Abstract

More Thorough Mastication of Bread May Stimulate Early-Phase Insulin Release: Preliminary Associative Results from a Double-Blind Randomized Controlled Trial †

Georgia Chatonidi *, Boushra Dalile and Kristin Verbeke

KU Leuven, 3000 Leuven, Belgium; kristin.verbeke@kuleuven.be (K.V.)
* Correspondence: georgia.chatonidi@kuleuven.be

Abstract: Background and objectives: Oral processing behavior is suggested to modulate metabolic responses to foods. In this study, we examined the impact of variations in oral processing characteristics during bread consumption on appetite and postprandial metabolic responses. Methods: Thirty healthy, normal-weight participants consumed three types of bread, differing in the leavening agent, in a randomized cross-over trial, while being video recorded to determine specific oral processing behaviors. At each study visit, gastric emptying, subjective appetites, and glucose and c-peptide levels were measured at regular time points for 4 h. After 4 h, the ad libitum energy intake was measured. The average values of each outcome were calculated to derive a single characteristic value per participant across the three types of bread. Results: A Spearman’s correlation analysis showed that the participant age was associated with a faster eating rate ($r = 0.562, p = 0.001$), a shorter oral exposure time ($r = −0.569, p = 0.001$), and less chews/bites ($r = −0.387, p = 0.034$). As expected, a slower eating rate was correlated with more chews per bite ($r = −0.603, p < 0.001$). Surprisingly, higher hunger ratings before bread consumption were associated with a smaller bite size ($r = −0.518, p = 0.003$). More chews/bites were associated with a higher AUC of C-peptide during the first 30 min after consumption ($r = 0.398, p = 0.036$). Oral processing behavior did not correlate with appetite, the energy intake in the subsequent meal, gastric emptying, or the glucose response ($p > 0.05$) to bread. However, slower gastric emptying was associated with a lower glucose AUC$_{30\text{min}}$ ($r = −0.453, p = 0.015$) and c-peptide AUC$_{30\text{min}}$ ($r = −0.631, p < 0.001$). Discussion: Although, overall, the metabolic responses to bread consumption were not affected by oral processing, thorough mastication of bread stimulated the cephalic phase of digestion, resulting in early release of insulin. This is in line with the existing literature, according to which anticipatory sight, smell, and taste of food can initiate the cephalic phase of insulin secretion, which is further enhanced by chewing and swallowing the food. However, the importance of the cephalic phase insulin release in overall glucose regulation is still unclear. Further research is needed to investigate to what extent and according to which mechanisms natural variations in oral processing can affect postprandial metabolic responses to food.

Keywords: oral processing behavior; mastication; appetite; food intake; glycemic response; insulin

Author Contributions: Conceptualization, G.C. and K.V.; methodology, G.C. and K.V.; software, G.C.; validation, G.C., B.D. and K.V.; formal analysis, G.C., B.D. and K.V.; investigation, G.C. and K.V.; resources, K.V.; data curation, G.C., B.D. and K.V.; writing—original draft preparation, G.C.; writing—review and editing, G.C., B.D. and K.V.; visualization, G.C.; supervision, K.V.; project administration, G.C. and K.V.; funding acquisition, K.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by VLAIO (Flanders), Grant No: HBC.2019.0104.
Institutional Review Board Statement: The study was conducted in accordance with the Declaration of Helsinki, and approved by the Ethical Committee of KU Leuven/UZ Leuven (S64824, 14/01/2021).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.