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Abstract: The aim of this work is to optimize the conceptual design of an amine-based carbon
dioxide (CO2) separation process for Enhanced Oil Recovery (EOR). A systematic approach is
applied to predict the economic profitability of the system while reducing the environmental impacts.
Firstly, we model the process with UniSim and determine the governing degrees of freedom (DoF)
through a sensitivity analysis. Then, we proceed with the formulation of the economic problem,
where the employment of econometric models allows us to predict the highest dynamic economic
potential (DEP). In the second part, we apply the Waste Reduction (WAR) algorithm to quantify the
environmental risks of the studied process. This method is based on the minimization of the potential
environmental indicator (PEI) by using the generalization of the Waste Reduction algorithm. Results
show that the CO2 separation plant is promising in terms of economic revenues. However, the PEI
value indicates that the higher the profitability, the larger the environmental risk. The optimal value
of the DEP corresponds to 0.0274 kmol/h and 60 ◦C, with a plant capacity according to the mole flow
rate of the produced acid gas. In addition, the highest environmental risk is observed at the upper
bounds of the DoF.

Keywords: optimal conceptual design; market prediction; economic uncertainty; environmental
impact; carbon dioxide separation

1. Introduction

Several stages exist to recover the original pressure of mature oil and gas wells. Among those
already applied, the Enhanced Oil Recovery (EOR) with carbon dioxide (CO2) proved to be a mid-term
solution to increase the oil production to its original levels while capturing thousands of tonnes of
CO2 [1,2].

Haszeldine [3] states that the first injections of carbon dioxide into the microscopic pores of
sedimentary rocks date from the early 1970s. Successful cases of CO2-EOR have been reported in
the United States, United Kingdom, Norway, and Canada by Wright et al. [4] and Mumford et al. [5].
The injection of CO2 was also evaluated in the reservoirs of Argentina, a region where EOR pilot
experiences were barely intended. Although the results provided good revenues, the CO2-EOR in the
region remains unmaterialized after more than twenty years since first being discussed [6].

The main problem related to this procedure is the large and continuous amount of CO2 necessary
to start the EOR injection [7]. In this regard, Herzog [8] reports that the common sources for large
amounts of CO2 correspond to the acid gas coming from natural gas processing.

Kwak et al. [9] compare different technologies for CO2 separation from natural gas. Based on
simulation and economic studies, they conclude that chemical absorption with methyldiethanolamine
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(MDEA) is the least expensive and most feasible option to separate carbon dioxide. Moreover,
Leung et al. [10] note the amine processes’ high efficiency, large amounts of acid gas as a side product,
and the possibility to regenerate the solvent. Other comparable processes include separation with
polymeric membranes, cryogenic separation, physical solvents, and hybrid technologies.

Another task when evaluating CO2-EOR possibilities is the large dependence of oil and gas
companies upon economic conditions and countries’ institutional frameworks [11]. For instance,
Ponzo et al. [12] state that changing market structures influence the long-term evolution of gas
quotations and, consequently, the development of gas fields. Moreover, interdependency among
variations of time with technical, operative, and economic conditions has been assigned to perform
economic evaluation by Manolas et al. [13]. Classically, the interaction between the operating aspects
and economic revenues during the definition of a process is first estimated according to the conventional
conceptual design [14]. Conceptual process design (CD) consists of the selection of proper operation
units, their sequences, and the recycling structure needed to obtain a specified product [15]. However,
Sepiacci et al. [16] explain that this conventional method is no longer representative when considering
market uncertainty, demand and offer fluctuations, and the price instability of commodities and utilities.
Then, Manca and Grana [17] introduced the benefits of dynamic conceptual design (DCD). Based on
CD and the economic potentials (EP) presented by [14], DCD takes into account the dynamic features
of price/cost fluctuations within a given time horizon.

Indeed, the process design of chemical industries are considered complete when performing the
environmental risk analysis of new process systems. Currently, there is a great deal of interest in
the development of methods that can be used to minimize the generation of pollution, and there are
numerous efforts underway in this area [18]. Specifically, this interest has increased with the world’s
awareness of CO2 emissions and made process engineering adopt practices to mitigate the effects of
climate change [19].

For the above reasons, we apply the concept of DCD to obtain and condition CO2 for EOR
purposes. As can be anticipated, we focus our study to establish the conceptual design of the process
in the context of market instability and future uncertainties. CO2 for EOR is obtained from a natural
gas sweetening design that uses MDEA as solvent; the specifications for the produced CO2 include a
95 mol% concentration of the acid gas, compressed at 6500 kPa [20].

An optimization problem is formulated with the aim of minimizing the Dynamic Economic
Potential (DEP) of the design. In this sense, Mores et al. [21] state that two degrees of freedom (DoF)
govern the optimization problem of the CO2 MDEA absorption—the recycled amine flow rate and its
temperature. However, we extend the analysis to prove that the variable most affecting the energy
demands of the plant is the water makeup of the amine solution, and thus more proper DoF.

Then, we analyze the historical prices of products and raw materials by using statistical tools.
We present natural gas prices as references to estimate the evolution of the rest of the involved
components by using numerical correlations. Linear Regression Models (such as AutoRegressive
model with an eXternal input, ARX) are applied to interpret the behavior of past quotations. We switch
the contribution of these economic models into econometrics to make them capable of predicting
quotations and generating future market scenarios.

On the other hand, we perform an assessment to find the pair of DoF that reduce the environmental
potential index. The method is adapted from the Waste-Reduction algorithm applied to chemical
processes presented by Young et al. [22]. The Waste Reduction (WAR) algorithm has been developed
to describe the flow and the generation of potential environmental impact through a chemical process.

2. Process Description

The purpose of a natural gas sweetening process is to remove the acid gases from a sour natural
gas stream. Due to the high selectivity of the solvent, the by-product of this process is a high-purity
CO2 material stream that, after conditioning, can be used as an EOR fluid.
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The regular process of natural gas sweetening to obtain CO2 is divided into two parts [23]. In the
first stage, which consists of an absorber column, the natural acid is put in countercurrent contact
with a descending MDEA aqueous solution—a so-called lean amine [24]. Fouad and Berrouk [25] and
Kazemi et al. [26] indicate that low temperatures and high pressures favor the exothermic reaction that
occurs in the unit. After contact, the aqueous solution of amine is pressurized, heated, and sent to
the regeneration stage [27]. This second stage consists of a distillation column where the acid gas is
removed from the amine solution due to an external heat contribution. Different studies have been
performed in order to optimize the energy requirements of the regeneration column [28–30]. The liquid
from the regenerator column is cooled and pumped back to the absorption stage [31,32]. Water and
MDEA are placed in the stream from the bottom of the column to the absorption tower to compensate
for leaks within the operation. Meanwhile, the high-purity CO2 from the top of the regenerator is
sent to a series of four centrifugal compressors to considerably increase the pressure. Original well
pressures are required to dispose of the CO2 as an injection fluid; in this case the value remains over
6500 kPa. The 4-stage compression design includes intercooling units and intermediate separation
stages [33].

3. Methods

3.1. Simulation Base Case

A process of CO2 absorption and compression is modeled by using UniSim [34]. Natural gas
at a value of 2500 mm3/d is assumed as the plant’s capacity. The conditions of the plant are those
reported in the work of Gutierrez et al. [19]: sour natural gas at 35 ◦C and 6178 kPa with 93 and 4 mol%
of CH4 and CO2, respectively. Also, the conditions of the lean amine are reproduced. We consider
21,000 kmol/h of an aqueous MDEA solution (38 wt%), at 42 ◦C and 9610 kPa. A 24-tray absorption
column operates at the pressure of the inlet gas. Rich MDEA from the bottom of the absorber is flashed
at 441 kPa, heated up to 90 ◦C, and then sent to regeneration. The regeneration column consists of
24 trays and operates at 90 ◦C and 443 kPa. To provide the column with an external heat, we assume a
reboiler unit using natural gas as fuel. Recycled MDEA is pumped and cooled, first exchanging heat
with the rich amine, and then with a cooler so that it reproduces the temperature of absorption.

A 4-stage compression system is employed to increase the pressure of the produced CO2 up to
6865 kPa [33]. Figure 1 shows the simulation of (a) the CO2 separation plant and (b) the compression
sector to produce the high-purity CO2 stream.

Muhammad and GadelHak [35] explain that the main variables affecting CO2 absorption are
solvent flow rate and the absorber temperature, this last through the cooling of the lean amine stream.

As we anticipated, two streams conform the solvent inlet flow stream, one corresponding to a pure
MDEA stream and the other connected to the makeup water. Generally speaking, two independent
variables are related to the same degree of freedom, so in this study we determine whether there is a
strong dependency between the main energy requirements and the independent variables. Similar to
Torres-Ortega et al. [36], we perform a sensitivity analysis to evaluate suitable ranges of variation for
the decision variables along the optimization.

3.2. Predictive Concept Design

This section provides the dynamic approach to the economic assessment for the CO2 conditioning
plant. Econometrics models (EM) are employed to simulate and evaluate future trajectories of prices
and costs.
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Figure 1. Simulation model in UniSim: (a) absorption sector and (b) compression sector. Figure 1. Simulation model in UniSim: (a) absorption sector and (b) compression sector.
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3.2.1. Development of Econometric Models

The first step while performing EM is the selection of a reference component (RC). Manca [37]
employs RC historical quotations to estimate the economic dynamics of all commodities and utilities
in the process he analyzed. Moreover, Manca [38] suggests that an RC must be representative of the
sector where the plant operates, with the availability of frequent data and updated price evolution.

A good RC for the industry of Oil and Gas is crude oil (CO) [39]. CO, and also the evolution of
natural gas (NG), quotations are traced daily for EIA [40]. However, the prices of natural gas produced
in the basins of Argentina are also indicated monthly by the Ministry of Energy [41]. In this study,
we perform the EM for both CO and NG as potential candidates for reference components.

A structural auto regression model is applied to separately autocorrelate both West Texas
Intermediate (WTI) crude oil and US natural gas prices [42]. For both potential candidates, we analyze
monthly quotations from July, 2007 to July, 2017 (the last available date). To correlate the historical
values of the quotations, we use a similar methodology as the one used by Zhou et al. [43] regarding
the coefficients of the Pearson equation (Equation (1)). Pearson coefficients (PCs) measure the strength
and direction of the linear relationship between two random variables [44]. In this case, both variables
represent the monthly quotations of the RC, but differ in one period:

rk =

∑
t=k+1

(
Yt −Y

)(
Yt−k −Y

)
∑n

t=1

(
Yt −Y

)2 (1)

where rk denotes the PC for a particular period.
∑

t=k+1

(
Yt −Y

)(
Yt−k −Y

)
is the covariance of the

quotations (Yt) with respect to one-period of the previous quotations (Yt−k), and
∑n

t=1

(
Yt −Y

)2
is the

squared of the standard deviation. rk varies from –1 to 1 and, in general, the higher the correlation
coefficient, the stronger the relationship is [45]. Dancey and Reidy [46] state that if rk ranges from 0.7 to
0.9, the strength of correlation is high, and quite enough to determine the size of the correlation. This
characteristic can be visualized when plotting the coefficient versus the time lag between the quotations.

3.2.2. Formulation of the Economic Optimization

Once the EM are identified, it is viable to run the grid-search optimization according to the
regular process conceptual design (PCD). In the optimization problem, we determine the set of
DoF that maximizes the cumulated value of the Dynamic Economic Potential of order four (DEP4),
Equations (2)–(4).

(Cumulated)i =
N∑

j=1

DEP4 j,i; i = 1, . . . , I (2)

DEP4i

(
USD

y

)
=

N∑
j=1

Revenues j,i·nHpY −
CAPEX
N/12

(3)

Revenues j,i

(
USD

y

)
=

NP∑
p=1

Cp, j,i·FP −

NR∑
r=1

Cr, j,i·Fr −OPEX j,i (4)

where DEP4 is the fourth-level economic potential calculated for the i− th economic scenario. j, i are
the subscripts for a specific month and scenario, respectively; nHpY is the number of working hours
per year. N stands for the number of months to perform the economic assessment. NP, NR, FP, and Fr

represent the number of products and reactants, their flow rates, and C their costs. The CAPEX term is
estimated according to the empirical equations reported by Douglas [14]. Six main units are considered
for the calculation: absorber and distillation columns, MDEA heat exchanger, and two air coolers.

The OPEX term considers a price trajectory for each raw material, by-product, and utility, for the
i− th scenario. The main contributors of the OPEX are two air coolers, a condenser, reboiler fuel, and
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the total power required for the acid gas compressors (Gutierrez et al. [19]). The material and energy
balances required to calculate the OPEX are taken from the steady-state simulation of the process.

The goal of the optimization is to determine the combination of DoF that maximizes the value of
(Cumulated)i, with respect to a set of generated scenarios, where the assessment becomes probabilistic.
To obtain a high-purity CO2 material stream, Gutierrez et al. [19] use a limit value of 2 mol% in the gas
coming from the top of the absorber, so we consider the molar fraction of CO2 as a restriction for the
stated problem.

3.3. Waste Reduction Algorithm

We employ the Waste Reduction (WAR) algorithm to describe the flow and the generation potential
environmental impact through the process under study [22]. The general methodology of the WAR
algorithm defines Potential Environmental Impact (PEI) indexes to characterize the generation of the
potential impact in a process, divided into eight categories.

The first four categories evaluate, globally, the environmental friendliness of a process: human
toxicity potential by ingestion (HTPI), human toxicity potential by exposure (both dermal and inhalation)
(HTPE), terrestrial toxicity potential (TTP), and aquatic toxicity potential (ATP).

On the other hand, the other four are related to the toxicological aspects of the involved chemicals
within the process: global warming potential (GWP), ozone depletion potential (ODP), photochemical
oxidation potential (PCOP), and acidification potential (AP).

The potential environmental impacts are calculated from stream mass flow rates, stream
composition, and a relative potential environmental impact score for each chemical present in
the separation process [18].

According to the notation of Young and Cabezas [47], the output PEI to the chemical process can
be rewritten as Equation (5):

i(cp)
out =

N∑
w=1

.
M

(out)
w

∑
i

xi,wψi (5)

ψk =
∑

l

αlψ
s
i,l (6)

where
.

M
(out)
w is the output mass flow rate of stream w, xi,w is the mass fraction of the chemical i in

the stream is w, and ψi is the overall PEI for the chemical k. ψi can be calculated from Equation (6).
In Equation (6), ψs

i,l is the normalized specific PEI of chemical k for the impact category l, and αl is the
relative weighing factor of impact category l [39,47]. A unitary value is assigned to α, to illustrate the
case where the eight categories have the same importance in our evaluation [48]. Normalized impact
scores are obtained from the WAR algorithm add-in included in the latest release of the CAPE-OPEN
to CAPE-OPEN (COCO) Simulation Environment, available from http://www.cocosimulator.org/ [49].

4. Results

4.1. Simulation Output

Figure 2 reports the evolution of the main energy requirements, according to the variation of the
independent variables. For this case, we present the reboiler requirement versus (a) the flow rate of the
make-up of MDEA, (b) the make-up of water, and (c) the temperature of the recycled amine.

Figure 3 reports the evolution of the condenser energy requirement, according to the variation of
the chosen independent variables. Again, we present the condenser requirement versus (a) the flow
rate of the make-up of MDEA, (b) the make-up of water, and (c) the temperature of the recycled amine.

Figure 4 shows the evolution of the total compressor power (kW), respect to the variation of the
same independent variables. We present the compressor power demand versus (a) the flow rate of the
make-up of MDEA, (b) the make-up of water, and (c) the temperature of the recycled amine.

http://www.cocosimulator.org/


Processes 2019, 7, 342 7 of 17
Processes 2019, 7, x FOR PEER REVIEW 7 of 17 

 

 
Figure 2. Variation of reboiler energy requirements (kW) versus (a) the make-up of amine molar flow 
(kmol/h), (b) water make-up (kmol/h), and (c) the recycled methyldiethanolamine (MDEA) 
temperature (°C). 

Figure 3 reports the evolution of the condenser energy requirement, according to the variation 
of the chosen independent variables. Again, we present the condenser requirement versus (a) the 
flow rate of the make-up of MDEA, (b) the make-up of water, and (c) the temperature of the recycled 
amine. 

 
Figure 3. Variation of condenser energy requirement (kW) versus (a) the make-up of amine molar 
flow (kmol/h), (b) water make-up (kmol/h), and (c) the recycled MDEA temperature (°C). 

Figure 4 shows the evolution of the total compressor power (kW), respect to the variation of the 
same independent variables. We present the compressor power demand versus (a) the flow rate of 
the make-up of MDEA, (b) the make-up of water, and (c) the temperature of the recycled amine. 

 

Figure 4. Variation of compressor power demand (kW) versus (a) the make-up of amine molar flow 
(kmol/h), (b) water make-up (kmol/h), and (c) the recycled MDEA temperature (°C). 

Figure 5 shows the evolution of the cooling system requirements (kW), with respect to the 
variation of the available variables. We present the energy demand of the coolers (AC-100 and AC-

Figure 2. Variation of reboiler energy requirements (kW) versus (a) the make-up of amine molar flow
(kmol/h), (b) water make-up (kmol/h), and (c) the recycled methyldiethanolamine (MDEA) temperature
(◦C).

Processes 2019, 7, x FOR PEER REVIEW 7 of 17 

 

 
Figure 2. Variation of reboiler energy requirements (kW) versus (a) the make-up of amine molar flow 
(kmol/h), (b) water make-up (kmol/h), and (c) the recycled methyldiethanolamine (MDEA) 
temperature (°C). 

Figure 3 reports the evolution of the condenser energy requirement, according to the variation 
of the chosen independent variables. Again, we present the condenser requirement versus (a) the 
flow rate of the make-up of MDEA, (b) the make-up of water, and (c) the temperature of the recycled 
amine. 

 
Figure 3. Variation of condenser energy requirement (kW) versus (a) the make-up of amine molar 
flow (kmol/h), (b) water make-up (kmol/h), and (c) the recycled MDEA temperature (°C). 

Figure 4 shows the evolution of the total compressor power (kW), respect to the variation of the 
same independent variables. We present the compressor power demand versus (a) the flow rate of 
the make-up of MDEA, (b) the make-up of water, and (c) the temperature of the recycled amine. 

 

Figure 4. Variation of compressor power demand (kW) versus (a) the make-up of amine molar flow 
(kmol/h), (b) water make-up (kmol/h), and (c) the recycled MDEA temperature (°C). 

Figure 5 shows the evolution of the cooling system requirements (kW), with respect to the 
variation of the available variables. We present the energy demand of the coolers (AC-100 and AC-

Figure 3. Variation of condenser energy requirement (kW) versus (a) the make-up of amine molar flow
(kmol/h), (b) water make-up (kmol/h), and (c) the recycled MDEA temperature (◦C).

Processes 2019, 7, x FOR PEER REVIEW 7 of 17 

 

 
Figure 2. Variation of reboiler energy requirements (kW) versus (a) the make-up of amine molar flow 
(kmol/h), (b) water make-up (kmol/h), and (c) the recycled methyldiethanolamine (MDEA) 
temperature (°C). 

Figure 3 reports the evolution of the condenser energy requirement, according to the variation 
of the chosen independent variables. Again, we present the condenser requirement versus (a) the 
flow rate of the make-up of MDEA, (b) the make-up of water, and (c) the temperature of the recycled 
amine. 

 
Figure 3. Variation of condenser energy requirement (kW) versus (a) the make-up of amine molar 
flow (kmol/h), (b) water make-up (kmol/h), and (c) the recycled MDEA temperature (°C). 

Figure 4 shows the evolution of the total compressor power (kW), respect to the variation of the 
same independent variables. We present the compressor power demand versus (a) the flow rate of 
the make-up of MDEA, (b) the make-up of water, and (c) the temperature of the recycled amine. 

 

Figure 4. Variation of compressor power demand (kW) versus (a) the make-up of amine molar flow 
(kmol/h), (b) water make-up (kmol/h), and (c) the recycled MDEA temperature (°C). 

Figure 5 shows the evolution of the cooling system requirements (kW), with respect to the 
variation of the available variables. We present the energy demand of the coolers (AC-100 and AC-

Figure 4. Variation of compressor power demand (kW) versus (a) the make-up of amine molar flow
(kmol/h), (b) water make-up (kmol/h), and (c) the recycled MDEA temperature (◦C).

Figure 5 shows the evolution of the cooling system requirements (kW), with respect to the variation
of the available variables. We present the energy demand of the coolers (AC-100 and AC-101) versus
(a) the flow rate of the make-up of MDEA, (b) the make-up of water, and (c) the temperature of the
recycled amine.

Figures 2–5 expose a remarkable dependency between the main energy consumptions and the
temperature of the recycled MDEA. Moreover, it was illustrated that the energy requirements strongly
depend on the flow rate of the water make up. On the other hand, the variation of the MDEA flow rate
proves to not alter the energy requirement of the reboiler, condenser, compressors, and the air-coolers.
With this analysis, it is demonstrated that the proper DoF, representing the reduction of the recycle
MDEA flow rate, corresponds to the water makeup of the process. Previous articles state that the
decision variable is the recycled aqueous amine flowrate, but it is demonstrated here that the variable
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of most impact is the water make-up to conform to that flowrate. Thus, for the objective functions in
this work, the decision variables are the water mole flow and the temperature of the recycled amine.

Processes 2019, 7, x FOR PEER REVIEW 8 of 17 

 

101) versus (a) the flow rate of the make-up of MDEA, (b) the make-up of water, and (c) the 
temperature of the recycled amine. 

 
Figure 5. Variation of air-coolers energy demand (kW) versus (a) the make-up of amine molar flow 
(kmol/h), (b) water make-up (kmol/h), and (c) the recycled MDEA temperature (°C). Blue: cooling 
system of the recycled amine; orange: cooling system of the sweet natural gas. 

Figures 2–5 expose a remarkable dependency between the main energy consumptions and the 
temperature of the recycled MDEA. Moreover, it was illustrated that the energy requirements 
strongly depend on the flow rate of the water make up. On the other hand, the variation of the MDEA 
flow rate proves to not alter the energy requirement of the reboiler, condenser, compressors, and the 
air-coolers. With this analysis, it is demonstrated that the proper DoF, representing the reduction of 
the recycle MDEA flow rate, corresponds to the water makeup of the process. Previous articles state 
that the decision variable is the recycled aqueous amine flowrate, but it is demonstrated here that the 
variable of most impact is the water make-up to conform to that flowrate. Thus, for the objective 
functions in this work, the decision variables are the water mole flow and the temperature of the 
recycled amine. 

4.2. Economic Scenarios 

Figure 6 shows the autocorrelograms (PC versus lag time) of (a) CO and (b) NG. 

(a) (b) 

Figure 6. Autocorrelograms of (a) crude oil (CO) and (b) natural gas (NG). 

By analyzing the autocorrelograms shown in Figure 6, one can deduce that the CO quotation at 
the month 𝑘 + 1 depends mostly on the two previous quotations.  

4.2.1. Correlation 

In this subsection, we evaluate the relationship among all involved commodities with respect to 
the potential RC. In Figure 7, we expose the correlation between (a) CO2, (b) MDEA, and (c) Electric 
Energy (EE) with respect to crude oil quotations. It can be seen that correlation values change in the 

Ai
r-c

oo
le

r d
em

an
d 

(k
W

)

Ai
r-c

oo
le

r d
em

an
d 

(k
W

)

Ai
r-c

oo
le

r d
em

an
d 

(k
W

)

Ai
r-c

oo
le

r d
em

an
d 

(k
W

)

Ai
r-c

oo
le

r d
em

an
d 

(k
W

)

Ai
r-c

oo
le

r d
em

an
d 

(k
W

)

Figure 5. Variation of air-coolers energy demand (kW) versus (a) the make-up of amine molar flow
(kmol/h), (b) water make-up (kmol/h), and (c) the recycled MDEA temperature (◦C). Blue: cooling
system of the recycled amine; orange: cooling system of the sweet natural gas.

4.2. Economic Scenarios

Figure 6 shows the autocorrelograms (PC versus lag time) of (a) CO and (b) NG.
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Figure 6. Autocorrelograms of (a) crude oil (CO) and (b) natural gas (NG).

By analyzing the autocorrelograms shown in Figure 6, one can deduce that the CO quotation at
the month k + 1 depends mostly on the two previous quotations.

4.2.1. Correlation

In this subsection, we evaluate the relationship among all involved commodities with respect to
the potential RC. In Figure 7, we expose the correlation between (a) CO2, (b) MDEA, and (c) Electric
Energy (EE) with respect to crude oil quotations. It can be seen that correlation values change in the
range of [−1, 1]. If the two sets are perfectly correlated (e.g., are the same set), the correlation index is 1.
On the contrary, if they are anti-correlated (e.g., the two sets have opposite trends), it is −1.

Figure 8 exposes the correlation between the same components and natural gas quotations. CO2

quotations were estimated in accordance with the work presented by Cook [50]. It can be seen that
values of correlation between the set of quotations present higher values compared to the ones obtained
by correlating the crude oil. Then, NG is selected as a reference component and econometric model,
as presented in Section 4.2.2.
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4.2.2. Econometric Models

From Figures 7 and 8, we observe better correlation indexes when comparing to the NG quotations.
Then, the EM of NG as RC becomes the one expressed through Equation (5).

Where PNG,k+1 is the monthly quotation of NG. σ and P are the standard deviation of the prices
and the average of relative errors, respectively. rand is a stochastic function normally distributed, and
A, B, and C are adaptive parameters calculated with linear regression, minimizing the square error
between real quotations and those predicted by the model [51].

Manca [38] reports EM for toluene, benzene, propylene, and cumene prices based on a dedicated
(auto)correlogram analysis. According to our correlation indexes, we elaborate the EM for the CO2

conditioning process. Table 1 presents Autoregressive Distributed Lag (ADL) models for estimating
each quotation evolution, without the stochastic factor.

PNG,k+1 =
(
A + B·PNG,k + C·PNG,k−1

)
·

(
1 + rand·σNG + PNG

)
. (7)

Table 1. ADL EM for NG, CO2, and MDEA prices, without the stochastic factor.

Component Model

CO2 PCO2,k+1 = A + B·PNG,k+1 + C·PCO2,k + D·PCO2,k−1
MDEA PMDEA,k+1 = A + B·PNG,k+1 + C·PMDEA,k + D·PMDEA,k−1

To simply the forecast EE quotations, we adopt previous monthly prices of the Ministry of
Energy [41]. Similar to Manca [52], the EM for EE is based on (auto)correlograms and the economic
dependency of the EE to NG. From these observations, it is feasible to apply the model represented by
Equation (8):

PEE,k+1 = A + B·PNG,k + C·PEE,k (8)
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where the price of EE (PEE,k+1) is estimated employing previous quotations of NG and EE. Table 2
reports the adaptive coefficients, including the models of NG, CO2, MDEA, and EE.

Table 2. Adaptive parameters of ADL EM of NG, CO2, and MDEA.

Component A B C D σ P

NG 0.0362 −0.0285 1.2205 - 0.1918 0.0705
CO2 0.0033 0.0078 1.4167 −0.4870 0.0606 0.0074

MDEA 0.1124 0.9731 0 −0.0171 0.0126 0.0002

We use the EM of CO2, MDEA and EE to generate a set of random economic scenarios. Figure 9
shows eight predicted trajectories from the EM of NG, MDEA, CO2, and EE, during a time horizon of
120 months, in different random colors. It shows a probabilistic approach, based on a distribution of
multiple viable economic scenarios.Processes 2019, 7, x FOR PEER REVIEW 11 of 17 
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Figure 9. Random price trajectories, for (a) NG expressed, (b) MDEA, (c) CO2, and (d) EE.

Particularly for the case of the Electric Energy (Figure 9d), we present a brief predictive model
where A = 2.98, B = 1.316, and C = 0.81 (Sepiacci et al. [16]), in Equation (8). The predictive nature of this
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model is given by its dependency with the forecasted prices of NG. Other reported models associate
the EE prices with the crude oil quotations, but those forecasts are also of random variability [53].
The Electric Energy has a great impact as a process utility because of the type of its cooling equipment
and compression system. Although the prices of the utility vary periodically with the time domain, we
assume this simplified behavior for the scope of this article.

Each colorful line corresponds to random trajectories generated from the econometric models
of Equations (6)–(8). The prices of each item can follow one of the colorful trajectories within the
time horizon.

4.3. Optimal Economic and Environmental Friendly Design

Results concerning the optimal design of the CO2 separation plant are shown in this section.

4.3.1. DEP4 Cumulated

Figure 10 shows, on the y-axis, the value of the cumulated DEP4 (USD), and on the x-axis it
shows the time series of market quotations. Each bar represents the value of the DEP4 calculated by
considering the market quotations of the corresponding month based on the specific plant configuration
that maximizes the DEP4 value.
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The generated models are used to produce a set of economic scenarios that are distributed
according to the modeled fluctuations of quotations and the stochastic contribution of the reference
component. The cornerstone of this methodology is symbolized by the number of scenarios that
are called for quantifying a set of different scenarios subject to the price/cost trajectories obtained
by the econometric models through their stochastic contribution (Random). Therefore, it refers to a
probabilistic concept of PCD that is grounded in the distribution of possible economic scenarios for
this specific process. A necessary condition for economic sustainability is that the DEPs are positive.

It can be seen that DEP4 varies, even to negative values, during the time domain. Each bar of the
graph represents the higher value of EP4, corresponding to the best combination of the DoF, at one
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particular month. In general, the economic potential fluctuation strongly depends on the price volatility
of raw materials and final products. Where positive, the obtained DEP4 is of an eight-power magnitude,
which demonstrates the economic potential of the plant in accordance with the predictive models.

4.3.2. Economic Optimal

Figure 11 illustrates the trend of the cumulated DEP4 as a function of the DoF, the water flow
make-up, and the temperature of the recycled amine. The presented surface represents the maximization
of Equation (4), where a total capital expenditure of 1.44 × 107 USD is estimated from the calculation.
As previously stated, the DEP4 is not represented by a single value but by a distribution of values,
one for each scenario. In order to have a simple representation of the economic objective function, we
present the average value of the cumulated DEP4. The results of Equation (4) show that the average of
the cumulated DEP4 reaches eight order values.

The configuration yielding the maximum value of the cumulated DEP4 corresponds to a
temperature equal to 60 ◦C for the MDEA to recycle and value the water amine flow rate equal
to 0.0274 kmol/h.

Based on this experience, high temperatures of MDEA imply that the conversion of the absorption
reaction is increased and, consequently, the produced CO2 is increased. Interestingly, an increment of
the water flow rate proves that the MDEA concentration of 38 wt% can be modified to obtain a better
performance in terms of the economical aspect of this process. At the same value of temperature, 60 ◦C,
and 0.1074 kmol/h, the cumulated DEP4 is equal to 1.06 × 108 USD. The order of magnitude of this
DEP4 is even higher than the one obtained by Sepiacci et al. [16], who obtained a six-order DEP4 while
applying this methodology in a petrochemical process.

4.3.3. Minimal Environmental Risks

Figure 12 shows the behavior of the PEI. In this case, the highest environmental risk is observed at
the upper bounds of the DoF.

A probabilistic approach to future scenarios is concerned to find the combination of decisive DoF
that maximizes the indicator of economic sustainability. Similarly, the potential environmental risk is
also evaluated. Results show that this CO2 separation design is promising, although the PEI indicates
that the higher the profitability, the larger the environmental risk is. The environmental risk appears at
high values of water make-up flow and recycle amine temperatures. This situation may be explained
by the toxicological aspects of the involved chemicals within the process—an increase in the power of
the cooling stage and modification of the reboiler combustion parameters.
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5. Conclusions and Future Developments

This paper evaluates the process to obtain and condition CO2 to be used as an EOR fluid, in the
Argentine Basin of Neuquén. We focus the study on the evaluation of economic aspects in a context of
market variability and price uncertainties. PCD methodology is adopted to achieve the aim of the
article. With this technique, a probabilistic approach to future scenarios is used to find the combination
of decisive DoF that maximizes the indicator of economic sustainability. According to the results,



Processes 2019, 7, 342 15 of 17

the implementation of the plant at this stage of the study is feasible and suggests promising values for
revenues and economic profitability.

The results of this preliminary study are promising. The economic potential of the four order is
proven to be high, with a magnitude of eight order in USD/y. Further, the statistical indexes prove that
the plant is profitable within 12 years of the process time’s life. Finally, the conditions of the plant
maximizing the EP are identified—a recycle amine flow of 0.0274 kmol/h at 60 ◦C proved to be an
optimal combination of the decision variables. In respect to the ‘green’ risks, it is demonstrated that
the higher the upper bounds of the DoF, the higher the environmental risk is.

The evaluation of DoF and their impact on the energy requirements of the plant have led to a
notable conclusion—the decision variable affecting the consumer is the water makeup of the plant.
Thus, a new perspective for authors working with a similar process is presented in this paper.

Future work can extend the limits of this methodology and include a higher number of DoFs, such
as the ones related to the regeneration of the column, which is rarely discussed in the bibliography.
In addition, the economic potential evaluation can be extended with heat integration coming from the
pinch technology.

The last important aspect to be noted is that the CO2 was historically considered to be a by-product,
and in the past, it was a common practice to flare it. However, the recuperation and condition of this
gas, and the installation of a proper plant operating at proper conditions, might be the starting point
for implementing the technology of EOR in the region, taking into account volatile market scenarios.
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