering gravitational collapse 
within a causal region of size 𝑹 ~ 𝒕, or the transmutation of matter to CMB blackbody radiation 
[11,29]. Regardless, Davies’ 𝑺𝒎𝒂𝒙(𝒕)  assumes the maximum entropy state can be achieved 
instantaneously once a given process becomes “entropically favorable” [22]. 

Davies suggests a second gap opens when primordial hydrogen previously able to maintain 
thermal equilibrium cools with the expansion of the universe. It becomes favorable for the hydrogen 



Proceedings 2020, 46, 11 6 of 8 

 

to synthesize into the more stable (higher entropy) iron, raising the ceiling on 𝑺𝒎𝒂𝒙(𝒕). The same 
assumption of instantaneous entropy production applies—the time scales involved in the formation 
of stars and hydrogen burning are not considered important. As soon as the potential increase in 
entropy becomes physically possible, the entropy gap is open. 

2.3. Time-Dependent Maximum Entropy vs. Time-Dependent Entropy Production Rate 

The maximum entropy at heat death is a mathematically accurate representation of the large-
coarse-grained volume of the universe’s phase space. However, it provides no information on how 
the universe will dynamically evolve to reach maximum entropy. Davies attempts to account for 
parts of this evolution by invoking a time-dependent maximum entropy that increases once 
particular dissipative processes are possible. If the entropy gap is a good measure of free energy, this 
suggests the free energy available from a given process over the time it takes for the process to occur 
is said to be “available” as soon as the process begins.  

It is more accurate to say that the available free energy depends on constraints on the slope 𝒅𝑺𝒖𝒏𝒊𝒅𝒕  

rather than on a time-dependent 𝑺𝒎𝒂𝒙(𝒕)  with no consideration of 𝒅𝑺𝒖𝒏𝒊𝒅𝒕 . A consequence of this 
approach is then, if in a universe with life that consumes free energy earlier and more quickly than 
one without, is the maximum value of 𝒅𝑺𝒖𝒏𝒊𝒅𝒕  different in these two universes? Moreover, waiting to 
use the available free energy at later times when the background temperature is closer to the de Sitter 
temperature (i.e., a lower equilibrium exhaust temperature) will allow for a greater proportion of the 
available free energy to be used: 

“Whenever a system operates irreversibly, it destroys work at a rate that is proportional to the 
system’s rate of entropy generation.” [30]. 

The constant of proportionality in this case is the exhaust temperature T, with the rate at which 
work is lost is given by 𝒅𝑾𝒅𝒕  =  𝑻 𝒅𝑺𝒅𝒕  (6) 

If life can slow the rate of 𝒅𝑺𝒅𝒕 and wait for T to drop to lower values, it can minimize the lost 
work (Equation (6)) and maximize the amount of work achievable over 𝒕𝑯𝑫 [30].  

3. Cut-Off of Structure Growth Constrains the Rate of Entropy Production 

3.1. Decoupled Evolution of Gravitationally-Dominated Systems 

Following inflation and reheating, gravitational entropy can increase while constrained by 
Dyson’s hang-ups until structure formation turns off during the 𝚲-dominated phase of a 𝚲 − 𝑪𝑫𝑴 
universe. The exponential expansion prevents uncollapsed matter from contracting, limiting increase 
in gravitational entropy. The collapsed matter is effectively decoupled from the expansion and can 
continue to increase 𝑺𝒈𝒓𝒂𝒗 internally [31]. These structures evolve independently of the expansion. 
Ordinarily, collisions between bound structures produce larger structures that further increase 
gravitational entropy. This resembles the interaction rate between particles that maintain equilibrium 
during expansion. During 𝚲-domination, these collisions become increasingly rare, and hence bound 
structures can internally increase their 𝑺𝒈𝒓𝒂𝒗  (local gravitational entropy), but cannot interact 
externally with other bound objects to increase 𝑺𝒈𝒓𝒂𝒗 globally. Here, as with inflation, gravitational 
collapse turns off when 𝚲 is turned on (Figure 3). 
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Figure 3. Following the growth of size for a spherical distribution of matter. Dotted lines describe the 
virialization of structure by gravitational collapse. Dashed line: A flat Ω = 1 universe in which 
structure formation does not turn off. Solid line: The consensus Λ − 𝐶𝐷𝑀  universe in which 
structure formation turns off, with the largest objects on the order of galaxy clusters ~5 Mpc, having 
already formed. 

3.2. Limits on Structure Growth as a Constraint on  𝚲-dominated expansion may represent a freeze-out for gravitationally bound structures, which 
could be viewed as “degrees of freedom” that could (during earlier epochs) “equilibriate” 
gravitationally (i.e., achieve a maximum gravitational entropy), increasing the total gravitational 
entropy. For relativistic particles at equilibrium, the expansion of the universe is isentropic. If the 
expansion rate overtakes the interaction rate between degrees of freedom, they decouple and can no 
longer maintain equilibrium [11]. Gravitationally bound objects (e.g., galaxy clusters), treated as 
individual degrees of freedom, cannot reach maximum gravitational entropy because the expansion 
rate overtakes their interaction rate (defined by the frequency of collisions between bound structures).  

Thus, larger objects can no longer form and structure growth turns off in a 𝚲-dominated phase 
of a 𝚲 − 𝐂𝐃𝐌 universe—a restriction on the rate of entropy increase (Figure 3) [32]. The acceleration 
of the expansion of the universe shuts off the flow of accreting matter into larger and larger objects 
and this sets a limit on the size (and thus entropy) of the largest black holes. The entropy must then 
increase via evaporation, which is a much slower process.  

4. Conclusions 

The entropy gap 𝚫𝑺  is a measure of the amount of available free energy. However, not all free 
energy is available at all times. The closing of the entropy gap depends on cosmic evolution and the 
dissipative structures that are produced. Two definitions of the maximum entropy (and by extension 𝚫𝑺) have been identified. The first is a constant defined as the entropy at heat death 𝑺𝒎𝒂𝒙,𝑯𝑫. The 
second is time-dependent 𝑺𝒎𝒂𝒙(𝒕), suggested by Davies, which accounts for changes in constraints 
(e.g., the new potential for gravitational collapse following inflation) that increase the ceiling on the 
maximum entropy at a given time. Davies neglects constraints on the rate of entropy increase 𝒅𝑺𝒖𝒏𝒊𝒅𝒕  and assumes the entropy gap can be closed instantaneously. We suggest the 𝚫𝑺 calculation 

should include limits on the rate of entropy growth 𝒅𝑺𝒖𝒏𝒊𝒅𝒕 . This removes the need for an 𝑺𝒎𝒂𝒙(𝒕) since 

constraints on 𝒅𝑺𝒖𝒏𝒊𝒅𝒕 (𝒕) capture which processes are allowable in the universe as well as the rate at 
which these generate entropy (i.e., decrease free energy). One such constraint is the turn-off of 
structure formation during 𝚲-domination, thus limiting the growth of gravitational entropy. 
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