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Abstract: Operating condition detection and fault diagnosis are very important for reliable operation
of reciprocating compressors. Machine learning is one of the most powerful tools in this field.
However, there are very few comprehensive reviews which summarize the current research of
machine learning in monitoring reciprocating compressor operating condition and fault diagnosis.
In this paper, the recent application of machine learning techniques in reciprocating compressor
fault diagnosis is reviewed. The advantages and challenges in the detection process, based on three
main monitoring parameters in practical applications, are discussed. Future research direction and
development are proposed.

Keywords: reciprocating compressor; condition monitoring; fault diagnosis; machine learning

1. Introduction

The reciprocating compressor (RC) is a key piece of equipment in petroleum and
chemical industries. If the RC does not operate in the rated efficiency, it will lead to great
economic loss to the company. Sometimes RCs are used to compress inflammable and ex-
plosive gases working under high pressures and temperatures, such as hydrogen, ethylene,
and natural gas, which would threat human life once the machine malfunctions [1]. Fur-
thermore, due to the intricate structure of the compressor, a large amount of wearing parts,
and the complicated interactional relationship between moving parts of the compressor,
it is essential to monitor the compressor operating condition and detect failures of RCs
accurately and in a timely manner [2].

Traditionally, the fault diagnosis of RCs was carried out by engineers who had exten-
sive experience and knowledge. As an example, an experienced engineer is able to detect
the faults of RCs according to the abnormal noise occurring in sound signals [3,4]. However,
users still tend to predict faults more accurately before the RC faults occur. This will reduce
the operation and maintenance (O&M) costs by using an automatic condition classification
system [5]. Recently, with the rapid development of artificial intelligence (AI), machine
learning (ML) has turned out to make a great difference in machine fault diagnosis and
prediction [6]. Zhang et al. [6] discussed the computational intelligence techniques utilized
in machinery condition monitoring and fault diagnosis. A comprehensive overview of
some common natural computing methods and their applications in mechanical systems
was made by Worden et al. in [7]. Some other researchers [8] intend to develop a review
of bearing fault diagnosis based on deep learning (DL), whereas very few reviews were
conducted for intelligent fault diagnosis of reciprocating compressors.

This paper reviews the recent research and development of fault diagnosis technolo-
gies for reciprocating compressors utilizing machine learning in terms of theoretical studies
and applications. To finish this review, search terms such as artificial intelligence, machine
learning, reciprocating compressor, fault diagnosis, fault detection, monitoring system, etc.,
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were used in the process of searching literature. The filtering mechanism is mainly based
on multiple combinations of the search terms mentioned above. Most of the literature sur-
veyed is from journals, in which the English literature was searched using Web of Science
and the Chinese literature was searched using China National Knowledge Infrastructure
(CNKI). The theories of RCs and ML methods were mostly from books. After the searching
process, the literature was classified into several categories based on ML methods applied
and the main monitoring parameters. The following reviewing sections are also introduced
according to the categories. After the review of literature, the advantages and limitations
of the ML technologies, comparison of different monitoring parameters, and an overlook
of future research are also discussed.

2. Overview of Reciprocating Compressors

Figure 1 shows a single-stage reciprocating compressor, which is mainly made up
of two valves, a piston, a cylinder, a piston rod, a crosshead, a connecting rod, and a
crankshaft. The crankshaft is driven by motor, then the crankshaft reciprocates the piston
through the slide-crank mechanism, so that the piston can compress gas in the cylinder to a
designated high pressure [9]. RCs can be applied in chemical, refining, and petrochemical
plants, and they can compress almost any gas mixture from vacuum to over 3000 atm.
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The faults of compressors are caused by failures of different components. In [10],
Kostyukov performed a survey into the fault causes of reciprocating compressors based on
consumers and manufacturers of RCs. The results showed that one of the main reasons for
compressor failure is valves, and it makes up 36%. Piston-cylinder units also constitute over
30% of all faults, where the failures of rings account for 25%. Failures in the slide-crank
mechanism and cranking mechanism are also significant [10]. To monitor compressor
conditions, many kinds of sensors were used in fault detection systems, such as vibration
sensors, temperature sensor, pressure sensor, displacement sensor, acoustic emission sensor,
and so on.

3. Overview of the Four Major Machine Learning Methods

Machine learning is a subject that focuses on research of learning algorithms by which
a machine can learn from the data nearly as well as people do [11]. Up to now, there
are a lot of machine learning methods that have been applied in RC fault diagnosis. In
this section, the four most prevalent algorithms in machine learning are reviewed. The
artificial neural network, support vector machine, and Bayesian network are three common
traditional machine learning methods, and the deep learning method is one of the latest
machine learning algorithms.

3.1. Artificial Neural Network (ANN)

The artificial neural network (ANN) is a mathematical model, inspired by biological
neural networks, which consists of a supply of interconnected basic processing elements,
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called artificial neurons. Artificial neurons are connected with each other by connection
links integrated with different weights. Figure 2 shows an ANN with four layers which
are input layer, output layer, and two hidden layers (layers 1 and 2). Each hidden layer
includes several neurons, and each neuron is connected to each element of the output
vector of the last layer through the weight matrix Wi (the weight matrix for the ith hidden
layer is written as Wi). Besides, each neuron has a bias bi

j (the bias for the jth neuron in the

ith hidden layer is written as bi
j), a summer, a transfer function f i

j (the transfer function for

the jth neuron in the ith hidden layer is written as f i
j ), and an output ai

j (the output for the

jth neuron in the ith hidden layer is written as ai
j). Therefore, the calculating function of

each neuron is indicated by Equation (1).

ai
j = f i

j (W
iai−1 + bi

j), (1)

where ai−1 is the output vector of the (i− 1)th hidden layer (note that when i = 1, ai−1 is
the input vector of the input layer of the whole network).
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Typically, in an ANN model, the transfer functions are selected by the designer, and the
weights and biases are adjustable parameters which can be adjusted by the learning means
such as error back propagation algorithm. Therefore, the input and output relationship of
the network can meet a specific goal [12,13]. Thus, the ANN model can be used to deduce
a function from the observations, which is helpful in solving complex problems. Hence, it
can be broadly applied in fault diagnosis, which is an essential classification problem.

3.2. Bayesian Network (BN)

The Bayesian network (also called belief network) [14] is a directed acyclic graph
(as shown in Figure 3) where the nodes, such as {z1, z2, . . . , z7}, are perceived to be the
propositional variables. The arrow between two nodes means that the two nodes are
related directly, and the weight therein is quantified by a conditional probability. The two
essential natures of these networks are consistency and completeness, while the chain-rule
representation of the joint distributions is employed to guarantee the two natures for its
form [15,16]:

P(z1, z2, . . . , zn) = P(zn|zn−1, . . . , z1) · · · P(z2|z1)P(z1), (2)
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It can be seen that in the right-chained formula, each variable appears once on the
left side of the conditioning bar, which can facilitate the dependence quantification of the
network. For instance, the chain rule representation for the network shown in Figure 3 is:

P(z1, z2, . . . , z7) = P(z7|z5, z4)P(z6|z4)P(z5|z3, z1)P(z4|z3, z2,z1)P(z3)P(z2)P(z1) (3)

The Bayesian network is a methodology integrating the probability theory and graph
theory. Not only can it visually exhibit the structure of real tasks by graph, but it can
also exploit the structure based on the principle of the probability theory, which would
diminish the complexity of reasoning. Therefore, the Bayesian network is applied in many
various domains. The Bayesian network also provides a framework for new models,
and therein a naive Bayes model is normally selected for classification and prediction of
multi-dimensional discrete time series [17,18].
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3.3. Support Vector Machine (SVM)

The support vector machine (SVM) is a supervised learning technique developed
based on a statistical learning theory, which aims to find a hyperplane (see Figure 4). It can
separate n-dimensional inputs into two parts associated with the real distinct classes. The
hyperplane can be depicted as [19]:

wTx + b = 0, (4)

where w is the normal vector of the hyperplane and b is the bias. To ensure the generaliza-
tion ability of the SVM, the simplest maximal margin bound was adopted, which implies:

max
w,b

2
‖w‖2

s.t. yi

(
wTxi + b

)
≥ 1, i = 1, 2, . . . , m, (5)

where (xi, yi) is the ith sample of the training set, and yi ∈ {−1, 1}. Formula (5) is actually
a convex quadratic programming problem and hence has no local minima [20,21]. By
converting the problem with the Kuhn–Tucker condition into the equivalent Lagrangian
dual quadratic optimization problem, the parameters of the SVM, namely w and b, can be
obtained [19,22]. Moreover, except for the maximal margin bound, there are other available
generalization bounds, such as margin percentile bounds, soft margin bounds, and so on.

The introduction above is based on the linear separable problem; however, most real
tasks are nonlinear separable. Hence, the lower dimensional features should be mapped
to a higher dimensional feature space utilizing kernel functions, so that the inputs can
be linearly separated in the feature space. For this reason, the kernel function must be
seriously selected for an efficient SVM classifier [21].
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SVM is an initial tool designed for the binary classification. The strategies have to be
established to accomplish multiclass classification. Three major SVMs based on distinctive
structures are called the one-against-one SVM, one-against-all SVM, and directed acyclic
graph (DAG) SVM [23,24].
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3.4. Deep Learning (DL)

The artificial intelligence methods introduced above are all conventional machine
learning algorithms. One thing they have in common is the performance of classification
depending on the feature vector extracted artificially from the raw data, whereas the
process of the fault diagnosis is desired to be fully automatic. Deep learning (DL) offers the
probability to approach this task [25].

The deep learning model is composed of multiple processing modules and each
module transforms the representation from the last layer to a higher and more abstract
level in the current layer. With enough suitable modules combined, the extremely intricate
relationships can be learned. The internal parameters of the deep learning machine are
obtained by utilizing a backpropagation algorithm based on a large set of data. The
convolution neural network (CNN), deep belief network (DBN), and auto-encoder are the
three main deep learning methods. The CNN is designed to process data with the form
of multiple arrays, such as time series and image data [26]. The DBN is an undirected
bipartite graphical model stacked by several restricted Boltzmann machines. A Boltzmann
machine (BM) is an energy-based model, and its modeling capacity can be improved by
increasing the number of hidden variables [27].

An auto-encoder is a purely unsupervised representation learning algorithm. An
auto-encoder consists of an encoder and a decoder. The encoder can transform the input
into different representations, and the decoder can convert the new representation into the
primary form. The auto-encoder can be used to reduce the dimensionality of the dataset,
and for learning more abstract features [27,28].

4. Applications of Machine Learning in Fault Diagnosis of the Reciprocating Compressor

Since the performance of most machine learning methods mainly depends on the
feature extractor used before the classification, the selection of the feature extractor depends
on the characteristics of the raw signals. Therefore, the subsequent section is divided into
four parts according to the nature of signals, and the different machine learning methods
were specified by different paragraphs in each part.

4.1. Fault Diagnosis Based on Process Parameters

The parametric method is a diagnostic method for the reciprocating compressors based
on process parameters including the compressor pressure, temperature, flow rate, etc.
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4.1.1. Fault Diagnosis Based on p–V Diagram

The compressor pressure can be monitored via p–V diagram, which is one of the
most typical process parameters. The p–V diagram is a two-dimensional cycle diagram
which shows the variation trend of dynamic pressure in the compressor chamber with
the working volume in a working cycle. The fault of the compressor valves, piston rings,
support rings, and other components such as shaft, lubrication oil, and bearings can lead
to the change of the pressure in the cylinder, and then the shape of the p–V diagram.
Hence, the p–V diagram (cylinder pressure) is a very useful parameter for fault diagnosis
in reciprocating compressors.

The support vector machine (SVM) has been widely applied in fault diagnosis based
on a p–V diagram. Feng et al. [29] proposed a recognition approach for fault detection
based on a p–V diagram using discrete 2D-curvelet transform, nonlinear principal compo-
nent analysis (PCA), and SVM methods. The data dimension reduction with PCA and the
multi-class SVM classifier are used to classify five valve faults in reciprocating compressors.
Pichler et al. [30,31] detected broken reciprocating compressor valves in the p–V diagram.
The gradient of the expansion phase of the p–V diagram, extracted in a logarithmic coor-
dinate, and the pressure difference between the suction and discharge were used as the
features to train the SVM classifiers which were aimed to discriminate between the faultless
and faulty cases with six kinds of valves, respectively. The method was validated using
real-world data and the results showed a high classification accuracy. Wang et al. [32]
introduced an automated evaluation of the p–V diagram. They determined seven invariant
moments of the p–V diagram and classified them using the SVM method. In another
research [33], Jiang et al. conducted research on RC p–V diagram fault recognition using
the SVM method. The fault features were extracted from the indicator diagram by the
feature points extraction method. A fault recognition model was constructed based on
multi-classification SVM and decision tree with the feature vectors.

The artificial neural network (ANN) also has been used in fault diagnosis based
on p–V diagram. Namdeo et al. [34] used an ANN method to detect the valve leakage
in RCs. The healthy expansion process of the RC was predicted by the functional link
network. A back propagation algorithm is applied to predict the percentage of leakage
based on the pressure deviation at a particular instant of time. In another study [35], the
features were extracted from raw pressure signal with wavelet packet decomposition. The
extracted features, along with temperature data, were used to train a logistic regression
model for classifying valve faults. The features were also applied to train a recurrent neural
network (RNN) to predict the future performance, namely wavelet energy features of the
pressure signal of the system, which could also indicate the detection of the valve failures.
Tang et al. [36] used an ANN method to analyze the fault diagnosis of RC gas valves based
on geometrical property of the p–V diagram. The features were applied to train the BP
neural network, resulting in a network with 100% recognition rate. In the literature [37],
the p–V diagrams were normalized before the BP neural network was applied to recognize
the failure conditions of RCs.

Guerra [38] extracted data from the dynamic pressure signal processed with a binned
fast Fourier transform (FFT) and PCA for the detection of valve faults through Bayesian
classification at 50% and 100% load.

Tran et al. [39] applied a noise removal method on the pressure and current signals,
which was based on the wavelet transforms, and adopted a Teager–Kaiser energy operator
to estimate the amplitude envelope (AM signal) of the transient vibration signal. Then the
DBN was applied to classify the RC valve faults.

The applications of three main traditional ML methods and deep learning in RC fault
diagnosis based on p–V diagram were reviewed in this section; it is obvious that SVM and
ANN are widely used in this field.
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4.1.2. Fault Diagnosis Based on Pressures Measured in Other Volumes

Except for p–V diagrams, pressures measured in other volumes can also be used to
recognize faults.

Tiwari and Yadav [40] applied an ANN method in condition monitoring of a defective
RC. The corresponding values of the pressure pulsations in the discharge pipe were
simulated to train the ANN for predicting the percent leakage of discharge valves.

Guerra and Kolodziej [41] proposed a data-driven approach for condition monitoring
of RC valves. An FFT was applied to the pressure wave measured in the environment
around the discharge valve, and then the FFT values were grouped into several frequency
bins. Afterwards, PCA was used to reduce the dimension of the vectors. Finally, the results
were used to train the Bayes classifier, which successfully classified various levels of the
valve degradation with high accuracy.

The applications of ML methods in RC fault diagnosis based on pressures measured
in other volumes (except for cylinder) were reviewed in this section; it is suggested that
research about RC fault detection based on pressures measured in volumes is few, and
ANN and Bayes classifier were employed.

4.2. Fault Diagnosis Based on Vibration Signals

Vibration analysis is a typical monitoring method of RCs. Many faults in RCs lead to
abnormal vibration which could be diagnosed from the vibration signals comprising lots
of machinery information.

Qin et al. [42] presented a novel SVM scheme composed of three steps: denoising via
basis pursuit, feature extraction via wave matching, and classification via support vector
machine. The basis pursuit was applied to suppress the background noise and enhance
the major component in the vibration signal. Then, the feature extraction was carried out
by matching the denoised signal with parameterized waveform, which was optimized by
a differential evolution algorithm. In the end, the SVM was carried out in the valve fault
classification with 100% accuracy. Ren et al. [27] used SVMs in the automated diagnosis
of valve operating conditions. The input features were extracted from the vibration sig-
nals using the local wave and higher-order statistical methods. Chen et al. [43] extracted
wavelet packet entropy of vibration signals as working condition eigenvectors, and the
signals were trained with an SVM classifier. Cui et al. [44] proposed an SVM classifier
trained with information entropy extracted from vibration signals. Potocnik et al. [45]
developed a semi-supervised approach based on vibration signals which included statisti-
cal evaluation extracted from the signals and principal component analysis as preprocess,
and then a comparative analysis of classification methods including discriminant analysis
(DA), neural networks (NN), SVM, and extreme learning machines (ELM) was conducted.
The results showed that the nonlinear classifier performed better. Pichler [46,47] focused
particularly on valve fault detection under variable operation conditions. The features of
the vibration signals were extracted from the spectrogram difference with two-dimensional
correlation. The classification performance was validated using SVMs and logistic regres-
sion. Pichler [47] proposed an independent method for detecting the valve faults based
on the vibration measurements using several different valves. The classifiers, such as the
logistic rule (in a two-class setup) and SVMs (in two-class as well as one-class setup) were
compared with each other. The results showed the three classifiers performed equally good
for plastic valve faults. However, the two-class SVMs were better for the steel valve faults.

Na Lei et al. [48] proposed an integration approach based on the local mean de-
composition (LMD) method and autoregressive–generalized autoregressive conditional
heteroscedasticity (AR-GARCH) model to extract the features of the vibration signal. Then,
the back propagation (BP) neural networks were applied to diagnose the faults of RC
valves. Lin et al. [49–51] conducted research on the automated valve condition classifica-
tion. They processed the raw vibration signals using time–frequency analysis such as short
time Fourier transform (STFT), smoothed pseudo-Wigner–Ville distribution (SPWVD),
and the reassigned smoothed pseudo-Wigner–Ville distribution (RSPWVD). Then, a data
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reduction algorithm was used to extract fault features which was fed to a probabilistic
neural network (PNN) for fault classification. Three modification indices were proposed
to extract fault features. The results showed that the modified indices were better than
the original indices in the literature [51]. The genetic algorithm was applied to automate
the classification process to improve the prediction accuracy [50]. The authors [49] further
revealed that the applicability of the resigned smooth pseudo-Wigner–Ville distribution
(RSPWV) was better than Wigner–Ville distribution (WVD) and the spectrogram (SP) in
the probability neural network classification system. Meanwhile, Ahmed et al. [52,53] also
conducted studies about fault classification on RCs. They found that the classification
performance of features from the frequency domain were better than those from the time
domain which were extracted from vibration signals with a probabilistic neural network
(PNN). They further proposed a PNN optimized by GA, in which classification accuracy
was higher than the original one. The authors [54] also developed a one-against-one scheme
based on the relevance vector machine (RVM) and a multiclass multi-kernel RVM (mRVM).
Both methods were optimized by GA, and their classification accuracies were up to 97%.
Diego Cabrera et al. [55] developed a long short-term memory (LSTM)-based classifier
for valve faults trained with preprocessed vibration time series, and the hyperparameters
were optimized by Bayesian method. Li et al. [56] proposed an improved wavelet neural
network (WNN) in which original parameters were obtained by genetic algorithm (GA).
Yang et al. [57] proposed an online network, adaptive resonance theory–Kohonen net-
work (ART–KNN), which performed more suitable than self-organizing feature map and
learning vector quantization on production line. In another study [58], the Wigner–Ville
distributions (WVD) of the vibration acceleration signals were calculated and displayed in
grey images and the PNN was directly used to classify the new time–frequency images
after the images were normalized.

Kolodziej et al. [59] trained a Bayesian classifier for early detection of the spring
fatigue and valve seat wear in RCs, and validated it using experimental data. The vibration
data was processed using the Wigner–Ville spectrum and quantified using image-based
statistical features. The principal component analysis (PCA) was utilized to reduce the
feature space.

Tran et al. [60] proposed a hybrid deep belief network (HDBN) which integrated the
DBN for pretraining and simplified fuzzy ARTMAP (SFAM) for fault classification. The
results showed a great improvement in comparison with the original DBN in classifica-
tion accuracy.

The applications of ML methods in RC fault diagnosis based on vibration signals were
reviewed in this section. There are considerable studies focusing on the fault detection
techniques based on vibration signals, and similar to p–V diagram, lots of different SVM
models and ANN models were employed as classifiers in these cases, whereas Bayes
classifier and deep learning were barely used.

4.3. Fault Diagnosis Based on Acoustic Emission (AE)

Acoustic emission refers to the generation of transient elastic waves produced by a
rapid release of energy from a localized source within the surface of material, according to
the American Society for Testing and Materials (ASTM) [61,62]. By detecting AE signals
generated in the reciprocating motion, acoustic emission can be used to discriminate the
different types of damage occurring in an RC.

Ali et al. [63,64] investigated fault detection technologies based on artificial intelligence
(AI) and AE signals. They proposed two AI models to detect the valve condition in a
reciprocating compressor based on several AE signals using SVM and ANN [63,64]. In
the literature [65], the ANN and SVM models were trained and evaluated for detection of
valve faults in an RC. The results showed that the accuracy of the ANN and SVM detection
methods were similar, but the SVM had better ability of handling a large number of input
features with low sampling datasets. Zhang et al. [66] extracted the root mean square
(RMS), average signal level (ASL) of the time domination, and peak value of the frequency
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domination as the eigenvectors in the SVM model. With the SVM model, the leakage
of the pipeline valve could be recognized. Sim et al. [67] employed the time–frequency
analysis of the AE signal through the discrete wavelet transform (DWT) and assessed
the characteristics of four acoustic emission parameters [67]. The result revealed that
the acoustic emission root mean square (RMS) performed the best. Then, the k-nearest
neighbor (KNN) and support vector machine (SVM) classification methodologies were
applied to detect the valve faults with AE RMS before estimation of the valve flow rate
through regression model [20].

The applications of ML methods in RC fault diagnosis based on AE signals were
reviewed in this section. The amount of studies in this field is less than for p–V diagram
and vibration signal; also, the applications of classifiers mainly focused on ANN and SVM.

4.4. Fault Diagnosis Based on Multi-Source Signals

The faults in RCs are intricate, and it is difficult to recognize all of them by a single
signal or parameter. Therefore, it is important to conduct studies on fault detection based
on multi-source signals.

Yang et al. [68] studied the condition classification of a small reciprocating compressor
for refrigerators using ANN and SVMs. The noise and vibration signals were wavelet-
transformed into the frequency sub-bands and the fault features were extracted using
the statistical method. The classification performance of the SVM, self-organizing feature
map (SOFM), SOFM associated with learning vector quantization (LVQ), and LVQ were
compared with each other. The results showed that the SVM and LVQ methods performed
better than the other methods. Zhang et al. [69] proposed an RC fault diagnosis method
based on sensitive parameters extracted by scatter matrix method and SVM. The sensitive
parameters were assessed by distance evaluation method. The accuracy of the new method
is superior to the traditional methods. A fault detection system integrating data analysis
and machine-learning was proposed by Qi et al. [70]. The raw data was denoised by robust
principal component analysis (RPCA) first, then the core information of the compressor
signal was extracted by a sparse coding algorithm with online dictionary. Based on the
learned dictionary, the potential faults were finally recognized and classified by the SVM
using the one-on-one strategy.

Li et al. [71] proposed an ART–artificial immune network for RC failure detection,
integrating the adaptive resonance theory (ART) and artificial immune network (AIN). The
network was trained by the suction pressure, discharge pressure, suction, and discharge
temperatures from a multilevel RC. Wang et al. [72] established an RC intelligent diagnosis
system based on multi-agent technology. The system involved monitoring agent, man-
agement agent, diagnosis agent, diagnosis method agent, fusion agent, human–computer
interaction agent, and other modules. The monitoring agent integrated four signal types,
such as vibration, temperature, displacement, and pressure. In addition, the diagnosis
method agent included the expert system agent, fuzzy logic agent, neural networks agent,
and so on.

Zhang et al. [73] proposed an improved K-means algorithm (K-means algorithm is
one of the clustering algorithms) for RC fault diagnosis. This new method has gotten rid of
the algorithm’s dependence on the initial clustering centers.

The applications of ML methods in RC fault diagnosis based on multi-source signals
were reviewed in this section, and ANN and Bayes classifiers were mainly employed.
Meanwhile, in this section, a clustering algorithm (K-means) [73] was applied in RC fault
diagnosis. It can be the guide for future research about RC fault diagnosis.

5. Discussion

As reviewed in Table 1, it is obvious that the SVMs and the ANNs are the two most
widely used methods of traditional ML algorithms. They are employed as classifiers
in many of the reciprocating compressor fault diagnosis cases based on the three main
monitoring parameters. Figure 5 shows the trends of each ML method over years, from
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that we can see, although the amounts of literature regarding ANN and SVM are close;
the application of SVM is rising, and the application of ANN is declining with each
year. Meanwhile, although the application of deep learning was less prominent, it has
begun to develop in recent years. However, the application of Bayesian network and
clustering algorithms were still barely considered in this domain. Actually, considering the
development of AI techniques, we can see that the research tendency of the intelligent fault
detection techniques regarding RCs largely depends on the development of AI techniques.

Table 1. Categories of ML methods in RC fault diagnosis.

ML Methods Quantity of Literature Occupation of Literature Main Literature

Support vector machine 21 45.7% [27,40,61,66], etc.

Artificial neural network 21 43.5% [32,46,63,70], etc.

Bayesian network 3 6.5% [36,57], etc.

Deep learning 2 4.3% [37,58], etc.
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The reviewed cases demonstrated that there are some differences in the three main tra-
ditional ML methods with respect to their application scenarios. We can see that ANNs were
good at regression, meanwhile SVMs were more focused on classification, and Bayesian
networks were more applied in probabilistic prediction. Although they were applied in
different scenarios, all of them behaved well with respect to classification performance.
Moreover, the main difference between the traditional ML methods and deep learning, in
terms of the RC fault diagnosis, is that the traditional ML methods need to select various
feature extractors associated with the monitoring parameters, while the deep learning
implements the representation learning in the lower processing modules. Hence, the classi-
fication results of the traditional MLs deeply depend on the preprocessing techniques and
the quality of feature extractors. Furthermore, the application of the clustering algorithm
may guide the further development of intelligence RC fault detection techniques.

There are much more discoveries that were dug out from the reviewed literature
in the aspects of monitoring parameters. The preprocess, feature extract methods, and
occupations of literature of the three main monitoring parameters are summarized in
Table 2. It is revealed that both vibration and AE signals entailed the complex preprocess
by contrast with the pressure. This is because the AE, as well as vibration signals, exhibited
nonstationary behavior due to the RC motion. Therefore, the preprocess was applied to
offer a better revolution for the useful components of raw signals. Moreover, Table 2 also
represents that more literature focused on the vibration signal which was established in
comparison with the other two parameters. This is because the pressure measurement was
strict with the mounting environment, and the advent of the AE theory was later than the
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vibration. Moreover, in the RC fault diagnosis, it is impossible to use one single type of
signal to clearly monitor all the potential faults. Only a few studies, such as [8], studied a
condition monitoring (CM) system for overall fault diagnosis.

Table 2. Categories of main monitoring parameters in RC fault diagnosis.

Parameters Sensors Preprocess Feature Extract Methods Occupation

Pressure Pressure
sensor From p–V diagram

1. Image characteristics extraction methods, such
as curvelet transform, wavelet analysis, etc.
2. Frequency-domain analysis such as FFT.
3. Sensitive parameters.

35.7%

Vibration Vibration
sensor

1. Basis pursuit
2. TKEO
3. LMD
4. WVD
5. Time–frequency analysis
6. Entropy extraction, etc.

1. Wave matching
2. Statistical features
3. AR-GARCH
4. Statistical features extraction (sometimes
image-based), etc.

52.4%

AE AE
sensor

Time–frequency analysis,
such as DWT

1. Statistical features
2. Sensitive parameters 11.9%

Furthermore, it is obvious that considerable existing literature tends to study the fault
detection techniques of the valves in RCs. This is because the valves result in 36% of the
cases where the compressor needs to be shut down, and they also constitute 50% of the
total maintenance cost, and it is much easier to see valve faults in RC fault simulation
experiments compared with other structural failures. Besides, most of the reviewed research
did not focus on real-time recognition of the condition of the RC, but rather exploited data
from a prepared testing set and made a decision about whether the compressor was healthy
or not.

6. Challenges and Prospects

As reviewed above, many studies have been conducted for RC fault diagnosis using
machine learning. The challenges and prospects for the RC fault diagnosis based on
machine learning are summarized below:

• The process of RC fault diagnosis could be a pattern recognition problem or a clustering
problem, in terms of artificial intelligence. However, most of the current studies only
tend to deal with the fault diagnosis as a pattern recognition problem. Therefore, it is ex-
pected for researchers to input more efforts to explore the suitable clustering algorithms.

• With the rapid development of the monitoring system, deep learning can easily take
advantage of the large amount of monitoring data. It will make the fault diagnosis
process more automatic and accurate.

• To make sure that the CM system is applicable for practical engineering applications,
more attention should be paid to the overall fault diagnosis. Furthermore, for the
reasons discussed in Section 4, the instantaneity of fault diagnosis is also indispensable.

• Except for the three monitoring parameters (pressure, vibration, and AE), as men-
tioned above, there are other parameters, such as piston-rod axis orbit, flow rate,
displacement of wear, etc., which are more sensitive to relevant failures. Future
investigation can focus on these parameters as well.

• Although valve problems account for most of the cases where the compressor needs
to be shut down, and the total maintenance cost, research into detection techniques
for other failures in RCs is also necessary.

7. Conclusions

In this paper, the applications of machine learning for RC fault diagnosis were re-
viewed. The application status and scenarios of the four ML methods were discussed. SVM
models and ANN models were the most two widely used ML methods, and without the
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feature extraction, deep learning will make the fault diagnosis process more automatic
and accurate.

The advantages and disadvantages of the fault detection process of three main monitor-
ing parameters including pressure, vibration, and AE signals were evaluated and discussed.
Vibration and AE signals need more complex preprocess to offer a better revolution for the
useful components of raw signals.

Finally, the challenges and prospects of machine learning used in RC fault diagnosis
were discussed. This can provide valuable guidelines for future research in this domain.
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