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Abstract: This work describes a novel methodology for the quality assessment of a Fused Filament
Fabrication (FFF) 3D printing object during the printing process through AI-based Computer Vision.
Specifically, Neural Networks are developed for identifying 3D printing defects during the printing
process by analyzing video captured from the process. Defects are likely to occur in 3D printed objects
during the printing process, with one of them being stringing; they are mostly correlated to one of the
printing parameters or the object’s geometries. The defect stringing can be on a large scale and is
usually located in visible parts of the object by a capturing camera. In this case, an AI model (Deep
Convolutional Neural Network) was trained on images where the stringing issue is clearly displayed
and deployed in a live environment to make detections and predictions on a video camera feed.
In this work, we present a methodology for developing and deploying deep neural networks for the
recognition of stringing. The trained model can be successfully deployed (with appropriate assembly
of required hardware such as microprocessors and a camera) on a live environment. Stringing can be
then recognized in line with fast speed and classification accuracy. Furthermore, this approach can
be further developed in order to make adjustments to the printing process. Via this, the proposed
approach can either terminate the printing process or correct parameters which are related to the
identified defect.
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1. Introduction

1.1. Computer Vision and Object Detection

Computer Vision is considered an interdisciplinary field of informatics, mathematics and image
processing, which aims to develop techniques and algorithms so that computers can process, interpret
and understand visual information such as video and image. Initial research in Computer Vision in
the 1960s aimed to develop computer algorithms which could mimic the human visual behavior [1].
In the next years, a research boost is remarkable, where algorithms do not only try to copy the human
eye perception but also improve themselves by constantly dealing with new data. Based on this
principle, newly Artificial Intelligence applications on Computer Vision were described. In medicine
and healthcare, computers have been trained to recognize vital image features from image data such
as Magnetic Resonance Imaging (MRI) for patient status detection and diagnosis [2,3]. Computer
Vision also has a variety of applications in industry, where algorithms aid in controlling processes
serving automation, inspection, etc. [4,5]. Autonomous vehicles are also a widely known application of
Computer Vision [6]. In the field of commercial monitoring, Computer Vision and Artificial Intelligence
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has been used for the detection of events such as real-time people counting [7] or as a human–computer
interaction tool.

1.2. Applications on Additive Manufacturing

Computer Vision has been applied on laser powder bed additive manufacturing for the automated
detection and classification of anomalies and unwanted phenomena that can appear during the powder
spreading stage [8]. Specifically, a machine learning model was trained on anomaly-related image data
and deployed for live monitoring and analysis of powder bed images, serving as a real-time control
system attached to the machine used [8]. Additionally, Convolutional Neural Networks have been
trained in order to detect delamination and splatter defects in the additive manufacturing of metal
components with laser-powder bed fusion [9]. The aforementioned approach achieved a classification
accuracy of 96.8%. Convolutional Neural Networks have also been used as a quality inspection tool
for the recognition of cracks, gas porosity, and lack of fusion in metal additive manufacturing with an
accuracy of 92.1% [10]. Another study revealed the capabilities of residual neural networks (ResNet)
in the detection of defects in fused deposition modeling (FDM). In this approach, the trained neural
network was able to predict on a live 3D printing environment the delamination and warping defects
from analyzing images of the printer’s parts [11]. In this, the detection was not decided from the printed
object’s shape but from the printers’ setup configuration and the prior knowledge on its correlations
with defects. Thus, the trained model detected the nozzle height from images of the printing head and
correlated the detected height with actual defect probabilities.

In the field of fused filament fabrication, Computer Vision has been also used for the automated
quality assessment of products. A real-time algorithm which reconstructs the 3D printed model
from the final printed objects and compares differences was able to achieve 100% detection rate for
failures [12]. Via this, phenomena such as clogged nozzle and loss of filament were being identified.
Additionally, the proposed algorithm was further developed in order to stop the printing process when
the respective errors between reconstructed shape and STL file exceeded 5%. This detailed comparison
between 3d printing model and the printed shape has low cost requirements and has shown promising
results at detecting effectively clogged nozzle, loss of filament, or an incomplete project for a wide range
of 3D object geometries and filament colors and can also be with automated decision making based
on detections [12,13]. However, such an approach considers major and obvious macro-level defects,
while its capability of detecting small-scale defects is usually not evident. In addition, the computation
of the image processing steps for the defect identification is proved consuming in terms of time
requirements, which can be problematic for some cases, where the defect needs to be identified almost
instantaneously. A considerable aspect in developing a method for 3D printing error detection is that
the major and catastrophic print errors, such as loss of filament may be considered more compatible to
being identified at the source (e.g., by a filament sensor), rather than through their effects on the object
being printed. This appears due to the fact that conventional sensor techniques can be adapted to
address these issues, while this seems significantly more challenging for smaller-scale defects or object
and print process-centered defects, necessitating the use of a technique such as Computer Vision for
proper identification. As reported in the 3D printing community, there are various recommendations
on how to apply a filament sensor to popular 3D printer devices [14], while some high-end printers
may feature a filament sensor as an add on (e.g., 3D Gigabot 3D printers [15]). Image processing
and Computer-Vision-based approaches may be more useful for the 3D printer user when they are
designed to detect errors that are integrally connected to the print process and cases where the source
of the issue is only identifiable through its effect (e.g., warping, stringing, and over/under-extrusion).
This process can provide insights into potential issues of the print parameter setup that could be
difficult to predict due to level of experience of user or when testing novel/unique materials. Another
approach combined conventional image processing techniques in order to analyze a printed object
layer by layer and then apply corrections to the printing process given a set of decision rules [13].
This approach is using a camera, which allows for the observation of both the active printable layer
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and part of the printing model from the side. Thus, by combining the camera input and G-Code
trajectories for a given layer, it is possible to analyze the visibility of the side area of the printed part.
With this approach, defects such as blocked nozzle, lack of material and major deformations can be
detected. A second technique tracks significant horizontal and vertical displacements of the printed
part based on the binary layer template obtained from the G-Code trajectories and determines fine
rotation and translation within the small deviation range. Via this, possible mismatches between the
real outline and the reference borders are identified. This technique is used for the identification of
defects such as missing layers, dimensional inaccuracies, print not sticking to bed and print bending.
Finally, a third technique based on Local texture analysis handles irregular sections of the texture
within the layer infill: a combination of convolutional stages on the image and unsupervised machine
learning (Gaussian Mixture Model clustering) is applied for segmenting the textures. This approach
can identify infill-related defects such as weak or under-extruded infill, deformed or incomplete infill
and gaps between infill and shell. Despite being able to identify multiple defects, and being applicable
to errors of various scales, addressing the method compatibility issues discussed, this approach is
slow, as the average computational time is 21.4 s. In addition, there is a demand on printer calibration
and configuration prior to application, and the failure detection ability of the approach depends on
the resolution of the camera, the distance to the print area, and the size of the part. In this approach,
the print errors were connected with error-specific corrective actions, which is a crucial feature that
enhances the practicality of the approach. While a large library of detectable and addressable errors is
highly valuable, it is possible that the same prediction confidence and efficiency may not be achieved
for all classes of errors. This may be attributed to the wide variety in the nature of the deformations
that each defect produces on the object being printed, introducing difficulties in their identification
through an integrated approach. A case-by-case error detection approach could assist in identifying
refinements for more efficient identification of classes of errors. This would require repeated prints
of known introduced defects and the testing of the system for each class, leading to gaps being
identified and refinements being developed for each error identifying “module”. Applications of
layer-wise analysis can intervene to the printing parameters and either stop the process or adjust
it in such a way, where the identified printing failures are being corrected. Such systems can help
save time and material [12,13]. However, the use of deep learning techniques for the recognition of
such failures can be more accurate [16]. Experimentation on different angles can also help increase
detection rates when comparing the original computer-aided design (CAD) model to a reconstructed
layer shape [13,16]. However, adding multiple angles as a requirement for the camera input increases
the degrees of freedom and makes the application of the approach on different environments (3D
printer, etc.) more difficult. Clogged nozzle, object not sticking to bed, extruder blobs, warping and
over/under extrusion are printing failures that have also been examined: a detailed comparison of
printed layers and the original 3D model with image segmentation and masking techniques was
capable of identifying the above [14]. The first step of this approach is to take an input image capture
from a camera of the first layer when it is printed. In addition, a digital model is created by simulating
the first layer from the G-code. The snapshot of the real print (first layer) and the digital model are
given as input to a deviation detection algorithm. Both images are processed with Image segmentation
algorithms (Thresholding and Masking) to remove background noise. After these steps, both images
display only black and white pixels. Finally, the Douglas–Peucker algorithm is applied in order to
create contours on each image. The resulted contours are compared and a deviation between the two
is extracted. The proposed methodology shows no generalization in other cases and lacks information
regarding runtime and computational requirements. In addition, manual calibration and configuration
of the printer and the camera position is required.

Popular image processing libraries such as OpenCV [17] have also been used in applications of
Computer Vision in 3D printing [16,18]. The failures of detachment from print bed, not continuous
material flow from nozzle and printed object deformation have been detected with blob detection,
which refers to the identification of regions in a given image with high variation in brightness compared
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to all other regions [18]. Combined with image thresholding at the color value of the printed filament,
the aforementioned approach was developed as a software which serves as an error detection system
for FDM 3D printers [18]. Image thresholding requires one or more parameters; this results in an
increase in the degrees of freedom. However, the aforementioned approach asks for user input
through a User Interface in order to automatically determine the required parameters as a first step.
The threshold parameters are user selected for every printed object and therefore not subjective to
algorithmic selection. Then, the red-green-blue color model (RGB) video frames are converted to
hue-saturation-value color model (HSV). The image is then cropped automatically: an algorithm
determines the print-bed upper surface by finding associated parallel lines in a defined distance to a
virtual line between the visual markers for the print bed. The visual markers must be places prior to
application. Then, image thresholding (on selected parameter of first step) is applied. A blob detection
algorithm on the binary image is finally used to identify the defects. This approach capable of a 60 to
80 percent detection rate for failure detection with a false positive detection rate of 60 to 80 percent.
However, it is rather case specific and the calibration of multiple parameters (camera position, visual
markers) is needed in order to be effectively applied. In addition, the video resolution of the use case
is 640 × 480 pixels, influencing computational effort requirements. This resolution was considered
adequate for the objectives of the study, but may be limited in expanding the methodology, or if
higher certainty would be required in identifying the errors. The approach has also been identified as
sensitive to producing false results due to lighting changes. It is quite important to note that approaches
that prioritize cost-effectiveness are reasonably expected to be of the highest value to non-expert 3D
printing users. Such users are most likely to be inhibited by additional requirements of the process
such as precise camera positioning and calibration, presenting barriers in the reproducibility of the
method. It seems conceptually valid to couple the more expensive methods equipment-wise with more
demanding monitoring setups, while keeping a simple monitoring configuration for the cost-effective
methods, with an expected compromise in detection capabilities or accuracy.

Additionally, warping has also been identified with application of blob detection and image
segmentation techniques in capture images from the printing object and a comparison to the original
3D model [19]. A layer-wise approach is using a color camera to capture an image of the object
after each new layer is added [19]. Using the workpiece CAD model, and perspective projection, an
expected image of the object geometry is rendered for each of the captured images. A differential
imaging algorithm compares these two images and determines the existence of a defect based on the
simulation of what the object under print should look like for any given moment in time. The above
methodology can be used for the early detection of warping, build plate delamination and extrusion
failure, while the study of the error signal as a function of printed layer number can assist in determining
the time point of print failure. For complicated print shapes, this feature can be highly valuable
in defining areas of focus to refine print parameters, make localized changes (e.g., variable layer
height) in the layer print parameters on the area of failure, or provide insights into how to potentially
revise the object design. Despite the simplistic setup, which is encouraging for a typical non-expert
3D printer user, the approach requires that camera parameters need to be estimated beforehand.
In addition, no accuracy metrics and generalization tests are given and the three failure modes cannot
be distinguished based on the method implemented, presenting barriers in identifying the root cause
of print issues. Typically, image processing approaches for error detection requires calibration of the
used camera and printer [12,13,18,19]. This is the most common challenge and bottleneck in the field
of the automated detection of 3D printing defects, as it significantly increases the degrees of freedom
and the actions required from the user. Most existing research relies on conventional image processing
techniques. On the other hand, learning-based algorithms have a promising potential in identifying
errors, failures and defects in 3D printing while keeping user interaction to a minimum. A proposed
machine learning algorithm was able to detect collisions in the 3D printing [20]. In Table 1, the pros
and cons of existing applications and techniques are summarized below in Table 1.
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Table 1. Summary table of pros and cons of existing applications.

Approach Category Pros Cons

Comparison of final
printed object with

reconstruction of 3D
printed model [12]

• High rates of defect detection
• Low cost
• generalization in different object

geometries, filament colors
• Ability to integrate

decision making
• Clogged nozzle and loss of

filament detections

• Defects (clogged nozzle, loss of
filament, incompleteness) of
subject can be rare for
experienced users

• Slow computation time
• In need for calibration and

configuration of printer for
different cases

• May require more than
one camera

• Small-scale defects not identified
• Use case specific

Combination of
conventional Image

processing techniques
(layer-wise) [13,16]

• Various types of defects can
be detected

• Decision making based on
defect identification

• High rates of detection on
use cases

• Can also detect
small-scale failures

• Not tested in multiple geometries
• Not generalizable
• May need calibration and

configuration of printer for
different cases

• Slow
• The discriminative power of the

failure detection depends on the
resolution of the camera, the
distance to the print area, the size
of the par

• fault detection relies on a single
threshold, which is usually
case specific

• Image thresholding requires
parameter determination on each
image case

• May require more than
one camera

Advanced Image
Processing [18,19]

• Early failure detection
• Image processing parameters can

be determined by asking users’
input on the UI

• Fast and real time
• Detachment from print bed, not

continuous material flow from
nozzle and printed
object deformation

• Simple setup

• Exact camera position calibration
• Image thresholding requires

parameter determination on each
image case

• Smoothing out the image feed
consumes additional
computational resources.

• Only a few defects
• Available only for low

video resolution

1.3. Common Defects in 3D printing

For the vast majority of Fused Filament Fabrication (FFF) 3D printer devices, sensors and feedback
controls are only featured for the temperature of the nozzle and build platform. Functional check
sensors may be present for a number of operational prerequisites, such as filament detection. Typically,
commercial FFF 3D printers do not conduct monitoring of the printing process or any check if printing
proceeds as expected. The formation of defects, or even critical failures, such as the print object losing
adhesion to the print bed will not stop the print process, and printing will continue if not interrupted
by the operator, leading to waste of material, power, effective equipment operation time, as well
as potentially causing malfunctions to printing parts (e.g., nozzle clogging). This leads to process
operators needing to systematically check print progress. Continuous monitoring of the printing
process may be implementable by operators of one printer but can be impractical in larger-scale settings
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where multiple printers are operating simultaneously. Prolonged presence of operators in the close
proximity of printers in function should be minimized for safety-related reasons as well, in order
to diminish exposure to ultrafine particles and Volatile Organic Compounds, to the highest extent
reasonably applicable [21]. The inconvenience of constant supervision of 3D printing processes can be
partially alleviated by simple remote supervision. To this end, several commercial 3D printers possess
built-in camera features, and the placement of external video cameras to observe print progress is
quite common. The open source OctoPrint software [22] can be used for printer remote control and
monitoring in supported devices. However, user attendance to the video is required in systematic
intervals, which can be problematic, particularly in multiple printer operation cases.

To the authors’ best knowledge, structuring a defect detection method around identifying a
specific defect has not been extensively explored, with the literature favoring approaches that target
monitoring deformation and deviation of the 3D printed object, leading to identification of major
defects or detecting that one out of a group of possible defects has occurred. We therefore suggest that
an array of defect-specific detection methods could potentially serve as elements of a more integrated
approach. In this work, we investigate the automated recognition of a common defect of any 3D
printing process, called stringing. Stringing (also known as oozing) describes a phenomenon where
small or tiny strings of the printed plastic remain on the surface of the printed object and cause an
aesthetic failure, which could also affect the mechanical properties of the object. Such defects may
also require the object to be post-processed for the unwanted strings removal, and thus investment
of working time, which is a minor inconvenience for home-use prints, but would be a significant
issue in larger batch production cases. This phenomenon happens when extruded plastic is held out
of the nozzle while the extruder is moving. Stringing has known origin causes, varying from high
temperatures to high printing speeds or misconfiguration in retraction settings (filament “pulled back”
through the hot end by the extruder motor when not in area for deposition). Stringing can also cause
slight dimensional distortion of the object, especially in smaller objects. The string being formed may
generate small protrusions in each end (as shown in Figure 1 below), which may be quite a critical
issue for applications where dimensional fidelity is paramount. Additionally, optimal print parameters
are not universal for all materials, specific geometries or intended final object properties. This requires,
before effectively using a newly applied material for manufacturing on a large scale, a distinct portion
of work to be allocated for identifying functional printing parameters. Time investment and potential
complications are increased for using non-commercial (e.g., recycled), or specialty/novel materials
(e.g., nanomaterial-enabled filaments). Techniques for the minimization of time, resources and human
involvement required for this adaptation phase can prove quite useful to the manufacturing field.Processes 2020, 8, x FOR PEER REVIEW 7 of 16 
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2. Methodology

2.1. Data Collection and Annotation

The 3D printer Prusa i3 MK3S was used for the collection of images of printed objects with defects.
A simple “Stringing test” object was designed and used for the generation of the images. Specifically,
major defects were introduced via the known related printing parameters. A final Dataset of 500 images
with a stringing phenomenon was collected as a training Dataset for the Single Shot Detector (Deep
Neural Network). After collecting training data for the stringing defect, various Data Augmentation
techniques were applied in order to raise the amount of training instances. Data Augmentation is a set
of techniques which are applied to existing datasets and create new synthetic data with meaningful
information [23], and here was deemed necessary. Specifically, for each image on the base training set,
we applied scaling to half the size (image resize), horizontal flipping, cropping (randomly), 90 degrees
rotation and brightness change (randomly). Applying these 5 data augmentation techniques to each of
the 500 original training images, we obtained a final dataset of 2500 images.

In order to train any model on the image features, the ground truth (the true classes within
an image as well as their location in the image) had to be provided; thus, we used an open source
annotation tool [24], namely LabelImg. Using this tool, we annotated manually all the images and
obtained an Extensible Markup Language (XML) file in the Pascal Visual Object Classes (PASCAL
VOC) format as an annotation file for each training image. In addition, using Data Augmentation
techniques is proven to improve achieved classification metrics in benchmark datasets [25].

2.2. Model Selection and Training

A wide range of existing state of the art algorithms is available, varying in terms of training speed,
accuracy and testing speed in benchmark datasets. In our case, we considered the need to balance
between good accuracies and fast detection, as the purpose of the model usage is to be deployed in a
live environment. In this sturdy, the selected model was the Single Shot Detector.

The Single Shot Detector running on 300 × 300 input (SSD-300), published in 2016, achieved a
mean Average Precision (mAP) of 74.3% on benchmark Dataset VOC-2007 at 59 frames per second
(FPS) and a mean Average Precision (mAP) of 41.2% at an Intersection over Union (IoU) of 0.5 on
benchmark Dataset of Common Objects in Context (COCO test-dev2015) [25]. The achieved mAP
outperformed existing (at the time) state-of-the-art models while running at high FPS. Other advantages
of SSD models are the runtime speed at live applications as well as the reduced training time. There is
also a Single Shot Detector running on 512 × 512 input frames (SSD-512) with higher achieved mAP
on VOC-2007 (76.8%). We selected the SSD-300 due to its superiority in FPS compared to SSD-512
(59 vs. 22) and due to its light requirements in input resolution, as the there was a need to run the
model also in low-quality cameras.

The Single Shot Detector consists of two phases: In the first, there is a feed-forward convolutional
network (used as typical image classifier) that has a fixed size collection of bounding boxes as output.
The used convolutional network is VGG16 [26], which is based on standard convolutional neural
network (CNN) architectures: Multiple convolution layers and ReLU activations followed by max
pooling functions are producing the input to fully connected layer (Figure 2). A final softmax function
produces probabilities of the image to belong to a class. In total, there are 16 convolutional layers
and 3 fully connected. VGG16 achieved 92.7% test accuracy in ImageNet, which is a dataset of over
14 million images belonging to 1000 classes. It was chosen in our case as the CNN network, due to its
reliability in image classification tasks as well as due to its use in the original SSD-300 publication [25].
In the SSD architecture, the described VGG16 is called the base network.
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Figure 2. Architecture of the VGG16 used in the Single Shot Detector (SSD).

In this stage, a score is given to each box referring to the probability of presence of an object
class. Then, extra convolutional layers are added at the end of the base network, whose size decreases
progressively until reaching a non-maximum suppression [25]. These extra layers can help detect at
multiple scales. The non-maximum suppression decides the final detections with use of the extra
convolutional feature layers at the end first network. The selected model was trained with use of
the Tensorflow application programming interface (API) [27] and on a NVIDIA Tesla K80 GPU with
2496 cores of Compute Unified Device Architecture (CUDA) and 12GB of Graphics Double Data Rate
(GDDR5) Video Random Access Memory (VRAM). Our selected hyperparameters for the trained
model architecture of Figure 3 are presented in Table 2. The methodology for the development of the
Deep Neural Network for detecting stringing defects is presented in Figure 4.Processes 2020, 8, x FOR PEER REVIEW 9 of 16 
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Table 2. Hyperparameters of the SSD-300 trained.

Batch_Size 24

initial_learning_rate 0.004

decay_steps 800

decay_factor 0.95

momentum_optimizer_value 0.9

decay 0.9

epsilon 1.0
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2.3. Evaluation Metrics Principles

In order to evaluate the detection results of the developed neural network, a proper metric is
defined. As object detection algorithms use bounding boxes to make local prediction, the Intersection
over Union (IoU) helps to quantify the precision of a specific predicted bounding box (Figure 5).
IoU measures the overlap between two bounding boxes. Specifically, IoU quantifies the amount of
overlap of the predicted bounding box and the ground truth bounding box. In our case, we experimented
with a threshold of 0.4, 0.5 and 0.6 as the margin for true or false predictions. In the case of an IoU
equal to 0.5, if the IoU value of a specific bounding box is greater than 0.5, we consider this a true
positive prediction. This can be further used to calculate the True Positives, False Positives or False
Negatives of the models given a test set. In our case, we do not evaluate True Negatives, as each image
in the test set has at least one defect.
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Figure 5. Intersection over Union schematic representation.

When the IoU is greater than 0.5 (threshold), the respective prediction is a True Positive (TP),
meaning that the predicted defect was real. In cases where the IoU is less than 0.5, we have a False
Positive (FP), meaning that the predicted defect was not real. Finally, when the model completely misses
a true defect, we consider this a False Negative (FN). The above cases are presented in Figures 6–9.
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After computing the above rates, the Precision, Recall and F1-Score are calculated.

Precision =
TP

TP + FP
Recall =

TP
TP + FN

F1 = 2 ∗
Precision ∗Recall
Precision + Recall

Each prediction (whether it is TP or FP) comes with a probability score (probability that a
bounding box contains a defect). Ordering all of the predictions with descending order according to
the confidence level (0 to 1.0), one can compute how Precision and Recall are changing with respect
to the confidence level by plotting their values in a Precision vs. Recall plot (Figure 10). Our final
metrics will be the Precision and Recall. In addition, the Average Precision, which is defined as
the area under the Precision–Recall curve can also help identify the pros and cons of selecting each
probability threshold with respect to the discrimination ability of the classifier. Average Precision can
be interpreted mathematically as the weighted mean of precisions achieved at each probability score,
with the increase in recall from the previous threshold used as the weight. Average Precision is used as
a metric in the development of state-of-the-art models as well as in benchmark dataset challenges [28].
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3. Results and Live Deployment

The trained model achieved a Precision of 0.44 and a Recall of 0.69 at an IoU of 0.4, a Precision of
0.41 and a Recall of 0.63 at an IoU of 0.5, and a Precision of 0.4 and a Recall of 0.62 at an IoU of 0.6.
Increasing the IoU threshold, predictions are forced to be more strict, resulting in less accurate metrics.
We found that the threshold of 0.4 IoU is often selected in similar custom object detection tasks [29–32],
whereas the most used value is 0.5. However, it might result in having more False Positives (lower
precision), as the threshold of approving the classifier’s guess becomes higher. An IoU threshold of 0.4
is acceptable in our case, as we need just a little intersection over union between ground truth and
prediction: a predicted defect overlapping at least 40% with any given true defect should be considered
as a true positive and be handled as a defect (Figure 11). With the current training data, if we wish
to increase the number of true defects that are detected (True Positives), we need to keep the IoU
threshold to this minimum. Below 0.4, values of IoU threshold result in significant high false detection
(False Positives). Therefore, increasing the IoU threshold will give less True Positives but also less False
Positives. Choosing a value for the IoU threshold is an issue of balancing between these two. In our
case, we selected to be alarmed (defect detection) even falsely rather than not being alarmed at all.
A high Precision is needed when the cost of False Positives (normalities detected as defects) is high.
On the other, a high Recall is preferred when the cost of False Negatives (real defects not being detected
at all) is high. In our case, the cost of missing defects is higher compared to the cost of predicting
stringing defects to a normal print. Specifically, we prefer to be alarmed falsely (False Positive–Low
precision) than miss defects (False Negative–Low recall). Therefore, we chose the trained model with
an IoU threshold of 0.4 (Precision of 0.44 and a Recall of 0.69) for live deployment.Processes 2020, 8, x FOR PEER REVIEW 12 of 16 
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The F1-Score for the IoU threshold of 0.4 is 0.55. There are some aspects around this number that
are promising signs for future improvements: the original 500 images are considered not enough, as we
need to predict shapes (stringing) of various geometries. Accuracy metrics are therefore expected to
increase if we significantly increase the training data. Creation of new data should be also focused on
rarely seen (in current training) cases. Regarding Average Precision, the trained SSD model reached 0.4
at an IoU threshold of 0.6, 0.44 at an IoU threshold of 0.5 and 0.52 at an IoU threshold of 0.4. Research
on benchmark datasets [28,32] has shown that Average Precision is a good metric for identifying bad or
insufficient training data for a specific class. This approach can be useful and efficient, when the goal is
to detect known stringing defects. In other words, the expected input images in a real environment will
be similar to the training data. Our trained model was able to achieve a Precision of 0.75 and a Recall
of 0.92 when seeing the training data (training F1-Score 0.82). This result shows that the use of recently
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developed Neural Networks can help automate detections of defects with expected shape or low
variety. The trained model was considered to perform well in this work and therefore can be used as
an automated way of detecting stringing and sending respective notifications. This study is serving as
a proof of concept that Deep Learning can be used for the detection of standard and expected stringing
defects and specifically when the input video feed in the deployed model is expected to be similar to
the training data that the model has seen. Such a prediction on a video frame is illustrated in Figure 12.Processes 2020, 8, x FOR PEER REVIEW 13 of 16 
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However, our model did not perform well when applied on external data acquired from the web
(with and without defects). The observed lack of generalization was expected, as the training data
included case-specific images. Specifically, only a few shapes and on a specific 3D printer environment
were addressed. In order to generalize better, the model needs continuous improvement through
training on new and previously not seen data.

Another aspect of the metrics that need to be addressed is the ability of the detector model to
identify defects on different time steps of the defect creation. For instance, the model was able to
detect stringing defects even on early stages, while the defect was small. This can be attributed to the
appropriate annotation on training data. Specifically, our training data annotation was created in such
a way that both early and late stages of defect’s appearance were included (Figure 13); this helped the
trained model to “learn” both cases.

Regarding computational requirements and performance, the results are promising as the model
can very quickly make a detection on a given live video feed. The setup was able to run at 14 frames
per second (FPS) video, giving real-time output.

Our next step was to deploy this model on a live 3D printing environment. This was achieved
by running the model on a Raspberry Pi 4 microprocessor (with a connected camera), which was
placed properly in front of the printing bed. The model was running at the same FPS rate on the
microprocessor. A second simpler algorithm was running on top of the model, while analyzing its
predictions and its probability scores. Specifically, at each frame, the wrapper algorithm was used a
decision support system for the process control. If the probability score of any given predicted defect
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was greater than a predefined value, the algorithm notified the user on whether or not to stop the
3D printing process. This setup was used as a remote monitoring system for long prints of shapes
that are similar to the training Data. Our future work includes continuous training of the model on
new cases (object shapes, stringing shapes and scales, printer environments) in order to meet a more
holistic approach.Processes 2020, 8, x FOR PEER REVIEW 14 of 16 
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4. Conclusions

A deep neural network (Single Shot detector) was trained on—manually annotated—images of
3D printed objects with a developed stringing defect and deployed on a live environment in order to
test its ability to quickly and accurately predict this defect. The model was able to identify defects
and also with proper adjustments to the algorithm to notify the printer handler on events with a
high probability of defect. The model achieved a Precision of 0.44 and a Recall of 0.69 in the test set;
however, it was not able to generalize well in external Datasets. This study highlights the potential
and effectiveness of using Deep Learning for detecting 3D printing defects with expected structure
and shape, as our model successfully detected defects that are similar to the training Data (training
accuracy). Major benefits of such an approach are the fast and real-time detections (59 FPS) and the
absence of camera or equipment calibration. This tool can be used as a remote monitoring system of
3D printing processes. It can also help minimize printing costs (raw materials, etc.), as the operator is
notified on time about possible defects and can terminate the process on early stages. We propose that
defect-specific detection modules can be developed and refined in a distinct mode, as presented in
this work. The integration of different defect-detection components can support the development of
more generalized tools, alleviating several of the issues that detecting a multitude of very distinctive
process errors through a single approach could introduce. Our future work includes the ability of the
AI system to intervene on the printing parameters of the process and correct (or adjust) them properly
in order to minimize the defect as the printing process continues.
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