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Abstract: Snow is one of the most important sources of water in most parts of the world, supplying
approximately a third of the water needed for agricultural activities, drinking, and underground
water sources. The runoff caused by melted snow can be destructive, and the high volume of snow
can lead to an avalanche; therefore, it is important to estimate it. The area of the snow research
is around Goose Lake in California, USA, where the ground snow measuring station is (Latitude:
41.92999, Longitude: −120.4168117). The snow can be measured and calculated using the daily
satellite imagery of the Landsat for a period of five years (2017–2022) for approximately four months
(December–March) (total of approximately 40 images). The information from ground snow measuring
stations was used to evaluate the final results. The accuracy assessment shows 76% accuracy.

Keywords: remote sensing; snow depth; Landsat images; NDSI Index; snow cover fraction

1. Introduction

Snow is a mixture of ice crystals and water. Snow covers up to 53% of the Earth’s
surface in the Northern Hemisphere and up to 44% of the Earth’s surface in the Southern
Hemisphere throughout the year. (The country of the United States of America, which
is the region studied in this article, is located in the northern hemisphere) [1]. At least
one-third of the water used to irrigate agricultural lands in the world comes from runoff
caused by the melting of fallen snow. Today, the effects of snow and the resulting runoff
have become more important due to the impact this has on agriculture and its products, in
addition to causing floods and avalanches. When it snows, this can freeze agricultural crops
and the fertile soil of the region, during which the soil loses its fertility and destroys the
agricultural crops. For these reasons, if the amount of snowfall in a region is estimated, and
according to algorithms and patterns, the area and the amount of snowfall in the desired
area is estimated, it can help farmers in a matter of days and even in the same timeframe.
Next year, necessary and preventive measures should be taken to prevent the destruction
of agricultural products and soil [2,3].

Snow cover, a significant component of the icy realm known as the cryosphere, holds
remarkable influence over Earth’s climate system. It affects the distribution of energy on
the surface, impacts the water cycle, influences primary productivity, and even plays a
role in the exchange of gases at the surface. Additionally, snow cover serves as a valuable
indicator of climate change, as its accumulation and melting patterns closely correlate with
temperature variations [4].

Other effects of snow and runoff include floods and avalanches. When it snows, sur-
veyors can estimate the probability of an avalanche by using sensor images taken from that
area at certain hours and days and calculating the area and volume of snow. Additionally,
by calculating the amount of runoff produced from snow, they can predict the probability

Proceedings 2023, 87, 36. https://doi.org/10.3390/IECG2022-13961 https://www.mdpi.com/journal/proceedings

https://doi.org/10.3390/IECG2022-13961
https://doi.org/10.3390/IECG2022-13961
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/proceedings
https://www.mdpi.com
https://orcid.org/0000-0002-7552-5392
https://sciforum.net/event/IECG2022
https://doi.org/10.3390/IECG2022-13961
https://www.mdpi.com/journal/proceedings
https://www.mdpi.com/article/10.3390/IECG2022-13961?type=check_update&version=1


Proceedings 2023, 87, 36 2 of 9

and volume of floods. Snow depth can provide quantitative information about snow
material and energy. Snow depth measurement methods based on station observations
are highly accurate; however, these methods cannot present the spatiotemporal changes in
snow depth in the observation stations because the observation stations are often sparse.
The ability to access vast databases using remote sensing data has provided a fast and
effective way to continuously monitor snow depth in all weather conditions and with high
time resolution [5].

In the field of remote sensing, it is assumed that electromagnetic radiation from snow
has a direct relationship with the depth of snow. Different methods have been provided
to estimate the depth of snow. Tang et al. [6] have developed an algorithm that depends
on a linear relationship between snow depth and temperature brightness. This algorithm
was improved by various researchers; for example, Foster considered foster and terrain
parameters to improve snow depth. Kim et al. [5] used Landsat and MODIS images
to estimate snow depth. In their proposed method, several functions were analyzed to
investigate the relationship between snow depth and snow cover fraction. The utilization
of MODIS (Moderate Resolution Imaging Spectroradiometer) snow cover products has
become prevalent in regional snow cover studies and modeling endeavors. These products
offer daily, freely accessible data with a global reach, encompassing a medium spatial
resolution. Despite their popularity, it’s important to note that certain applications may
encounter challenges due to potential cloud cover that can obscure the observations [7,8].

Due to the mentioned reasons, for the continuous and accurate monitoring of the
amount of snowfall and the calculation of the resulting runoff, there is a need for satellite
images with a not-very-long sensor return period and with high resolution. Additionally,
the purpose of using satellite images is to receive and extract information regarding snow
parameters; a sensor whose images include thermal bands should be used so that snow-
covered areas can be distinguished and extracted from other areas. One of the famous
sensors suitable for processing snow-covered images is the Landsat 8 sensor, and its return
period is 16 days [9–14].

Using the NDSI index and the NDVI index, the normalized index of the difference
and changes in snow cover and vegetation, on Landsat sensor images, the snow surface is
determined in the photo without cloud cover. The desired image prepared in this project is
a satellite image that was taken from the United States of America, the city of California,
and near Goose Lake in 4 months (December–March) from 2017 to 2022, and it has snow
cover. The image used in this article is from the second series of Landsat sensor products
(which are in the form of 16-day periods).

2. Data and Study Area
2.1. Study Area

Goose Lake region in latitude 41.92999 and longitude −120.4168117 has been selected
as the study area (Figure 1). The time selected for this study is from 2017 to 2022. This
region is located at latitude 41.92999; as a result, it is a region that is considered one of the
cold regions and, due to weather conditions, snow cover is seen in this region.
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Figure 1. Goose Lake map.

2.2. Data

This study used remotely sensed and in situ datasets. Remotely sensed data comprise
Landsat8-TM (spatial resolution 30 m), acquired from 2017 to 2022, obtained through
the google earth engine platform. Table 1 shows additional information on the remotely
sensed dataset.

Table 1. Satellite data description.

Satellite Acquired Time from-to

Landsat8/TM From 12/2017 to 03/2022

In situ snow depth observations were acquired from the USDA (U.S. Department of
Agriculture). There are four stations in the mentioned study area. Table 2 describes the
information of in situ data (Figure 2).

Table 2. In situ dataset description.

Station Name Lat/long Time

Crowder Flat 41.89/−120.75 From 12/2017 to 03/2022
Dismal Swamp 41.99/−120.18 From 12/2017 to 03/2022

State Line 41.99/−120.72 From 12/2017 to 03/2022
Strawberry 42.13/−120.84 From 12/2017 to 03/2022
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Figure 2. Ground station distribution map from USDA website (https://www.nrcs.usda.gov/).

3. Methodology

The conceptual model of the proposed method is presented according to the flowchart
in Figure 3.
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In this method, first, Landsat images related to December, January, February, and
March of 2017 to 2022, which had less than 10% cloud cover, were downloaded. Then, their
NDSI images were calculated according to the following equation:

NDSI =
Green band − SWIR band
Green band + SWIR band

(1)

In this equation, Green band and SWIR band, respectively, correspond to bands 3 and 6
of Landsat 8 image. NDSI measures the relative value of the reflectance difference between
the Green and SWIR bands and controls the variance between the two bands, which is
useful for the field of snow mapping. Snow is not reflective only in the visible range,
and it also has high absorption in NIR or SWIR. This parameter is considerably helpful in
separating between clouds and snow. Another parameter used in this study to estimate
snow depth is NDVI. NDVI is an index sensitive to vegetation and due to the existence of
vegetation in the region, it can be important for separating snowy areas.

The NDVI index is calculated according to the following equation:

NDVI =
NIR band − R band
NIR band + R band

(2)

In this equation, the NIR band and R band, respectively, correspond to bands 4 and 5
of Landsat 8 image. According to the calculated NDSI and NDVI images of two regions
for different times, SCF was produced by the formula presented in the article “Mapping
Snow Depth Using Moderate Resolution Imaging Spectroradiometer Satellite Images:
Application to the Republic of Korea”, which combines NDVI and NDSI to build a snow
cover map [15,16].

SCF =



0.58e−23.1(NDSI−0.68)2
+ 0.42e−286.68(NDVI−0.06)2

NDSI ≤ 0.68, NDVI ≥ 0.06
0.58e−23.1(NDSI−0.68)2

+ 0.42
NDSI ≤ 0.68, NDVI < 0.06

0.58 + 0.28e−286.68(NDVI−0.06)2

NDSI > 0.68, NDVI ≥ 0.06
1

NDSI > 0.68, NDVI < 0.06

(3)

After calculating SCF, the relationship between snow depth and SCF is estimated.
According to the studies, the relationship between snow depth and SCF is an exponential
relationship or linear form; therefore, it is necessary to investigate an exponential function
and linear function for this purpose according to Formulas (4)–(6).

Snow Depth = a × (SCF) + b (4)

Snow Depth = a × exp (b × SCF) (5)

Snow Depth = a × exp (b × SCF) + c × exp (d × SCF) (6)

To calculate the a, b, c, d unknown parameters of Equations (4)–(6), equivalent values
of ground stations are used. The 30 pieces of information related to three stations were
used to calculate the coefficients α and β and the information about the station and 50 other
pieces of information about stations were used to evaluate the accuracy. For accuracy
evaluation, the RMSE parameter is used, which provides the difference between the values
at the station and the calculated values.

In the next step, to calculate snow depth, SCF, NDSI and NDVI were applied to
estimate equivalent snow water in the study area. A multi-layer perceptron was applied to
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create a relationship between the aforementioned parameters. Figure 3 shows a schematic
presentation of the proposed method. A multilayer perceptron is a fully connected class of
feedforward artificial neural networks. If a multilayer perceptron has a linear activation
function in all neurons, that is, a linear function that maps the weighted inputs to the output
of each neuron, then linear algebra shows that any number of layers can be reduced to a
two-layer input–output model. Learning occurs in the perceptron by changing connection
weights after each piece of data is processed, based on the amount of error in the output
compared to the expected result.

4. Results

According to the proposed method, the outputs of NDVI, NDSI, SCF and snow depth
related to March of 2021 are shown in Figure 4.
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Figure 4. NDSI, NDVI, SCF, snow depth images from March 2021.

Table 3 shows some of the training data in order to clarify the estimation problem. In
this Table, snow depth in situ data provided are from the USDA website and considered as
a reference criterion to calculate accurate equation models related to calculated snow cover
fraction (Equations (4)–(6)).

Based on the investigation, the linear and exponential relationship between in situ
snow depth and calculated snow cover fraction (figure) was calculated using 30 corre-
sponding data, and the value of a, b, c and d is estimated using the least squares method.
Equations (7)–(9) indicate the estimated formulas for linear, first-order exponential function
and second-order exponential function, respectively.

Snow depth = a × (SCF) + b
a = 5.426

b = −0.0113
(7)
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Snow Depth = a × exp (b × SCF)
Coefficients (with 95% confidence bounds):

a = 0.3699 (0.2377, 0.5021)
b = 4.159 (3.364, 4.953)

(8)

Snow Depth = a × exp (b × SCF) + c × exp (d × SCF)
Coefficients (with 95% confidence bounds):

a = −6.95 (−6.95, −6.95)
b = −4.326 × 10−6 (−1.9 × 10−5, 1.035 × 10−5)

c = 6.95 (6.95, 6.95)
d = 0.67 (0.67, 0.67)

(9)

Table 3. The example of some training data to compute relationship between snow depth and SCF.

Station Id Station
Name NDVI NDSI Latitude Longitude Snow Depth

(In Situ)
SCF

(Calculated)

977 Crowder Flat 0.5274 −0.587 41.89 −120.75 2.75 × 10−5 5.91 × 10−6

977 Crowder Flat 0.06 −0.477 41.89 −120.75 2.258635 0.42

977 Crowder Flat 0 −013 41.89 −120.75 2.258635 0.42

446 Dismal
swamp 0.26 −0.771 41.99 −120.18 2.05 × 10−5 4.40 × 10−6

446 Dismal
swamp 0.195 −0.327 41.99 −120.18 0.010533 0.00226

446 Dismal
swamp 0.258 −0.015 41.99 −120.18 6.42 × 10−5 1.38× 10−5

In order to evaluate the estimated parameters of 50 in situ snow depth data, the
corresponding snow cover fraction was used to calculate root mean square error (RMSE).
According to the result the RMSE for linear function is equal to 0.0166 m, which is an accept-
able value. The RMSE for first-order exponential function (Equation (8)) is equal 0.2502 m.
Additionally, the RMSE for second-order exponential function is equal to 1.86 × 10−8 m.

According to the results, the second-order exponential function provides a better result
compared to the linear and first-order exponential functions. Figure 5 shows the fitness
of the second-order exponential function on the input data. The figure also shows the
optimized curve for exponential fits based on the current dataset.
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After calculating snow depth, an artificial neural network with three layers (input,
hidden and o output layer) was defined to estimate the equivalent water (snow depth
water). The input layer includes four neurons (NDVI, SCF, NDSI, Snow Depth), the hidden
layer includes three neurons and the output layer includes one neuron that corresponded to
the equivalent snow water. Sigmoid function was set as the activation function and different
learning rate, epoch number and hidden layer ‘s neurons tested the sensitivity analysis
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of the proposed network. According to the results, the RMSE was equal to 0.32069, 0.309,
0.3918, 0.27, 0.273, 0.543, 0.257, 0.251 m for the 0.3, 0.6, 0.1, 0.7, 0.8, 0.01, 0.9, 0.95 learning
rates, respectively. According to the results, the learning rate set equal to 0.95 show better
results. In the next step, the epoch numbers were tested to select the optimum epoch
numbers. The RMSE was equal to 0.246, 0.246, 0.245, 0.247 m for 4, 6, 10, 20 epoch numbers,
respectively. The results show stability against different epoch numbers. When the neurons
of hidden layer are set to 1, the RMSE is equal to 0.247 m; if the neurons equal 2, the RMSE
is 0.243; and if the neurons equal 3, the RMSE is 0.242 m. The results are stable for the
number of neurons in the hidden layer and the number of epochs.

5. Conclusions

The paper proposed the snow depth parameter calculation based on the snow cover
faction parameter. Snow cover fraction was calculated using NDVI and NDSI index.
According to the results, the second-order exponential function shows the best fitness
between calculated snow depth and ground station snow depth. The equivalent water (run
off) can be estimated based on NDVI, NDSI, SCF and snow depth parameters. The artificial
neural network is considered a powerful method to investigate the relationship between
these parameters.
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