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Abstract: This paper proposes a new efficient two-step method for parametrizing control-oriented
zero-dimensional physical polymer electrolyte membrane fuel cell (PEMFC) models with measured
stack data. Parametrizations of these models are computationally intensive due to the numerous un-
known parameters and the typically nonlinear, stiff model properties. This work reduces an existing
model to decrease its stiffness for accelerated numerical simulations. Subdividing the parametrization
into two consecutive subproblems (thermodynamic and electrochemical ones) reduces the solution
space significantly. A parameter sensitivity analysis further reduces each sub-solution space by ex-
cluding non-significant parameters. The method results in an efficient parametrization process. The
two-step approach minimizes each sub-solution space’s dimension by two-thirds, respectively three-
fourths, compared to the global one. An achieved R2 value between simulation and measurement of
91% on average provides the required accuracy for control-oriented models.

Keywords: polymer electrolyte membrane fuel cell; control-oriented model; grey-box modeling;
analytical differentiability; model reduction; parameter sensitivity analysis; fisher information;
efficient parameterization; data-driven identification; transient operation measurement data

1. Introduction

PEMFCs are promising candidates for replacing internal combustion engines in mobile
applications. However, fuel cell (FC) driven vehicles are still far from having a significant
market share because of various challenges. One of the challenges is to control the FC
during transient operations, especially regarding avoiding harmful operating conditions.
Another one is to improve the FC system’s efficiency via optimal control. Moreover, experi-
mental expenditures during development are high but are reducible by using simulations
instead. One of the first steps towards resolving the named and other challenges is obtain-
ing a proper FC model. PEMFCs are promising candidates because they offer the rapid
startup and low operating temperature required for automotive applications. However, it
requires appropriate water management to address liquid water formation. Solid oxide
FCs use non-noble metal catalysts, which results in low raw material costs, but the high
operating temperature leads to thermal stress and precludes this FC for transient applica-
tions. Molten carbonate FCs can reform a wide variety of fuel sources, but the long startup
time eliminates this FC for anything but continuous-power applications. Phosphoric acid
FCs provide easy water management, but the low power density is not appropriate for
portable applications. Alkaline FCs have the highest demonstrated operating efficiency
of any FC system, but the intolerance to carbon dioxide forces the use of carbon dioxide
removal equipment and pure oxygen and hydrogen [1].

In general, modeling approaches are distinguishable into three groups. First, black-box
modeling means fitting an artificial model to replicate the measured input and output data
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correlation [2–4]. The model structure and parameters do not need to have any physical
meaning, and extrapolation capabilities are limited. Black-box models, in general, do not
replicate internal unmeasured physical states. Second, white-box models solely describe the
FC with first principles known from theory. All model parameters are physical quantities,
fundamental constants, and known values. Measurement data is not needed [5–7]. This
approach is not feasible if not every parameter is known, which is usually the case for FC
models. Third, grey-box models combine both approaches. They use the first principles
known from theory and require measurement data to determine the model structure and
parameters. This work does not consider black-box models because the internal states’
knowledge is essential for the controller to avoid harmful operating conditions. White-box
models are unsuitable because many parameters are unknown. Therefore the combination
of both approaches, grey-box models, provides the needed structure and fidelity for FC
control. Control-oriented grey-box PEMFC models aim to have a low spatial dimension to
be numerically efficient for real-time applications [8–12]. Parametrizing grey-box PEMFC
models is not straightforward because they are nonlinear, numerically stiff, and have
numerous unknown parameters. This work proposes an efficient two-step parametrization
method that drastically simplifies the optimization problem. The method subdivides the
FC model into two submodels for parametrization, each yielding a lower-dimensional
sub-solution space compared to the one of the entire model.

The standard parametrization procedure determines as many parameters as possible
from theory, datasheets, and expert knowledge. The remaining unknown parameters have
to be obtainable by fitting measurement data. For example, McKay et al. [13] developed a
lumped parameter model, and they identified the tunable parameters using least squares.
Unfortunately, this approach yields a high dimensional solution space for models with
many unknown parameters. The proposed multiple-step method by Xu et al. [14] estimates
the nozzle coefficients first, and in the following step, a nonlinear least-squares algorithm
identifies the electrochemical parameters for a steady-state voltage response. Additionally,
a fitted neural network describes the dependency of the electrochemical parameters on the
operating conditions. Using a neural network is suboptimal because the applicability is
highly limited to the range of the available measurement data. Müller et al. [15] conducted
an approximated sensitivity analysis by varying the signals and parameters. The sensitivity
analysis’s sole purpose was to show the importance of accurate sensors for parametrization.
They used specific measurements to identify parameters one by one. Curve fitting leads to
the remaining parameters. Individually estimating the parameters is not always feasible
because it is strongly dependent on the available measurement data and model structure.
Moreover, incorporating the sensitivity analysis into the parametrization process will in-
crease its efficiency, especially for large-scale problems. Goshtasbi et al. [16] approximated
the parameter sensitivities via difference quotients. In [17], the sensitivity analysis deter-
mines the most sensitive parameters for identification, and a global optimizer identifies this
subset of parameters altogether. This approach’s drawback is that a large subset still leads
to a computationally-intensive problem. In [18], the authors used the parameter sensitivity
analysis to divide the parameters into three groups. The groups contain the identifiable
parameters in the low, medium, and high current regions, respectively. Unfortunately,
this approach needs appropriately designed experiments. Ritzberger et al. [9] developed
a PEMFC model focusing on its analytical differentiability. Existing models are usually
not analytical differentiable but are transformable to a model with this property. Analytic
differentiability enables an accurate and efficient calculation of the derivatives compared
to a numerical approximation and is advantageous for various control applications. They
locally linearized the nonlinear model in multiple operating points. Their proposed pa-
rameterization method optimizes each analytically linearized model for each operating
point dependent on the same parameter set simultaneously. In [10], they additionally
conducted a parameter sensitivity analysis based on the analytically linearized models.
This approach’s disadvantage is that it is limited to data with small excitations because of
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the linearization. Therefore it requires specially designed experiments, which is mostly not
the case for given data.

In this work, the two-step parameterization method is demonstrated with the model
developed by Ritzberger et al. [10] because of its advantageous property of analytical
differentiability. The model is adapted to reduce its stiffness for more efficient numeri-
cal evaluations. Subdividing the model into a thermodynamic and an electrochemical
submodel leads to a parameterization method with two consecutive steps. In the first
step, the thermodynamic submodel, which consists of a system of first-order ordinary
differential equations (ODEs), is parametrized. The electrochemical submodel, which does
not have any ODEs, is parametrized in the following second step. The subdivision reduces
the solution space’s dimension for each submodel, and an analytic parameter sensitivity
analysis further reduces each parameter subset by excluding non-significant parameters. A
global optimizer identifies the parameter subsets by minimizing the difference between
simulated and measured output signals [19]. An existing FC test bench delivers the mea-
surement data. Compared to the available approaches, this efficient method simplifies the
parametrization problem, it does not require appropriately designed experiments, and the
parameter sensitivity analysis is analytically evaluable.

This paper is subsequently structured as follows: Section 2 describes the PEMFC
model and its reduction. Section 3 presents the two-step parametrization method, explains
the parameter sensitivity analysis, and shows the proposed method’s validation. Section 4
depicts the experimental setup, and finally, Section 5 discusses the identification results.

2. Fuel Cell Model

This section briefly portrays the used PEMFC model to demonstrate the proposed
two-step parametrization method. Additionally, this section describes the model reduction
for accelerated numerical simulations. The proposed method is, of course, not limited to
the described FC model. Any model separable into a submodel with ODEs and a submodel
without ODEs is utilizable. The model does not have to be analytically differentiable be-
cause the parameter sensitivity analysis is numerically approximable. However, numerical
approximations are less efficient and accurate evaluable than analytical solutions.

2.1. Model Description

Ritzberger et al. [10] developed the model, and it is an adapted version of the Pukrush-
pan et al. [8] model. The difference is that the adapted model has the property of analytical
differentiability, which is the reason for its selection. This property is beneficial for various
control methodologies [20,21], and parameter sensitivity analyses (Section 3.2). The model
is a zero-dimensional physical PEMFC model, and Figure 1 gives a schematic overview.
It utilizes, amongst others, mass balances, linear nozzle equations, diffusion equations,
electrochemical equations, and the ideal gas law [22–24]. However, it does not consider
energy balances and thus cannot model the FC temperature over time. The model treats
the measured temperature as an input. This temperature is assumed to be the uniform
temperature for the whole FC. The model consists of a cathode, anode, membrane, and
electrochemical submodel, which are interconnected. The model equations and their
derivations are not the focus of this work. More information in this regard is available
in [10].
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Figure 1. Schematic overview of the model structure of the lumped, transient FC stack model [10]

The cathode submodel has four mass states (oxygen mass mca,O2 , nitrogen mass mca,N2 ,
vapor mass mca,vap, and liquid water mass mca,liq) and two pressure states (supply manifold
pressure pca,sm, and exit manifold pressure pca,em). The anode submodel also has four mass
states (hydrogen mass man,H2 , nitrogen mass man,N2 , vapor mass man,vap, and liquid water
mass man,liq) but only one pressure state (exit manifold pressure pan,em). The membrane
submodel only has the membrane water activity state am. The model inputs are the air
mass flow ṁca,in, the hydrogen mass flow ṁan,in, the anode supply manifold pressure
pan,sm, the relative humidity of the air mass flow ϕca,in, the purging signal αpurge, the FC
temperature T, the atmospheric pressure patm, and the current I. The outputs are the
cathode supply manifold pressure pca,sm, the cathode exit manifold pressure pca,em, the
anode exit manifold pressure pan,em, and the voltage U. Hence, the following equations
describe the nonlinear FC state-space model:

ẋnr = fnr(xnr, u, θ) (1)

y = gnr(xnr, u, θ) (2)

Here, xnr = xnr(t) denotes the non-reduced state vector, u = u(t) the input vector, y = y(t)
the output vector, θ ∈ R25 the parameter vector, fnr the non-reduced system function, gnr
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the non-reduced output function, and t the time [25]. The respective vectors are structured
as follows:

xnr =



pca,sm
mca,O2
mca,N2

mca,vap
mca,liq
pca,em
man,H2

man,N2

man,vap
man,liq
pan,em

am



, u =



ṁca,in
ṁan,in
pan,sm
ϕca,in
αpurge

T
patm

I


, y =


pca,sm
pca,em
pan,em

U

, θ =

[Vca,sm, Vca,cm, Vca,em, . . .
. . . Van,sm, Van,cm, Van,em, . . .
. . . kperm, kcond, kevap, . . .
. . . kca,sm,out, kca,em,in, . . .
. . . kca,em,out, kan,sm,out, . . .
. . . kan,em,in, kan,em,out, . . .
. . . kan,leak, τm, . . .
. . . ε2, Rc, Eca,act, Ean,act, . . .
. . . Kca, Kan, CDca, CDan]T

(3)

V denotes the volumes, k the nozzle or mass flow coefficients, τm the water activity time
constant, ε2 the membrane conductivity parameter, Rc the ohmic contact resistance, E
the energy, K the intrinsic exchange current parameter, and CD the combined diffusion
coefficient. Compared to the model described by Ritzberger et al. [10], this one has an
additional output, the cathode exit manifold pressure pca,em. It is measured, therefore
considering it as a supplementary output has the advantage that it yields additional insight
into the system. Furthermore, the pressure difference between the exit manifold and the
environment is too big to be sufficiently described by a linear nozzle equation. Hence
nonlinear nozzle equations (derived from the Bernoulli equation) replace the linear ones at
each exit manifold.

2.2. Model Reduction

The model reduction goal in this work is to reduce the model’s stiffness for accelerated
numerical simulations. Lambert [26] stated that stiffness occurs when (numerical) stability
requirements, rather than those of accuracy, constrain the (simulation time) step length.
The pressure dynamics of the model are faster by multiple orders of magnitude compared
to the mass dynamics. Thus the pressure dynamics are assumed to be steady-state at all
times. The ODE for the cathode supply manifold pressure pca,sm results from a combination
of the ideal gas law and the mass balance

ṗca,sm =
Rca,smT
Vca,sm

(ṁca,in − ṁca,sm,cm), (4)

where Rca,sm denotes the cathode supply manifold’s mass-specific gas constant, ṁca,sm,cm =
kca,sm,out(pca,sm − pca,cm) the mass flow between the cathode supply and center manifold,
kca,sm,out the cathode supply manifold’s outflow nozzle coefficient, and pca,cm the cathode
center manifold pressure. Assuming steady-state, the ODE (4) transforms into

pca,sm =
ṁca,in

kca,sm,out
+ pca,cm. (5)

The exit manifold pressures of the cathode pca,em and anode pan,em are addressed in a
similar fashion leading to the reduced nonlinear FC state-space model given by

ẋ = f(x, u, θ), (6)

y = g(x, u, θ). (7)
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Here, f denotes the reduced system function, g the reduced output function, and x = x(t)
the reduced state vector. The reduced state vector is structured as

x = [mca,O2 , mca,N2 , mca,vap, mca,liq, man,H2 , man,N2 , man,vap, man,liq, am]T, (8)

and it does not contain the three pressure states (pca,sm, pca,em, and pan,em) anymore.The
input vector u, the output vector y, and the parameter vector θ remain unchanged. The
longest integration step length of the reduced model, which still yields a stable solution,
is about 50% longer than for the non-reduced model, leading to a roughly 36% shorter
simulation time [27].

3. Two-Step Parametrization Method
3.1. Key Idea

The two-step parametrization method’s key idea is to subdivide the given nested
state-space model (6) and (7) into two submodels. The nested model is separable in the
following way:

x = xth, f(x, u, θ) = fth(x, u, θth) (9)

y =

[
yth

yel

]
=


pca,sm
pca,em
pan,em

U

, g(x, u, θ) =

[
gth(x, u, θth)

gel(x, u, θ)

]
(10)

The model’s parameter vector is divisible as well:

θ =

[
θth

θel

]
=



[Vca,sm, Vca,cm, Vca,em, . . .
. . . Van,sm, Van,cm, Van,em, . . .

. . . kperm, kcond, kevap, . . .
. . . kca,sm,out, kca,em,in, kca,em,out, . . .
. . . kan,sm,out, kan,em,in, kan,em,out, . . .

. . . kan,leak, τm]T

[ε2, Rc, Eca,act, Ean,act, . . .
. . . Kca, Kan, CDca, CDan]T


(11)

On the one hand, the subdivision yields the thermodynamic submodel

ẋ = f(x, u, θth), (12)

yth = gth(x, u, θth), (13)

and on the other hand, it results in the electrochemical submodel

yel = gel(x, u, θ). (14)

The thermodynamic submodel (12) and (13) is only dependent on the thermodynamic
parameter vector θth, which also holds for the system function f according to Equation (9).
Therefore the electrochemical parameter vector θel does not affect the states x and the
thermodynamic outputs yth, but only the electrochemical output yel. Thus the electro-
chemical submodel (14) utilizes the full parameter vector θ = [θth, θel]

T. Note that the
thermodynamic submodel consists of ODEs, and the electrochemical one does not. The
two-step parametrization method exploits the described properties.

3.2. Parameter Sensitivity Analysis

The FC model used in this work has numerous unknown parameters, which raises
the question of whether each parameter is unambiguously identifiable. The parameter
identifiability is, in general, strongly dependent on the model structure and the available
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measurement data. A parameter sensitivity analysis can aid in answering these questions,
and the Fisher information matrix (FIM) F is well-established for conducting such analy-
sis [28]. Under the assumption of Gaussian prediction errors with zero mean values and
time-independent covariances, the Cramér-Rao inequality holds [29]:

Cov(θ) � F−1 (15)

The inequality says that the inverse of F is the lower bound of the parameter covari-
ances. The first step for obtaining the FIM is computing the state parameter sensitivities
ξi = dx/dθi, where θi for i ∈ {1, 2, . . . , nθ} denotes a parameter, and nθ the number of
parameters. They are obtainable from solving the following first-order ODE:

ξ̇i =
d
dt

(
dx
dθi

)
=

d
dθi

(
dx
dt

)
=

d
dθi

f(x, u, θ)

=
∂f(x, u, θ)

∂x
dx
dθi

+
∂f(x, u, θ)

∂θi

=
∂f(x, u, θ)

∂x
ξi +

∂f(x, u, θ)

∂θi

(16)

The second step is to calculate the output parameter sensitivities ψi = dy/dθi with

ψi =
∂g(x, u, θ)

∂x
dx
dθi

+
∂g(x, u, θ)

∂θi

=
∂g(x, u, θ)

∂x
ξi +

∂g(x, u, θ)

∂θi
.

(17)

The model described by Ritzberger et al. [10] has analytic derivatives available, and this
work utilizes MATLAB R2020b’s Symbolic Math Toolbox [30] to compute them. All output
parameter sensitivities ψi merged into one matrix yields the output parameter sensitivity

matrix Ψ(t) =
[
ψ1(t), ψ2(t), . . . , ψnθ

(t)
]
. The FIM is determinable with Ψ(t) taken at the

sample times tk for k ∈ {0, 1, . . . , nk}, where nk + 1 is the number of sample instants. Finally,
using the sampled output parameter sensitivity matrix Ψ(tk), the FIM is computable with

F =
nk

∑
k=0

ΨT(tk)Σ
−1
e Ψ(tk), (18)

where Σe denotes the prediction error covariance matrix, and F ∈ Rnθ×nθ holds. Under
the assumption of a perfect model, the prediction error covariance Σe is identical to the
measurement noise covariance and thus assumed to be known.

According to the Crámer-Rao inequality (15), the inverse of the FIM is the lower
bound of the absolute parameter variances. Thus directly analyzing F would mean that
the parameter‘s physical units and their magnitudes bias the analysis. Using the nor-
malized dimensionless FIM Fnorm for a physical unit independent analysis resolves this
issue [31–33]:

Fnorm =


θ1 0 · · · 0

0 θ2
. . .

...
...

. . . . . . 0
0 · · · 0 θnθ

F


θ1 0 · · · 0

0 θ2
. . .

...
...

. . . . . . 0
0 · · · 0 θnθ

 (19)

The identifiability of the parameters is theoretically derivable from the inverse of Fnorm.
Unfortunately, this is not always feasible because the FIM is often ill-conditioned or even
singular. Using a singular value decomposition (SVD) of Fnorm resolves this issue and
enables further analysis [32–34]:

Fnorm = UΣVT (20)
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U denotes the matrix containing the left singular vectors, Σ = diag(σ1, σ2, . . . , σnθ) the
singular value matrix, and V the matrix containing the right singular vectors. The left
and the right singular vector matrix are identical because Fnorm is a symmetric matrix.
The analysis utilizes the right singular vector matrix V = [v1, v2, . . . , vnθ ], where vl for
l ∈ {1, 2, . . . , nθ} denotes a singular vector corresponding to the singular value σl . The
singular values are interpretable as the amount of information, and the corresponding
singular vectors determine the direction in the parameter space. The Euclidean norm of the
vectors is 1. Thus the relative direction share of the vector component vl,i is v2

l,i [35]. The
relative direction v2

l,i multiplied with the singular value σl is the amount of information
showing into the parameter θi’s direction. Summing up all the information of one parameter
from each singular value yields the parameter’s total information

σθi =
nθ

∑
l=1

v2
l,iσl . (21)

The parameter’s total information σθi indicates if a parameter is identifiable with the given
model and measurement data. The most significant parameters θms are determinable by
sorting the parameters according to their total information in descending order. The most
significant parameters are determined by summing up the first nθms parameters until the
following inequality holds:

∑
nθms
i=1 σθms,i

∑nθ
i=1 σθi

≥ γ (22)

Note that γ ∈ [0, 1] denotes the threshold and is adaptable for different purposes. This work
uses γ = 0.99999. In this case, the most significant parameters θms describe ≥ 99.999% of
Fnorm, and the least significant ones θls describe≤ 0.001%, which makes the latter negligible
for parametrization.

3.3. Procedure

The proposed method parametrizes the model in two consecutive main steps:

1. Thermodynamic submodel

(a) Parameter sensitivity analysis with respect to the thermodynamic parame-
ters θth yields a subset with the most significant parameters θth,ms, where
θth,ms ⊆ θth holds.

(b) Parametrization with respect to the most significant parameters θth,ms yields
the optimized parameters θth,opt. The least significant parameters θth,ls are
kept constant at their initial values.

2. Electrochemical submodel

(a) Solve thermodynamic submodel using the optimized thermodynamic parame-
ters θth,opt and store the resulting model states x for further usage.

(b) Parameter sensitivity analysis with respect to the electrochemical parame-
ters θel yields a subset with the most significant parameters θel,ms, where
θel,ms ⊆ θel holds.

(c) Parametrization with respect to the most significant parameters θel,ms yields
the optimized parameters θel,opt. The least significant parameters θel,ls are kept
constant at their initial values.

Combining both solutions lead to the full optimized parameter vector θopt =[
θth,opt, θel,opt

]T
. Assuming that the result is near the optima, the entire model with its op-

timized most significant parameters θms,opt =
[
θth,ms,opt, θel,ms,opt

]T
can be further refined

with iterative methods to approach the optima while the least significant parameters are
kept constant θls = [θth,ls, θel,ls]

T at their initial values.
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The two-step parametrization method requires measurement data (according to the
model’s inputs and outputs), and a model separated into a submodel with ODEs and a
submodel without it. The optimization goal is to minimize an objective function J, which
contains the weighted squared errors between the simulated and measured output signals
and a regularization term [19]:

J(θ) =
nk

∑
k=0

(y(tk, θ)− y∗(tk))
TQy(y(tk, θ)− y∗(tk)) + (θ0 − θ)TQθ(θ0 − θ) (23)

Here, y(tk, θ) denotes the model output at sampling instant tk for k ∈ {1, 2, . . . , nk}, y∗(tk)
the measured output, Qy the output weighting matrix, θ0 a plausible initial guess of the
parameter vector, and Qθ the regularization matrix. The weighting matrix Qy takes the
individual weighting of each output and the different output magnitudes into account. The
last term in the objective function J (23), also called regularization, penalizes the deviation
of the parameter vector θ from its initial guess θ0 and takes the different parameter mag-
nitudes into account. The regularization is also beneficial if the parameters’ uncertainty
differs, for example, if the approximate values for some parameters are derivable from lit-
erature. The goal is to minimize the objective function J. In this case, the optimization
problem is stated as follows:

θopt = arg min
θ

J(θ)

with respect to

θi,min ≤ θi ≤ θi,max for i ∈ {1, 2, . . . , nθ}
(24)

Solving the optimization problem yields the optimized parameter vector θopt. For optimal
results, the parameter space has to be constrained. The parameter bounds, θi,min and θi,max,
are derivable from physical considerations and expert knowledge.

First, parametrizing the thermodynamic submodel with its parameter vector θth re-
duces the solution space’s dimension by 8

25 = 32% compared to the global one. With the
determined optimized thermodynamic parameter vector θth,opt and a given input u, the
state trajectories x do not change anymore. Therefore, for the electrochemical submodel’s
parametrization, the thermodynamic submodel only needs to be solved once, and the
resulting states x are stored for further usage. Second, parametrizing the electrochemical
submodel with its parameter vector θel reduces the solution space’s dimension by 17

25 = 68%
compared to the global one. Here only the electrochemical parameters are optimized, and
the thermodynamic ones are kept constant. A parameter sensitivity analysis further reduces
each sub-solution space’s dimension by excluding non-significant parameters, see Section
3.4. This proceeding significantly simplifies the optimization problem. The thermody-
namic submodel’s parametrization solves ODEs in every iteration, and the electrochemical
submodel’s parametrization does not, which makes the latter considerably faster.

3.4. Validation of Method

This section shows the validation of the two-step parametrization method. Simulating
the model with a plausible initial guess of the parameter vector θ0 and using the measured
inputs u (described in Section 4 and depicted in Section 5 under parametrization data)
yields the simulated model outputs y. The initial values x(t0) are obtainable by assuming
steady-state at the first sample instant. The data sequence is appropriately selected so that at
sampling instant t0, the steady-state assumption holds. The simulated model outputs with
additional Gaussian noise replace the measured outputs y∗ as reference data to validate
the method. In this case, the proposed method has to deliver the used parameter θ0 on
average if it is an unbiased estimator.

Conducting the two-step parametrization method described in Section 3 yields the
parameters’ total information, shown in Figure 2a,b. Due to the floating-point arith-
metic computation, the result’s accuracy depends on the used hardware [36]. There-
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fore, the parameters with a total information value less than the hardware accuracy (in-
dicated by the yellow line) are not identifiable. The most significant thermodynamic
parameters in descending order are kca,em,out, kca,sm,out, kca,em,in, kan,sm,out, Vca,cm, kcond,
kan,em,in, kperm, kan,em,out, and Van,cm. The least significant ones in ascending order are
Vca,sm, Van,em, Van,sm, Vca,em, kevap, kan,leak, and τm. Only parametrizing the most significant
thermodynamic parameters reduces the dimension of the sub-solution space by 15

25 = 60%
compared to the global one. The most significant electrochemical parameters in descending
order are Eca,act, Ean,act, ε2, Kca, Kan, and Rc. The least significant ones in ascending order
are CDan, and CDca. Only parametrizing the most significant electrochemical parameters
reduces the dimension of the sub-solution space by 19

25 = 76% compared to the global one.
The least significant parameters are kept constant at their initial values at all times.

Processes 2021, 1, 0 10 of 19

parameters in descending order are kca,em,out, kca,sm,out, kca,em,in, kan,sm,out, Vca,cm, kcond,
kan,em,in, kperm, kan,em,out, and Van,cm. The least significant ones in ascending order are

Vca,sm, Van,em, Van,sm, Vca,em, kevap, kan,leak, and τm. Only parametrizing the most significant

thermodynamic parameters reduces the dimension of the sub-solution space by 15
25 = 60%

compared to the global one. The most significant electrochemical parameters in descend-
ing order are Eca,act, Ean,act, ǫ2, Kca, Kan, and Rc. The least significant ones in ascending

order are CDan, and CDca. Only parametrizing the most significant electrochemical pa-
rameters reduces the dimension of the sub-solution space by 19

25 = 76% compared to the

global one. The least significant parameters are kept constant at their initial values at all

times.

10

100

1010

10

100
105

0

1

2

0

1

2

0

50

Validation of Method

Parameter

V
ca

,s
m

V
ca

,s
m

V
ca

,c
m

V
ca

,c
m

V
ca

,c
m

V
ca

,e
m

V
ca

,e
m

V
an

,s
m

V
an

,s
m

V
an

,c
m

V
an

,c
m

V
an

,c
m

V
an

,e
m

V
an

,e
m

k p
er

m

k p
er

m

k p
er

m

k c
o

n
d

k c
o

n
d

k c
o

n
d

k e
v

ap

k e
v

ap

k c
a,

sm
,o

u
t

k c
a,

sm
,o

u
t

k c
a,

sm
,o

u
t

k c
a,

em
,i

n

k c
a,

em
,i

n
k c

a,
em

,i
n

k c
a,

em
,o

u
t

k c
a,

em
,o

u
t

k c
a,

em
,o

u
t

k a
n

,s
m

,o
u

t

k a
n

,s
m

,o
u

t

k a
n

,s
m

,o
u

t

k a
n

,e
m

,i
n

k a
n

,e
m

,i
n

k a
n

,e
m

,i
n

k a
n

,e
m

,o
u

t

k a
n

,e
m

,o
u

t

k a
n

,e
m

,o
u

t

k a
n

,l
ea

k

k a
n

,l
ea

k

τ m

τ mT
o

ta
l

in
fo

rm
at

io
n (a) Total information of parameters σθth,i

ǫ 2

ǫ 2
ǫ 2

R
c

R
c

R
c

E
ca

,a
ct

E
ca

,a
ct

E
ca

,a
ct

E
an

,a
ct

E
an

,a
ct

E
an

,a
ct

K
ca

K
ca

K
ca

K
an

K
an

K
an

C
D

ca

C
D

ca

C
D

an

C
D

an

Hardware accuracy

(b) Total information of parameters σθel,i

P
ar

am
et

er
re

la
ti

v
e

to
θ 0

,i

P
ar

am
et

er
re

la
ti

v
e

to
θ 0

,i

(c) Distribution of parameters θth,ms,opt,i (d) Distribution of parameters θel,ms,opt,i

(e) Distribution of parameters θopt,i with single-step approach

Figure 2. Plots (a,b): Total information of thermodynamic σθth,i
(obtained from Fth,norm) and electro-

chemical parameters σθel,i
(obtained from Fel,norm), respectively. Plots (c,d): Relative distribution (100

independent estimations) of optimized most significant parameters of thermodynamic θth,ms,opt,i

and electrochemical submodel θel,ms,opt,i, respectively. Plot (e): Relative distribution (100 indepen-

dent estimations) of optimized parameters of entire model θopt,i with usual “single-step” approach.

θ0,i denotes true parameter value, and red + symbol indicates outliers in the box plots.

The two submodels with their most significant parameters are subject to parametriza-

tion. MATLAB R2020b’s genetic algorithm optimizer parametrizes each submodel with re-
spect to the most significant parameters θms 100 times [37]. Heuristic algorithms increase

the probability of finding the global minimum in a high dimensional solution space com-
pared to iterative methods. Every iteration randomly initializes the genetic algorithm op-

timizer and the Gaussian noise for the model outputs. The optimizer’s population size is

200, the generation limit is 20, and the remaining options remain unchanged. Figure 2c,d
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Figure 2. Plots (a,b): Total information of thermodynamic σθth,i
(obtained from Fth,norm) and electro-

chemical parameters σθel,i
(obtained from Fel,norm), respectively. Plots (c,d): Relative distribution (100

independent estimations) of optimized most significant parameters of thermodynamic θth,ms,opt,i and
electrochemical submodel θel,ms,opt,i, respectively. Plot (e): Relative distribution (100 independent
estimations) of optimized parameters of entire model θopt,i with usual “single-step” approach. θ0,i

denotes true parameter value, and red + symbol indicates outliers in the box plots.

The two submodels with their most significant parameters are subject to parametriza-
tion. MATLAB R2020b’s genetic algorithm optimizer parametrizes each submodel with
respect to the most significant parameters θms 100 times [37]. Heuristic algorithms in-
crease the probability of finding the global minimum in a high dimensional solution space
compared to iterative methods. Every iteration randomly initializes the genetic algorithm
optimizer and the Gaussian noise for the model outputs. The optimizer’s population size
is 200, the generation limit is 20, and the remaining options remain unchanged. Figure 2c,d
illustrate the relative distribution of the estimated parameters θms,opt. The conclusion is
that the estimated parameters are equal to the used parameters θ0 on average, validating
the proposed method. The respective spreads of the estimates correlate with the total
information. The more information exists, the smaller the spread. The correlation is not
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perfect but will converge to the Cramer-Ráo bound (15) by increasing the population size,
the generation limit, and the number of estimations.

For comparison, Figure 2e depicts the relative distribution of the estimated parameters
θopt,i with a usual “single-step” approach for the entire model. The genetic algorithm
optimizer minimizes the objective function J (23) in a single step for the entire model
without any further considerations. The resulting spreads of the parameters are much
higher than those from the two-step method, which means a more complicated search for
the optima.

4. Experimental Setup

A PEMFC system test bench was set up for the acquisition of the measurement data,
which are required for the parametrization. In Figure 3, the schematic overview of the
test bench is shown. The main components of the test bench are a 30 kW PEMFC stack, a
hydrogen and an air supply system, the cooling circuits as well as the control system. The
experimental tests were conducted by setting the load point of the FC stack via a dynamic
DC/AC inverter (battery simulator). Either the current or the voltage level can be controlled
by the battery simulator. Further, the battery simulator supplies the electric power, which
is generated by the FC stack during operation, into the electric grid. Additionally, a power
supply was designed to feed the balance of plant components (e.g., air compressor) with
energy from the electric grid.
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Figure 3. Schematic diagram of the FC test bench.

4.1. Media Supply

The reactants of the stack are fed by the hydrogen and air supply system. The
hydrogen of high purity (99.999%) is supplied by a high pressure (300 bar) gas cylinder
bundle. In the first stage, the highly compressed hydrogen is reduced to a medium pressure
level of 6 bar by means of a pressure reducer. Subsequently, before the hydrogen enters the
anode of the stack, the pressure controller further decompresses the hydrogen and ensures
a constant pressure inside the anode. The anode of the stack operates in the flow-through
mode. Therefore, a hydrogen recirculation pump is used to guarantee a constant volume
flow through the anode. Besides, the stack operates without any device for humidification,
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either of hydrogen or air. Only the internal humidification of the reactants inside the stack
is utilized. Complementary to the hydrogen purge valve, a water separator is installed at
the anode side to remove the excess water periodically from the hydrogen gas. The air,
which is required to supply the necessary oxygen for the electrochemical reaction, is taken
in from the conditioned test bench room. For all experimental tests in this paper, the room
is operated at a constant temperature of 23 °C and constant relative air humidity of 50%.
The turbo compressor sucks in the ambient air from the room via an air filter, which is
designed to mechanically and chemically clean the intake air from impurities. After the
air compressor, the air flows through an intercooler to the cathode side of the FC stack. In
order to vary the backpressure of the stack, an electronically controlled air throttle valve is
implemented at the process air exhaust of the FC stack.

4.2. Cooling Circuits

Two different cooling circuits of the test bench environment are used to keep the stack,
the air compressor, and the air intercooler at an appropriate temperature. All the other
components of the system are designed so that passive cooling is sufficient for them. The
cooling circuit of the FC is thermally connected via a heat exchanger to the 6 °C cooling
circuit of the test bench environment. Moreover, in the cooling circuit of the FC stack, a de-
ionized coolant is used. During the operation of the FC stack, the values of the volume flow
and the speed of the coolant pump are maintained constant. The 40 °C cooling circuit of the
test bench environment is utilized to cool the air compressor and the intercooler. In order to
guarantee a sufficient cooling of the components, flow control valves in the cooling circuits
of the test bench environment are integrated. The target stack coolant inlet temperature is
55 °C. The air inlet temperature is kept at a value of 40 °C. The air compressor is supplied
at all times with a constant volume flow of coolant, which is sufficient for the necessary
cooling demand.

4.3. Test Bench Control System

Dedicated software was developed in LabVIEW and implemented on a NI Com-
pactRio to monitor and control the FC system. With this specific software, the possibility
has been created to vary each operating parameter of the FC system in an admissible range.
Furthermore, with the control system the acquisition of measurement data is realized with
a sampling rate of 10 Hz. In order to provide a detailed experimental investigation, a
variety of sensors (temperature, pressure, mass flow, voltage, current, and humidity) are
installed at all relevant positions. Further details with respect to the test bench set up are
given in [38,39].

4.4. Experimental Tests and Operating Conditions

During the experimental tests, the load point of the stack and the air mass flow, which
is controlled according to the electric current and to a constant air excess ratio of 1.5, were
varied. In order to obtain measurement data under different operating states as well as
operating conditions of the FC system, the load point was adjusted arbitrarily either by
setting the stack voltage or the stack current level in a range, in which a stable operation
of the FC is still guaranteed. All other operating parameters of the FC system (target
temperatures, anode pressure setpoint, hydrogen recirculation pump speed, coolant pump
speed) were kept constant under all load and operating conditions. The standard values of
the constant operating parameters can be seen in Table 1. For more details regarding the
experimental tests, please refer to Section 5, in which simulated and measured data are
presented and discussed.
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Table 1. Constant operating parameters and standard values of the FC system

Operating Parameter Value

Standard stack voltage range 60–120 VDC
Continuous stack current 120–400 A
Air compressor pressure ratio at 400 A 1.64 (closed throttle valve)
Standard excess air ratio (λAir) 1.5
Air inlet temperature at cathode 40 °C
Anode pressure 1700 mbar
H2 pump speed 4000 RPM
Stack coolant inlet temperature 55 °C
Ambient temperature 23 °C
Ambient pressure 1000 mbar
Relative humidity of ambient air 50%

5. Results and Discussion
5.1. Results

This work proposes a validated two-step parametrization method, and it demon-
strates the method by parametrizing the presented model using the measurement data
obtained from the FC test bench. The proceeding is almost identical to the one described
in Section 3.4. The differences are that the measured outputs y∗ now serve as reference
data, the optimizer’s population size is 1000, and the model gets parametrized only once.
Therefore all conclusions stated there still hold. Confidentiality agreements do not allow
the publication of the numerical values of the optimized parameters. Figure 4a–d show
the parametrization results. Simulating the model with the optimized parameter vector
θopt and using the measured inputs u described in Section 4 yields the simulated model
outputs y. The figures additionally depict the measured outputs and four model inputs as
reference: the mass flow of air ṁca,in, the FC temperature T, the anode supply manifold
pressure pan,sm, and the current I. The parameterized model achieves an R2 value of 93%
on average. For validation data, the model reaches an R2 value of 91% on average (see
Figure 4e–h), providing the required accuracy for control-oriented applications.
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Figure 4. Plots (a,e): Cathode supply manifold pressure pca,sm (blue, yellow and red), and air mass
flow ṁca,in (purple). Plots (b,f): Cathode exit manifold pressure pca,em (blue, yellow and red), and FC
temperature T (purple). Plots (c,g): Anode exit manifold pressure pan,em (blue, yellow and red), and
anode supply manifold pressure pan,sm (purple). Plots (d,h): Stack voltage U (blue, yellow and red),
and stack current I (purple). The plots depict parameterization and validation data, respectively, and
y denotes output and u input.

5.2. Discussion

The simulated outputs fit very well. However, the simulated pressures deviate more
from the measurements than the voltage. The simulated anode exit manifold pressure
pan,em (Figure 4c,g) has deviations, which seem to be load-dependent. During low currents,
the measured pressure is higher and vice versa. A reason could be the recirculation flow.
The recirculation pump runs at a constant speed and should provide a constant flow during
steady-state. The flow is not measured and is assumed constant in the model. However,
steady-state conditions are not always given, especially during purging. Measuring the
recirculation flow and adding it as an input to the model could minimize the deviations.
The simulated cathode pressures deviate more from the validation data (Figure 4e,f) than
from the parametrization data (Figure 4a,b). The maximum deviation is 5%, and a reason
may be the inflow air temperature, which differs up to 10 °C between the two data sets. In-
corporating the inflow air temperature into the model may improve the agreement between
the simulated and measured cathode pressures. The model’s simulated voltage response
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(Figure 4h) replicates the undershooting only in a moderate way for the validation data.
One reason could be the underrepresented voltage undershooting in the parametrization
data (Figure 4d). Using a data set with more often recurring voltage undershooting may
improve the model’s behavior in this regard. Figure 2b depicts the total information of
the electrochemical parameters σθel,i . The combined diffusion coefficients, CDca and CDan,
have relatively low information. The reason is that the experiments only cover the safe
operating region. The named coefficients determine the limit current and are only well
identifiable in the unsafe limit current region. According to Figure 2a, the supply and
exit manifold volumes (Vca,sm, Vca,em, Van,sm, and Van,em) are not identifiable. The reason is
that only the pressure states needed them, which do not exist anymore. Thus the named
volumes are not used in the reduced model at all. The named aspects only concern the
model and the experiments, but not the parametrization method itself.

A drawback of the two-step method is that by conducting separate parameter sensi-
tivity analyses for the two submodels, slightly different conclusions may follow compared
to the complete model analysis. The reason is that the electrochemical model’s output
contributes additional information on the thermodynamic parameters. However, the ad-
vantage of the reduced solution space dimension compensates for this drawback. The
stated conclusions derived from the FIM only hold in a region near the initial guess of
the parameters θ0. Hence the FIM is only a local parameter sensitivity analysis. With
another parameter vector, the conclusions from the newly derived FIM may be different.
In general, parameters could be nonsignificant if the excitation is ill-suited (e.g., CDca), it is
not relevant in the model (e.g., Vca,sm), or both. High significancies are interpretable in a
vice versa manner. As discussed, the parameter identifiability and the derived conclusions
are strongly dependent on the available measurement data and the model structure. With
this knowledge, remodeling or a more targeted design of the experiment is possible to
improve identifiability. From the engineering point of view, this information is utilizable to
distribute engineering resources efficiently. Focusing on improving the significant parame-
ter’s real-world counterparts affects the system outputs substantially more than optimizing
the less significant ones. Optimizing the latter will lead to hardly any changes in the
output. Furthermore, more measured signals (e.g., anode and cathode outflow relative
humidity, species concentrations, recirculation flow) and more "exciting" system inputs
would significantly affect the obtainable results by increasing the Fisher information of the
parameters, leading to better parametrization results.

Compared to the usual “single-step” approach, the two-step method simplifies the
parametrization process significantly by reducing the solution space’s dimension. As
depicted in Figure 2e, the parameters resulting from a single-step parametrization of
the entire model (without any further considerations) have a much larger spread, which
implicitly means a worse fit of the simulation data with the measurements. Figure 4
additionally shows the simulation results with parameters obtained from the single-step
approach. The simulations achieve an average R2 value of 33% for the parametrization
data and −62% for the validation data, which is much worse than the proposed two-step
method (93% and 91%, respectively). However, increasing the optimizer’s population size
and the number of generations the single-step approach would yield similar results as
the two-step method. By doing so, the single-step approach searches more thoroughly
through the bigger solution space of the entire model for the optima, but at the expense
of exponentially growing computation time. Therefore, considering limited resources
and the same optimizer options, the two-step method delivers more accurate results than
the single-step approach, making the former superior in this case. A comparison of the
proposed two-step method with methods consisting of more than two steps is, in this case,
not meaningful because this work utilizes pre-existing data. Multiple-step methods [14,18]
require appropriately designed experiments, which is usually not the case for pre-existing
data. If the data allows the utilization of a method with more than two steps, then the
multiple-step method will likely deliver better results than the two-step method considering
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similar resources. The fact that the two-step method does not need appropriately designed
experiments compensates for this drawback.

6. Conclusions

This paper presents an efficient two-step parametrization method for FCs. A separa-
tion of the model into two submodels decreases the solution space drastically. The method
parametrizes the submodels in two consecutive steps. A parameter sensitivity analysis
further reduces each sub-solution space, which simplifies the search for the optima. This
work demonstrates the efficient method by parametrizing an FC model with measurements
and illustrates the parameter sensitivity analysis’s advantages. The parameterized model’s
outputs replicate the validation data excellently.

The parameter sensitivity analysis is a powerful tool to determine the parameters’
identifiability with a given model and measurement data. The inverse approach is also
promising for future research: developing a “design of experiment controller” with a given
model to maximize the parameter’s identifiability in real-time.
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Abbreviations
The following abbreviations are used in this manuscript:

FC Fuel cell
FIM Fisher information matrix
ODE Ordinary differential equation
PEMFC Polymer electrolyte membrane fuel cell
SVD Singular value decomposition

Nomenclature
The following symbols are used in this manuscript:

Subscripts
0 Initial
act Activation
an Anode
atm Atmosphere
bp Backpressure
ca Cathode
cm Center manifold
el Electrochemical
em Exit manifold
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H2 Hydrogen
in Inflow
leak Leakage
liq Liquid water
ls Least significant
max Maximum
min Minimum
ms Most significant
m Membrane
N2 Nitrogen
norm Normalized
O2 Oxygen
opt Optimized
out Outflow
perm Permeability
purge Purge
reci Recirculation
sm Supply manifold
th Thermodynamic
vap Vapour
i Running index for parameters
k Sampling instant
l Running index for singular values
Symbols
α Valve position 1
Ψ Output parameter sensitivity matrix R4×nθ

ψ Output parameter sensitivity vector R4×1

Σ Singular value matrix Rnθ×nθ

Σe Prediction error covariance matrix R4×4

θ Parameter vector R25×1

θel Parameter vector of the electrochemical submodel R8×1

θth Parameter vector of the thermodynamic submodel R17×1

ξ State parameter sensitivity vector R9×1

ε2 Membrane conductivity parameter K
γ Threshold 1
λAir Excess air ratio 1
F Fisher information matrix Rnθ×nθ

f System function of the reduced model R9×1

fnr System function of the non-reduced model R12×1

fth System function of the thermodynamic submodel R9×1

g Output function of the reduced model R4×1

gnr Output function of the non-reduced model R4×1

gth Output function of the thermodynamic submodel R3×1

Qy Output weighting matrix R4×4

Qθ Regularization matrix R25×25

U Left singular vector matrix Rnθ×nθ

u Input vector R8×1

V Right singular vector matrix Rnθ×nθ

v Right singular vector Rnθ×1

x State vector of the reduced model R9×1

xnr State vector of the non-reduced model R12×1

xth State vector of the thermodynamic submodel R9×1

y Output vector R4×1

y∗ Measured output vector R4×1

yth Output vector of the thermodynamic submodel R3×1

σ Singular value
σθi Total information of parameter θi
τ Time constant s
θ Parameter
ϕ Relative humidity 1
a Water activity 1
CD Combined diffusion coefficient mol/s
E Energy J
gel Output function of the electrochemical submodel R1×1

I Current A
J Objective function R1×1

K Intrinsic exchange current parameter A/m2

k Nozzle or mass flow coefficient kg/(s · Pa)
kcond Condensation coefficient 1/s
kevap Evaporation coefficient 1/(s · Pa)
m Mass kg
nk Number of sample instants (nk + 1) 1
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nθ Number of parameters 1
p Pressure Pa
R Mass-specific gas constant J/(kg ·K)
Rc Ohmic contact resistance Ω
T Fuel cell temperature K
t Time s
U Voltage V
V Volume m3

v Right singular vector component
yel Output of the electrochemical submodel R1×1
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