VB1 Promoted Green Synthesis of Chalcone and its Neuroprotection

Potency Evaluation

Huanhuan Yin, Ximeng Shi, Hao Wang, Guixiang Liu, Lei Ma*

Shanghai Key Laboratory of New Drug Design, School of Parmacy, East China University of

Science and Technology, 130 Meilong Road, Shanghai 200237 China

Characterization of Compounds 3a-t

Figure S1. ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of **3a**.

Figure S2. ¹³C NMR (150 MHz, DMSO- d_6) spectrum of **3a**.

Figure S3. ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of **3b**.

Figure S4. ¹³C NMR (150 MHz, DMSO- d_6) spectrum of **3b**.

Figure S6. ¹³C NMR (150 MHz, CDCl₃) spectrum of **3c**.

Figure S8. ¹³C NMR (150 MHz, CDCl₃) spectrum of 3d.

Figure S10. ¹³C NMR (150 MHz, CDCl₃) spectrum of **3e**.

Figure S12. ¹³C NMR (100 MHz, CDCl₃) spectrum of 3f.

Figure S13. ¹H NMR (400 MHz, Acetone-*d*₆) spectrum of 3g.

Figure S14. ¹³C NMR (150 MHz, DMSO- d_6) spectrum of 3g.

Figure S16. ¹³C NMR (150 MHz, DMSO-*d*₆) spectrum of **3h**.

Figure S17. ¹H NMR (400 MHz, Acetone-*d*₆) spectrum of 3i.

Figure S18. ¹³C NMR (150 MHz, CDCl₃) spectrum of 3i.

Figure S19. ¹H NMR (400 MHz, Acetone- d_6) spectrum of 3j.

Figure S20. ¹³C NMR (150 MHz, DMSO-*d*₆) spectrum of 3j.

Figure S21. ¹H NMR (400 MHz, Acetone-*d*₆) spectrum of 3k.

Figure S22. ¹³C NMR (150 MHz, DMSO- d_6) spectrum of 3k.

Figure S23. ¹H NMR (400 MHz, CDCl₃) spectrum of 3m.

Figure S24. ¹³C NMR (150 MHz, DMSO-*d*₆) spectrum of **3m**.

Figure S26. ¹³C NMR (150 MHz, CDCl₃) spectrum of **3n**.

Figure S29. 1 H NMR (400 MHz, CDCl₃) spectrum of 3p.

Figure S28. 13 C NMR (100 MHz, CDCl₃) spectrum of **30**.

Figure S31. ¹H NMR (400 MHz, Acetone- d_6) spectrum of 3q.

8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 fl (ppm)

Figure S32. ¹³C NMR (150 MHz, Acetone- d_6) spectrum of 3q.

Figure S33. ¹H NMR (400 MHz, CDCl₃) spectrum of 3r.

Figure S34. ¹³C NMR (150 MHz, Acetone- d_6) spectrum of 3r.

Figure S35. ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of 3s.

8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 fl (ppm)

Figure S36. ¹³C NMR (150 MHz, DMSO-*d*₆) spectrum of 3s.

Figure S37. ¹H NMR (400 MHz, CDCl₃) spectrum of 3t.

Figure S38. ¹³C NMR (150 MHz, DMSO-*d*₆) spectrum of **3t**.